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Abstract
Methionine in proteins is often thought to be a generic hydrophobic residue, functionally replaceable with another hydro-
phobic residue such as valine or leucine. This is not the case, and the reason is that methionine contains sulfur that confers 
special properties on methionine. The sulfur can be oxidized, converting methionine to methionine sulfoxide, and ubiquitous 
methionine sulfoxide reductases can reduce the sulfoxide back to methionine. This redox cycle enables methionine residues to 
provide a catalytically efficient antioxidant defense by reacting with oxidizing species. The cycle also constitutes a reversible 
post-translational covalent modification analogous to phosphorylation. As with phosphorylation, enzymatically-mediated 
oxidation and reduction of specific methionine residues functions as a regulatory process in the cell. Methionine residues 
also form bonds with aromatic residues that contribute significantly to protein stability. Given these important functions, 
alteration of the methionine–methionine sulfoxide balance in proteins has been correlated with disease processes, including 
cardiovascular and neurodegenerative diseases. Methionine isn’t just for protein initiation.
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Abbreviations
Msr	� Methionine sulfoxide reductase
MetO	� Methionine sulfoxide
ROS	� Reactive oxygen species

Introduction

We are pleased to join the colleagues, students, and admirers 
of Elias Michaelis in this special issue honoring him. At first 
glance, a mini-review on the roles of methionine in proteins 
may seem tenuously connected to his many contributions 
to neuroscience. Actually, it connects directly through his 
interest in oxidative stress, one of the important areas in 
which Dr. Michaelis has advanced our knowledge through 
his research.

When many of us took our first course in biochemistry, 
we learned that methionine was one of several hydropho-
bic residues in proteins and, except for its role in protein 

initiation, we were taught that these hydrophobic residues 
were pretty much interchangeable. Such was not the case for 
the other sulfur-containing residue, cysteine. This impor-
tant amino acid was recognized as having roles as an anti-
oxidant—especially in the tripeptide glutathione, in protein 
structure through disulfide bond formation, in catalysis at the 
active site of several classes of enzymes such as proteases, 
oxidoreductases, phosphatases, and peroxiredoxins, and 
in cellular regulation through its reversible oxidation and 
reduction. Research from many investigators in the last years 
has revealed that methionine in proteins shares many of these 
functions [1–8]. The results of these studies make clear that 
each of the two sulfur-containing amino acids function in 
antioxidant defense, protein structure, and redox sensing and 
regulation. Experimental investigation of methionine’s roles 
in those functions thus has a high probability of identifying 
important cellular mechanisms as well as diseases caused by 
defects in their function. With the recognition that oxidative 
defense, protein structure, and cellular regulation are medi-
ated by methionine residues in proteins, it is not surprising 
that impairment of those functions has also been associated 
with several disease processes, including neurodegenera-
tion, cancer, and cardiovascular disease. In this article, we 
provide examples of the expanded role of methionine and 
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summarize the mechanisms by which methionine is thought 
to perform these functions.

Oxidation of Methionine to Methionine Sulfoxide 
and Reduction Back to Methionine

One of the important properties of both cysteine and methio-
nine residues in proteins is that they are subject to reversible 
oxidation and reduction, mediated either enzymatically or 
non-enzymatically. While cysteine is well-recognized for 
the ease of its oxidation, it is often not appreciated that 
methionine can be readily oxidized to methionine sulfoxide 
(MetO) [9, 10]. Indeed, the standard redox potential for the 
two electron reduction of dimethyl sulfoxide is + 160 mV 
[11] while that for cystine is + 220 mV [12]. Cysteine is 
easily oxidized when ionized to its thiolate, but is difficult to 
oxidize when in the thiol form [13]. However, most cysteine 
residues, including those in glutathione, have a pKa around 
8.3–8.7 and are not easily oxidized at physiological pH, 
unless the oxidation is catalyzed by an enzyme. In contrast, 
oxidation of methionine residues is essentially independent 
of pH [14]. In vitro, hypochlorous acid (HOCl), a major 
halogenated oxidant generated by leukocytes, reacts rapidly 
with methionine at physiological pH [14, 15], but hydrogen 
peroxide does not, although the rate can be accelerated by 
the bicarbonate/carbon dioxide present in vivo [16].

MetO is reduced back to methionine by the methio-
nine sulfoxide reductases, thioredoxin-dependent enzymes 
that are virtually universal among aerobic organisms [17, 
18]. Oxidation of methionine to MetO introduces a chi-
ral center at the sulfur atom so there are two epimers of 
MetO, R-MetO and S-MetO [19]. While an epimerase that 
interconverts the forms could theoretically exist, none has 
been found so far. Instead, organisms have two types of 
methionine sulfoxide reductases (msr). MsrA specifi-
cally reduces S-MetO, but not R-MetO. Conversely, msrB 
reduces R-MetO, but not S-MetO. Recycling by the reduc-
tases allows the methionine residue to react again with 
oxidizing species, creating a system with catalytic effi-
ciency in scavenging reactive species. The reducing power 
is ultimately provided by NADPH (Fig. 1).

The A class of reductases was described some years ago 
and has been characterized in considerable detail, espe-
cially by Weissbach et al. [20]. The B class of reductases, 
some of which are selenoproteins in higher animals, was 
discovered more recently but has also been studied inten-
sively [21, 22]. Mammals have 3 isoforms of the B class, 
and one of the A class. While there is only one gene for 
msrA, the enzyme has been reported to be in both the cyto-
plasm and in mitochondria, although we are re-evaluating 
the subcellular localization in our laboratory.

The in vivo importance of the reductases is well estab-
lished, particularly for msrA. Knocking out the enzyme 

caused increased susceptibility to oxidative stress in mice 
[23], yeast [24], and bacteria [25–28]. Conversely, overex-
pressing msrA conferred increased resistance to oxidative 
stress in Drosophila [29], Saccharomyces [30], Arabi-
dopsis [31], PC-12 cells [32], human T cells [30], and 
microglial-mediated neuroinflammation [33]. Helicobacter 
pylori, a causative agent of gastric ulcers and carcinoma, 
requires msrA for protection against oxidative stress and 
appears to act through reduction of methionine sulfoxide 
in the bacterial catalase [28, 34].

Overexpression of bovine msrA in Drosophila almost 
doubled the lifespan of the flies [29], and this impres-
sive result was replicated using Drosophila msrA in an 

Fig. 1   Scavenging of reactive oxygen species (ROS) by the msr-
dependent catalytic cascade. Reduced forms of the proteins carry the 
subscript “red” and oxidized forms carry “ox”. Reading from top to 
bottom, an ROS is intercepted by a Met residue that is oxidized to 
MetO. MetO is reduced back to Met by msr, with the formation of 
a disulfide bond. The oxidized msr is reduced by thioredoxin (Trx), 
which now carries the disulfide bond. It is reduced by thioredoxin 
reductase (TR), which in mammals contains a selenocysteine resi-
due that is oxidized, forming a selenocysteine-cysteine bond. This 
disulfide analogue is then reduced by NADPH. The net result is that 
ROS is reduced at the expense of NADPH
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independent laboratory [35]. However, overexpression of 
msrA in mice does not increase lifespan [36]. Although an 
initial report with a small number of mice suggested that 
knocking out msrA caused neurological abnormalities and 
drastically reduced the lifespan of mice [23], studies with 
appropriate numbers of animals found no change in lifespan 
nor neurological abnormalities [36].

Solvent Exposed Methionines as Antioxidants

α-2-Macroglobulin is a physiologically important protein-
ase inhibitor, often acting at sites of inflammation where 
reactive oxygen and nitrogen species are at relatively high 
concentration. It had been thought that α-2-macroglobulin 
was resistant to oxidative modification, but studies by Weiss 
and colleagues demonstrated that the protein was consuming 
oxidizing species, initially without loss of anti-proteinase 
activity [37]. More detailed studies established that while 
activity was indeed retained, consumption of oxidant was 
stoichiometrically accounted for by oxidation of methionine 
residues to the sulfoxide [38]. With continued exposure to 
an oxidizing environment, a single tryptophan residue was 
eventually oxidized with concomitant loss of anti-proteinase 
activity. These observations led to the proposal that certain 
methionine residues of α-2-macroglobulin served as anti-
oxidants, protecting the critical tryptophan from damage.

The protecting methionines were presumed to be surface 
exposed, but no structure of α-2-macroglobulin was then 
available to determine whether that was the case. We there-
fore examined the effect of hydrogen peroxide on glutamine 
synthetase, since the crystal structure for this 12-subunit 
enzyme was solved by Eisenberg and colleagues [39] and 
because the active site was known to be susceptible to oxi-
dative inactivation [40]. Exposure of the enzyme to varying 
concentrations of hydrogen peroxide generated a series of 
preparations with increasing content of methionine sulfox-
ide; no other covalent modifications were detected [1]. Eight 
of the 16 methionine residues could be oxidized without loss 
of catalytic activity. Mapping of the oxidizable methionine 
residues revealed that all were surface exposed; conversely, 
the residues that remained unoxidized were buried. More 
detailed examination of the topographic distribution of the 
oxidizable methionine residues was intriguing as these resi-
dues were found to line the bay leading from the surface of 
the enzyme to its active site (Fig. 4 in [1]). In other words, 
these methionine residues are mustered in a phalanx guard-
ing the active site where they function as macromolecular 
bodyguards.

The effective concentration of exposed methionines is 
extremely high near the protein surface, greater than 1 M 
with certain assumptions [1]. Recognizing the ease of oxi-
dation of methionines already mentioned, surface-exposed 
methionines constitute a formidable antioxidant defense 

mechanism, capable of protecting critical residues within 
the protein as well as other cellular components. Since the 
methionine sulfoxide reductases can reduce MetO back to 
methionine, this antioxidant defense gains catalytic effi-
ciency. One of a number of examples of the system’s func-
tion comes from Stocker and colleagues who established 
that high density lipoproteins reduce toxic cholesteryl ester 
hydroperoxides to alcohols, with the concomitant oxida-
tion of two methionine residues to the sulfoxides [41]. This 
system can function catalytically as shown by Sigalov and 
Stern, who demonstrated that the oxidized apolipoprotein 
could be reduced by methionine sulfoxide reductase [42].

As summarized in the introduction, there exists consider-
able experimental evidence compatible with the proposal 
that methionines in proteins have an important antioxi-
dant function, analogous to that of cysteine in glutathione. 
However, all of the studies describe correlations and do not 
assess causality. Direct experimental testing of the methio-
nine antioxidant hypothesis is difficult in eukaryotic cells, 
but it has been done with E. coli by altering the global con-
tent of methionine in the bacterial cellular proteins. It is well 
established that the selenium analogue of methionine, sele-
nomethionine, can replace methionine in proteins with little 
or no effect on protein structure and function. It is not so 
well known that the carbon analogue, norleucine, can also 
replace methionine, at least in bacteria. This was shown by 
Cohen and his colleagues in 1959 [43]. Barker and Bruton 
then demonstrated that norleucine was charged onto both 
methionyl-tRNA and formylmethionyl-tRNA [44]. After 
charging with norleucine, the latter undergoes formylation, 
allowing N-formylnorleucine to initiate protein synthesis. 
When grown in a medium with a high ratio of norleucine to 
methionine, norleucine substitutes for methionine residues 
globally. As with selenomethionine substitution, the incor-
poration of norleucine does not alter the activity of enzymes 
that have been assayed to date.

The methionine as antioxidant hypothesis was tested by 
comparing the survival of control and norleucine-substituted 
cells, with and without oxidative stress. If there were little 
difference in survival, the hypothesis would be rejected. If 
there were a difference, the hypothesis would live to face 
other tests. We were able to replace 40% of the methionine 
residues in E. coli with norleucine [45]. Control and norleu-
cine-grown cells had almost identical growth rates, and nei-
ther free methionine nor S-adenosylmethionine levels were 
altered by growth on norleucine. When left unstressed, both 
control and norleucine-substituted cells survived equally 
well in stationary phase for at least 32 h. However, when 
challenged by exposure to hypochlorite, hydrogen perox-
ide, or ionizing radiation, the norleucine-substituted cells 
died more rapidly than the control cells. For example, 10 µM 
hypochlorite did not kill any control cells while it killed 
100% of the norleucine-substituted cells.
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Further support for the methionine as antioxidant hypoth-
esis comes from more recent investigations in several labo-
ratories that establish the surprising ability of eukaryotes, 
including mammals, to increase the content of methionine 
in their proteins in response to oxidative stress [7, 46]. The 
mechanism was elucidated by Kim and colleagues [8] who 
showed that ERK1/2 phosphorylates methionyl-tRNA syn-
thetase in cells experiencing oxidative stress. The phos-
phorylation renders the synthetase promiscuous, so that 
it acylates non-methionine tRNAs with methionine, thus 
increasing the methionine content of proteins during oxida-
tive stress (Fig. 2).

Studies on the evolution of mitochondria and their use 
of an alternate genetic code also support the proposition 
that methionine in proteins acts as an antioxidant [2, 47, 
48]. Bender and colleagues noted that AUA codes for iso-
leucine in the nucleus, but it specifies methionine in the 
mitochondria of animals using the modified code. Looking 
at a large number of species not using the modified mito-
chondrial code, they established that the average methionine 
content in mitochondrially encoded proteins is 2%, which 
is the same as that for nuclear proteins encoded in those 

organisms. However, in organisms whose mitochondrial 
code evolved to specify methionine by AUA, the average 
mitochondrial methionine content jumped threefold to 6%. 
Moreover, the additional methionine residues were topo-
graphically arranged on the surface of the proteins, nicely 
positioned to intercept reactive oxygen species generated by 
mitochondrial respiration [2].

Cellular Regulation Through Redox Cycling 
of Methionine Residues

Progress in understanding the physiological and pathological 
effects of methionine oxidation is severely hampered by the 
lack of analytical tools for detecting and quantitating MetO 
content of individual proteins in complex mixtures such as 
those found in tissue homogenates. The absence of immuno-
chemical or chemical methods for detecting and quantitating 
MetO is particularly vexing [49, 50].

Just as is the case for phosphoserine and phosphothreo-
nine, no general anti-MetO antibody exists, but one can raise 
sequence specific anti-MetO or anti-methionine antibod-
ies by immunization with a peptide or protein containing 
MetO or methionine [50, 51]. An antiserum sold by several 
vendors is claimed to specifically recognize MetO [52]. A 
number of publications, particularly in the area of neurode-
generation, have reported using it for that purpose [52–63]. 
Without confirmation by an independent method of analy-
sis, one must be extremely cautious about results from that 
antiserum [49].

Like phosphorylation, methionine oxidation is a revers-
ible covalent modification. Thus, cyclic oxidation and reduc-
tion of methionine residues could function as a regulatory 
or signaling mechanism [64, 65]. Although oxidation could 
occur non-enzymatically, the products would then be a mix-
ture of the R and S epimers. Reversal would require coor-
dinated action of msrA and msrB which is not an attractive 
regulatory mechanism. Enzymatic oxidation would likely be 
stereospecific and thus require coupling to only one reduc-
tase to complete the regulatory cycle.

Despite these limitations, many examples of regulation 
by methionine oxidation have been published, although in 
most cases it is unknown whether the oxidation is reversed 
in vivo by msr. Ciorba et al. reported that the inactivation 
of a potassium channel by nitric oxide was likely due to 
oxidation of an essential methionine residue in the channel 
[66]. Similarly, Sroussi et al. presented evidence that the 
ability of the calcium-binding proteins to direct leukocyte 
migration was abolished by oxidation of specific methionine 
residues [67]. Interestingly, consistent with the notion that 
methionine oxidation does not invariably link to enzyme 
inactivation, Erickson and collaborators convincingly iden-
tified a calcium-independent pathway for activation of Ca2+/
calmodulin-dependent protein kinase that was mediated by 

Fig. 2   The mechanism by which oxidative stress increases the 
methionine content of proteins [8]. In response to oxidative stress, 
ERK1/2 phosphorylates methionyl tRNA synthetase (MRS). This 
renders the synthetase promiscuous so that it charges non-cognate 
tRNAs with Met, as shown here for tRNALys. In this example, the Lys 
codon leads to insertion of Met, thus increasing the total methionine 
content of the protein to provide additional protection against oxida-
tive stress
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oxidation of specific methionine residue in vitro and in vivo 
[68]. In yet another example of a MetO “activation” pro-
cess, oxidation of Met80, an iron ligand in cytochrome c, 
increases cytoplasmic translocation of the cytochrome as 
part of a potential defense system against nitrative stress 
in non-apoptotic cells [69]. Likewise, in plants, hydrogen 
peroxide-triggered protein phosphorylation can be regulated 
by oxidation of a specific methionine residue in the substrate 
recognition site of kinases [70]. Alternatively, methionine 
oxidation may lead to enhanced function via indirect routes. 
For example, the blood clotting protein, von Willebrand fac-
tor, undergoes HOCl-dependent methionine oxidation that 
renders the protein resistant to proteolysis by the metallo-
protease, ADAMTS123, thereby endowing it with increased 
activity [71].

The Terman laboratory identified an NADPH oxidoreduc-
tase, MICAL, that specifically oxidizes a methionine residue 
in actin that induces filament severing and decreases actin 
polymerization [72]. Subsequently that group and Glady-
shev’s laboratory demonstrated that the oxidation was stere-
ospecific and generated only the R-MetO [4, 5]. Importantly, 
the modification was fully reversible by msrB1, a cytosolic 
msrB. Thus, oxidation of Met44 in actin by MICAL induces 
de-polymerization of actin and reduction of MetO44 by 
msrB1 restores the ability to polymerize (Fig. 3).

msrA operating in oxidase mode stereospecifically oxi-
dizes just one of the 9 methionine residues in calmodulin 
[73]. Met77 is oxidized to S-MetO77. When msrA oper-
ates in reductase mode, MetO77 is fully reduced back to 

methionine. However, to date, no in vivo targets of calmo-
dulin affected by this oxidation have been identified.

Methionine and Protein Structure

It has long been appreciated that the sulfur atom of methio-
nine is a ligand to the heme in cytochrome c [74]. In mye-
loperoxidase, the heme is linked to methionine via a sulfo-
nium ionic bond [75, 76]. More recently, a sulfilimine bond 
(–S=N–), the nitrogen analogue of a sulfoxide (–S=O–), 
was discovered in type IV collagen [77]. In a mechanism 
that is conserved from flies to humans, the carboxyl-terminal 
methionine of one type IV collagen subunit is covalently 
linked to a lysine of another subunit. Formation of the sulfil-
imine is catalyzed by a specific peroxidase, termed peroxida-
sin, that appears to generate the sulfilimine by formation of 
hypohalous acids as a reactive intermediate [78]. Drosophila 
with mutant peroxidasin fail to generate sulfilimine cross-
links and display disorganized collagen IV networks with 
associated defects in basement membrane structure [78].

An interaction of methionine residues with nearby aro-
matic residues was pointed out 30 years ago [79], and crys-
tallographic data suggested that the interaction contributed 
to protein stability [80]. More recent work of Valley and 
colleagues established that methionine, like cysteine, has a 
substantive role in stabilizing protein structure and in pro-
tein–protein interactions [3]. While the methionine-aromatic 
interaction occurs at a greater distance (~ 5–6 Å) than that 
of a salt bridge (< 4 Å), the energies associated with either 
interaction are comparable. These bonds are very common in 
proteins and thus contribute significantly to the stabilization 
of the native protein structure [3].

Oxidation of methionine to its sulfoxide provides a simple 
mechanism for an on–off switch for cellular regulation. For 
example, the binding of lymphotoxin-α to the tumor necro-
sis factor receptor 1 requires a methionine-aromatic bond 
between Met120 of lymphotoxin-α and Trp107 of tumor 
necrosis factor receptor 1 [3]. Oxidation of Met120 prevents 
binding [81]. Other hydrophobic amino acids are unable 
to form the bond with aromatic rings, potentially explain-
ing some of the many examples in the literature in which 
leucine, isoleucine, or valine cannot functionally replace a 
methionine.

While oxidation may strengthen rather than weaken the 
methionine-aromatic bond [81], oxidation of a sufficient 
number of methionine residues is expected to perturb the 
native structure and expose otherwise normally buried resi-
dues, explaining both the association of methionine oxida-
tion with increased surface hydrophobicity of proteins and 
their increased susceptibility to proteolytic degradation [1, 
82]. This effect may be substantial during aging in which 
progressive increases in the surface hydrophobicity of pro-
teins correlate with an age-related increase in MetO content 

Fig. 3   Redox regulation of actin polymerization by oxidation and 
reduction of methionine. Met44 of actin is oxidized by the monooxy-
genase MICAL causing depolymerization. Reduction of MetO44 by 
msrB1 restores the ability to polymerize
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[82]. However, in general, the changes in MetO content in 
aging tissues are rather modest. Thus far, no studies have 
validated total MetO content as a marker of biological aging.

Methionine Sulfoxide Reductases and Disease

Cardiopulmonary Disease

In humans, a G to A polymorphism in msrA is associated 
with an increased risk of cardiovascular disease [83, 84]. In 
another genome-wide association study, an A to G intron 
variant was associated with hypertension, a known risk 
factor for cardiovascular disease [85]. In apolipoprotein 
E deficient mice, feeding a high fat “Western diet” causes 
atherosclerosis and hepatic steatosis. Hepatic overexpres-
sion of msrA in those mice reduced the plasma VLDL/LDL 
levels, hepatic steatosis, and aortic atherosclerosis [86]. As 
mentioned above, msrA in mammals has been localized to 
mitochondria and the cytosol. Because mitochondria are a 
major source of reactive oxygen species, it was hypothesized 
that overexpression of msrA targeted to the mitochondria 
would protect against cardiac ischemia-reperfusion while 
cytosolic msrA would not [87]. Notably, the opposite was 
found: mitochondrial overexpression of msrA provided no 
protection while cytosolic overexpression gave substantial 
protection. Moreover, the cytosolic form required myris-
toylation to be protective, an observation that is not yet 
explained mechanistically.

α1-antitrypsin is a member of the serpin family that 
inhibits serine proteases. The main physiological target of 
α1-antitrypsin is neutrophil elastase. A genetic deficiency in 
the synthesis of α1-antitrypsin is associated with the devel-
opment of emphysema by the third or fourth decade of life, 
and 15 years earlier if the affected person is a smoker [88]. 
Deficiency of α1-antitrypsin causes a protease:antiprotease 
imbalance in which lung elastase damages tissue. Proteo-
lytic injury to the lung is also a feature of diseases such as 
cystic fibrosis and cigarette-smoking in which serum levels 
of α1-antitrypsin are normal and therefore should theoreti-
cally provide a protective antiprotease [89, 90]. However, 
the specific activity of the α1-antitrypsin in the lung is 
decreased in these disorders [90, 91] because inflamma-
tion that occurs produces reactive oxygen species that oxi-
dize a surface exposed methionine residue that is required 
for α1-antitrypsin activity [90, 92, 93]. This mechanism 
also accounts for the much earlier onset of emphysema in 
α1-antitrypsin deficient individuals who smoke. Inactivated 
α1-antitrypsin can be reactivated in vitro by msrA [94], sug-
gesting that increasing the activity of msrA could be thera-
peutic [95].

Neurodegenerative Disease

Oxidative damage in the brain is a well-established fea-
ture of Alzheimer’s disease [96], and the activity of msrA 
is decreased in the brain of Alzheimer’s patients [97]. Aβ 
peptides, particularly Aβ(1−42), are a major component of the 
senile plaques found in Alzheimer’s brains, and oxidative 
damage is distinctly increased in regions rich in Aβ [98]. 
Aβ peptides are toxic in a variety of in vivo and in vitro sys-
tems [99]. There are no reports of the activity of the msrB 
isozymes in Alzheimer’s disease, although it has been shown 
that msrB1 interacts with an Aβ peptide [100]. The Aβ(1−42) 
peptide contains one methionine, at position 35. Butterfield 
and his colleagues have reported strong evidence supporting 
their proposal that oxidation of Met35 is required for the 
toxicity of Aβ(1−42) [101, 102]. For example, substituting 
norleucine for methionine at position 35 abolishes toxic-
ity. Thus, the decrease in msrA associated with Alzheimer’s 
disease could lead to an increased concentration of MetO-
containing Aβ(1−42) that mediates toxicity.

Oxidative stress is also a feature of Parkinson’s disease 
[103]. Lewy bodies, a pathognomonic feature of Parkinson’s 
pathology, are rich in aggregated α-synuclein, and famil-
ial mutations in α-synuclein or elevated levels of wild-type 
α-synuclein cause Parkinson’s disease [104]. Dopaminergic 
cells in rat midbrain cultures were protected from oxidative-
stress induced damage by transfection with msrA [105]. 
α-synuclein contains 4 methionine residues, two of which 
are particularly susceptible to oxidation that is reversible 
by msrA [106]. Overexpression of human α-synuclein in 
Drosophila creates a model of Parkinson’s disease with loss 
of dopaminergic neurons and the appearance of locomotor 
defects [107]. When bovine msrA was overexpressed along 
with the α-synuclein, the locomotor defects were almost 
completely suppressed [108].

Cancer

Following up on their studies that associated a deletion on 
chromosome 8 with metastatic spread of hepatocellular car-
cinoma, Lei and colleagues identified msrA as a candidate 
metastasis suppressor gene [109]. They then measured the 
mRNA levels for msrA in 40 human hepatocarcinoma tissue 
samples, half with metastasis and half without. The mean 
messenger RNA level was lower in tissue from patients with 
metastasis. They also transfected a human hepatocarcinoma 
cell line with msrA and found suppression of colony forma-
tion as well as decreased invasion in a 3-D Matrigel assay. 
There was no effect on cell proliferation itself. These results 
are consistent with an effect on metastasis but not on cell 
division itself.

MsrA has also been found to be down regulated in human 
breast cancer, with the decrease being greater in tumors of 
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advanced grade [110]. This observation led the investiga-
tors to investigate the effect of reducing msrA levels in a 
human breast cancer cell line, MDA-MB231. They found 
that knocking down msrA with shRNA caused an increase in 
cellular reactive oxygen species and oxidative damage to cel-
lular proteins. Further, since msrA levels were decreased, the 
effects on tissue invasion and 3-dimensional growth were the 
opposite of those in the hepatocarcinoma study mentioned 
above—the breast cancer cells exhibited increased invasive-
ness and increased 3-dimensional growth.

Deafness

Loss of msrB3 causes congenital deafness, as first estab-
lished by Riazuddin and her colleagues through genetic 
studies of Pakistani families [111]. These investigators also 
showed that msrB3 is present in the auditory and vestibular 
sensory epithelia of the inner ear. Knocking down msrB3 in 
zebrafish caused apototic death of hair cells in the fish neu-
romasts, providing a mechanistic basis for deafness [112]. 
Apototic death of hair cells also occurs during gestation in 
the msrB3 knockout mouse, causing deafness [113]. Lack 
of msrB3 may cause a failure of reduction of R-MetO in 
a specific protein, thus causing the apototic death. Neither 
the hypothesized protein nor the stereospecific methionine 
oxidase that generates R-MetO has been identified.

Other Disorders

A genome-wide association study in a Chinese population 
was carried out to identify single nucleotide polymorphisms 
(SNPs) associated with schizophrenia [114]. The study dem-
onstrated an association of SNPs in msrA with schizophre-
nia. The same group reported an association of SNPs in 
msrA with bipolar disorder, although the number of subjects 
in the study was relatively small [115].

A genome-wide association study of French and German 
populations reported an association of extreme obesity in 
children and adolescents with a locus at or near the msrA 
gene. The association with central adiposity was confirmed 
by a meta-analysis of genome-wide associations [116]. 
Another genome-wide association study found an associa-
tion of the msrB3 locus with delayed development of teeth 
in human infants [117].

Conclusion

Methionine isn’t just for protein initiation anymore.
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