Highly active tridentate amino-phenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone

Qian Hu a, Suyun Jie a,*, Pierre Braunstein b,**, Bo-Geng Li a

a State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
b Université de Strasbourg, CNRS, CHIMIE UMR 7177, Laboratoire de Chimie de Coordination, 4 rue Blaise Pascal, 67081 Strasbourg Cedex, France

ARTICLE INFO

Received 9 October 2018
Received in revised form 27 November 2018
Accepted 15 December 2018
Available online 15 December 2018

Keywords:
Zinc
Ring-opening polymerization ε-caprolactone

ABSTRACT

Tridentate 2,6-bis(imino)phenol (L1–14) and 2,6-bis(amino)phenol (L5–18) ligands and their corresponding zinc chloride complexes (1–8) have been synthesized and well characterized by FT-IR, 1H and 13C NMR, elemental analysis and single-crystal X-ray diffraction analysis. It was found that zinc complexes (1–4) with 2,6-bis(imino)phenol ligands were inactive for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) even if they were activated by methyllithium. Zinc complexes (5–8) with 2,6-bis(amino)phenol ligands were proved to be highly efficient initiators for the ROP of ε-CL in combination with 4 equiv. of methyllithium. The ROP of ε-CL in the absence or presence of benzyl alcohol, including the influence of monomer ratio, reaction temperature and the substituents in the ligands, were investigated. The structure and thermal properties of obtained polymers were analyzed by NMR and MALDI-TOF mass spectra, DSC and TGA, respectively.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Aliphatic polyesters, such as poly(ε-caprolactone) (PCL) and polylactide (PLA), are important biodegradable materials, which have been found to have wide applications in i.a. biomedical, packaging, and agricultural areas [1,2]. For the moment, the catalytic ring-opening polymerization (ROP) of cyclic esters is one of the most powerful and convenient methods for the preparation of aliphatic polyesters [3,4]. A challenge is to develop more efficient catalysts that also allow a better control of the ring-opening polymerization, of the molecular weight and the molecular weight distribution of the resulting polymers. ROP is commonly catalyzed by metal coordination complexes [4,5] and the improved activity, selectivity, and controllability, associated with a lower toxicity are highly desirable to provide these polyesters with good environmental and biological compatibility and a broader potential for biomedical application. Numerous metal complexes have been used to initiate the ROP of cyclic esters [4,5], mostly containing e.g. alkali metals [6–10], alkaline earth metals [11–15], Group IVB metals [16–21], rare earth metals [22–27], aluminum [28–34], copper [35,36], gallium [37,38]. However, traces of residual metal in the polymers formed are very hard to be completely removed, which is harmful to the environment or humans and consequently limits their applications of polymers. The use of harmless metal ions in the catalytic systems is one approach to solve this problem [39]. Zinc is one of the essential oligo-elements in the human bodies and has good biological activities. Therefore, zinc-based metal catalysts are attracting increasing attention as green catalysts for the ROP of cyclic esters. Zinc complexes bearing various organic ligands have been reported to be active for the ROP of cyclic esters to form biodegradable polyesters with high molecular weight and narrow molecular weight distribution [40–58].

Most reported zinc-based catalysts for the ROP of cyclic esters were zinc alkyl complexes that are air-sensitive. There were only few examples of zinc chloride complexes used for the ROP of lactones. For instance, zinc dichloride or zinc halide complexes were reported to catalyze the ROP of ε-caprolactone or rac-lactide by a coordination-insertion mechanism [55,59]. Zinc chloride complexes with various ligands were also reported to be activated by methyllithium or LiOCHMe2 to generate in situ zinc methyl species or zinc isopropoxide derivatives, respectively, which were active for the ROP of rac- LA [60–65]. We previously showed that zinc chloride complexes containing (benzimidazolyl)pyridine alcohol ligands were also activated by methyllithium and then used in the ROP of ε-CL and L-LA with high efficiency, in the absence or
presence of benzyl alcohol [66,67]. In this study, zinc complexes bearing tridentate bis(amo)phenol ligands were designed, synthesized and applied in combination with methyllithium, to the catalytic ROP of ε-CL, in the absence or presence of benzyl alcohol.

2. Results and discussion

2.1. Synthesis and characterization of the ligands and their zinc complexes

The 2,6-bis(imino)phenol ligands (L1–L4) were synthesized through the Schiff-base condensation reaction of 4-substituted 2,6-diformylphenols with 2,6-dimethylaniline or 2,6-diisopropylaniline in refluxing ethanol according to the literature procedures and characterized by FT-IR and 1H NMR spectroscopy (Scheme 1) [68–70]. The 2,6-bis(amo)phenol ligands (L5–L7) were prepared by reduction of the imine groups of ligands L1–L3 with sodium borohydride (Scheme 1). However, ligand L4 was difficult to be reduced using NaBH4 because its imino groups were surrounded and protected by the bulky isopropyl groups. The stronger reducing agent (LiAlH4) was used to reduce the imino groups in L4 to the corresponding amino groups and the ligand L8 was isolated with a relatively lower yield. All the 2,6-bis(amo)phenol ligands were characterized by FT-IR, 1H and 13C NMR spectroscopy, and elemental analysis.

The zinc complexes 1–8 were readily prepared by reaction of the corresponding ligand with anhydrous zinc chloride in absolute ethanol at room temperature and isolated as air-stable solids (Scheme 1). All the characterizing data for these complexes, including FT-IR, 1H and 13C NMR spectra as well as elemental analyses, were fully consistent with their structures. In the NMR spectra, the substituents on the two phenyl ring show slightly different chemical shifts, which is consistent with the asymmetrical structure of the zinc complexes. This was unambiguously established by single-crystal X-ray diffraction analysis of complex 4.

Single crystals of complex 4 suitable for X-ray diffraction analysis were obtained by slow diffusion of n-hexane into an ethanol solution. As shown in Fig. 1, the coordination geometry around the zinc center is distorted tetrahedral, with bond angles in the range of 93.14(9)°–114.47(8)°. The structure is similar to that of the corresponding cobalt and nickel complexes [68–70]. The bond lengths C7•••N1 (1.279(4) Å) and C14•••N2 (1.286(4) Å) are consistent with the presence of C≡N double bonds.

2.2. Ring-opening polymerization of ε-caprolactone

It is worth mentioning that all the zinc dichloride complexes alone had no activity in the ROP of ε-CL, whether benzyl alcohol (BnOH) was involved or not. Therefore, methyllithium was added to activate the zinc dichloride complexes by generating zinc methyl species in situ. We [66,67] and others [60–62] have already used this approach in the ROP of ε-CL and lactide. Unexpectedly, even after the addition of MeLi, complexes 1–4 bearing 2,6-bis(imino) phenol ligands remained inactive for the ROP of ε-CL, in the presence or not of BnOH, owing to the influence of the imino groups. However, after these imino groups were reduced to amino groups, the corresponding zinc complexes 5–8, associated with 4 equiv. of MeLi, showed excellent catalytic activity for the ROP of ε-CL, both in the presence or not of BnOH (Tables 1 and 2). But the addition of 2 equiv. of MeLi to zinc complexes 5–8 could not initiate the

![Scheme 1. Synthesis of ligands L1–L8 and Zn complexes 1–8. Reduction: NaBH4 in MeOH for L5–L7; LiAlH4 in THF for L8.](image-url)
formation of Zn-CH₃ active species after the addition of 4 equiv. of MeLi. Highly active for the ROP of ε-CL, giving a relatively broad molecular weight distribution. ε-CL completely converted into polymers within 3 min in most cases, resulting in slightly lower ε-CL in the absence of BnOH although the ε-CL was relatively broad. In one experiment (entry 12 in Table 1), the occurrence of ROP. The NMR experiments after the reaction of complex 5 with 2 equiv. and 4 equiv. of MeLi have been carried out in CDCl₃. The appearance of the resonance at −0.11 ppm proved the formation of Zn-CH₃ active species after the addition of 4 equiv. of MeLi. However, the resonances assigned to the protons of Zn-CH₃ species was not detected when 2 equiv. of MeLi was used.

Table 1
ROP of ε-CL catalyzed by zinc complexes 5–8/MelLi`

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>T (°C)</th>
<th>time (min)</th>
<th>[CL]₀/[Zn]₀</th>
<th>Yield (%)</th>
<th>TOF (h⁻¹)</th>
<th>Mₙ,cal (kg/mol)</th>
<th>Mₙ,obs (kg/mol)</th>
<th>D (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>50:1:1</td>
<td>31.3</td>
<td>10</td>
<td>1.89</td>
<td>1.58</td>
<td>1.24</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1</td>
<td>65.7</td>
<td>394</td>
<td>4.61</td>
<td>3.17</td>
<td>1.07</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>50:1:1</td>
<td>99</td>
<td>9000</td>
<td>56.6</td>
<td>21.7</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1</td>
<td>100</td>
<td>20000</td>
<td>115.2</td>
<td>59.2</td>
<td>1.58</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>21.6</td>
<td>1.44</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>15.6</td>
<td>1.31</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>500:1:1</td>
<td>100</td>
<td>20000</td>
<td>115.2</td>
<td>59.2</td>
<td>1.58</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>14.8</td>
<td>1.26</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1</td>
<td>100</td>
<td>10000</td>
<td>57.2</td>
<td>26.0</td>
<td>1.36</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>500:1:1</td>
<td>100</td>
<td>10000</td>
<td>57.2</td>
<td>23.5</td>
<td>1.30</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1</td>
<td>100</td>
<td>18000</td>
<td>34.4</td>
<td>11.9</td>
<td>1.34</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1</td>
<td>100</td>
<td>18000</td>
<td>34.4</td>
<td>12.7</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Table 2
ROP of ε-CL catalyzed by zinc complexes 5–8/MelLi in the presence of BnOH

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>T (°C)</th>
<th>Time (min)</th>
<th>[CL]₀/[Zn]₀/[BnOH]₀</th>
<th>Yield (%)</th>
<th>TOF (h⁻¹)</th>
<th>Mₙ,cal (kg/mol)</th>
<th>Mₙ,obs (kg/mol)</th>
<th>D (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>30</td>
<td>90</td>
<td>50:1:1:1</td>
<td>31.3</td>
<td>10</td>
<td>1.89</td>
<td>1.58</td>
<td>1.24</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1:1</td>
<td>65.7</td>
<td>394</td>
<td>4.61</td>
<td>3.17</td>
<td>1.07</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>50:1:1:1</td>
<td>99</td>
<td>9000</td>
<td>56.6</td>
<td>21.7</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1:1</td>
<td>100</td>
<td>20000</td>
<td>115.2</td>
<td>59.2</td>
<td>1.58</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>21.6</td>
<td>1.44</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>15.6</td>
<td>1.31</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>500:1:1:1</td>
<td>100</td>
<td>20000</td>
<td>115.2</td>
<td>59.2</td>
<td>1.58</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1:1</td>
<td>100</td>
<td>6000</td>
<td>34.4</td>
<td>14.8</td>
<td>1.26</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1:1</td>
<td>100</td>
<td>10000</td>
<td>57.2</td>
<td>26.0</td>
<td>1.36</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>500:1:1:1</td>
<td>100</td>
<td>10000</td>
<td>57.2</td>
<td>23.5</td>
<td>1.30</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>300:1:1:1</td>
<td>100</td>
<td>18000</td>
<td>34.4</td>
<td>11.9</td>
<td>1.34</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>30</td>
<td>3</td>
<td>100:1:1:1</td>
<td>100</td>
<td>18000</td>
<td>34.4</td>
<td>12.7</td>
<td>1.12</td>
</tr>
</tbody>
</table>

α Polymerization conditions: zinc complex: 0.02 mmol, [Zn]₀ = 0.0058 M, [MelLi]/[Zn]₀ = 4:1, solvent: toluene.
β Determined by weight of isolated polymer.
δ Measured by GPC in THF, calibrated with polystyrene standards and corrected using a correction factor of 0.56 [75].
ε 200 equiv. of CL was first added, and after 3 min, a second batch of 100 equiv. of CL was added and the polymerization reaction was continued for an additional 3 min.

2.2.1. ROP of ε-CL in the absence of BnOH

In the absence of BnOH, the 5–8/MelLi catalytic systems were highly active for the ROP of ε-CL in toluene and the monomers were completely converted into polymers within 3 min in most cases, giving a relatively broad molecular weight distribution (D) (Table 1). The number-average molecular weight (Mₙ) of the polymers increased gradually with the [CL]₀/[Zn]₀ ratio, and the solution quickly became very sticky, preventing magnetic stirring. The catalytic systems remained highly active over a broad temperature range (30–90 °C), but higher reaction temperatures resulted in slightly lower Mₙ of PCLs (entries 3–5 in Table 1).

The polymerization rate was so high that no influence of the substituent R¹ at the phenol ring of complexes 5–7 on the activity could be detected, which is consistent with the substituent R¹ being far away from the metal center. Complex 8 bearing bulky isopropyl groups on the N-phenyl ring was slightly less active and the conversion of monomer reached 100% in 10 min with relatively lower molecular weight of polymers (entry 14 in Table 1). In general, all the zinc complexes showed high activities for the ROP of ε-CL, which was higher than many reported zinc-based catalysts bearing various ligands, such as bisaryl/alkyl-acenaphthenequinonediimines (BIANs) [71], amino-modified benzotriazole phenol ligands [72], imino-benzotriazole phenolate (IBTP) ligands [73], aza(oxazoline) ligands [74], etc.; however, they produced PCLs with different Mₙ and D.

The catalytic systems exhibited the “immortal” and controllable properties for ROP of ε-CL in the absence of BnOH although the D was relatively broad. In one experiment (entry 12 in Table 1), the ROP of a first batch of monomer (200 equiv.) was initiated with complex 6/MelLi and after 3 min, a second batch of monomer (300 equiv.) was added to the reaction mixture and the polymerization reaction was continued for an additional 3 min. This resulted in
chain extension and the D of polymers was narrower than that when one batch of 500 equiv. of monomer was converted (entries 11 and 12 in Table 1, Fig. 2).

2.2.2. ROP of ε-CL in the presence of BnOH

In the presence of BnOH, the current catalytic systems also showed high activities for the ROP of ε-CL and 100% yields of polymers were obtained in most cases (Table 2). It is worthy to note that the PCLs obtained in the presence of BnOH had much narrower molecular weight distributions than those obtained in the absence of BnOH, which suggested that the polymerization reactions under these conditions proceeded in a more controllable fashion. The BnOH not only served as an initiator but also as a chain transfer agent, leading to the decrease in the M_n of polymers. Increasing the amount of BnOH resulted in the decrease of M_n and M_D of PCLs were also much lower (entries 1 and 8 in Table 2). Varying the polymerization temperature had only a slight influence on the yields and M_n of polymers; however, higher temperatures resulted in slightly broader molecular weight distributions (entries 3–5 in Table 2). With an increase of the [CL]/[Zn]/[BnOH] ratio, the M_n of polymers increased gradually and the D of polymers changed slightly, in the range 1.08–1.58. A similar trend was observed for each complex. Similarly, the catalytic activity and the M_n and D of the polymers were only slightly affected by the substituent R_1 at the phenol ring and the complexes (5–7) were highly active for the ROP of CL in the presence of BnOH. The substituents on the phenol ring had some influence on the catalytic activity, resulting in the longer time for the complete conversion of monomer when complex 8 with isopropyl groups was used (entries 16 and 17 in Table 2). The chain extension experiment was also carried out with complex 5/MeLi in the presence of BnOH. The ROP of a first batch of CL (200 equiv.) was initiated and after 3 min, a second batch of CL (100 equiv.) was added to the reaction mixture and the polymerization reaction was continued for an additional 3 min (entry 7 in Table 2).

Extension of polymer chains was observed, but both M_n and D of PCLs were lower than those of the PCLs obtained in a one-batch reaction involving 300 equiv. of monomer (entries 5–7 in Table 2 and Fig. 3).

2.3. Characterization of PCLs

2.3.1. NMR analysis

The PCLs produced by complex 5/MeLi in the absence (entry 1 in Table 1) or presence (entry 8 in Table 2) of BnOH were analyzed by 1H and 13C NMR spectroscopy as representative samples to determine the terminal groups in the chain ends (Figs. 4 and 5). In the 1H NMR spectra, the typical signals of characteristic methylene protons in the CL units around 1.36 (CH_2), 1.62 (CH_2), 2.28 ($CH_2C=O$), 4.03 (OCH_2) ppm were observed for both samples (Fig. 4). No signals corresponding to any end group could be found in the 1H NMR spectra of PCLs obtained in the absence of BnOH. However, in the 1H NMR spectra of PCLs obtained in the presence of BnOH, the triplet at 3.72 ppm was assigned to the protons of CH_2OH groups in the chain ends and the resonances at 7.33 ppm and 5.09 ppm were assigned to the phenyl-H and PhCH_2O protons in the benzyl ester group, respectively. The 13C NMR spectra of both samples showed signals at 24.5 (CH_2), 25.5 (CH_2), 28.3 (CH_2), 34.1 ($CH_2C=O$), and 64.1 (OCH_2) ppm for the methylene-C atoms and 173.5 ppm ($C=O$) for the carbonyl-C atom in the CL repeating units (Fig. 5). There were no other signals in the 13C NMR spectra of the PCLs obtained in the absence of BnOH. For the PCLs obtained in the presence of BnOH, the peaks at 128.5, 128.1 and 67.9 ppm were assigned to the phenyl-C and methylene-C (PhCH_2O) atoms of the benzyl ester group, respectively. The resonances of the terminal CH_2OH group in the chain ends appeared at 62.5 ppm. Compared with the main signals of repeating CL units, the signals of carbon atoms in the last CL unit were slightly shifted. In summary, both 1H and 13C NMR analyses indicated that the PCLs obtained in the absence of BnOH were mainly cyclic, whereas the polymers obtained in the presence of BnOH were linear PCLs with

Fig. 2. GPC traces before and after the addition of a second batch of monomer (entries 8, 11 and 12 in Table 1).

Fig. 3. GPC traces before and after the addition of a second batch of monomer in the presence of BnOH (entries 5–7 in Table 2).
benzyl alcohol as an end group. This implies that the monomer inserted into the Zn–OBn bond formed after the addition of BnOH, thus initiating the polymerization. However, in the absence of BnOH, monomer insertion occurred into the Zn–L bond and was followed by repeated monomer insertion. The final intramolecular transesterification led to the formation of cyclic polymers.

2.3.2. MALDI-TOF mass analysis

The MALDI-TOF mass spectra of PCLs obtained by complex 5/MeLi in the absence (entry 1 in Table 1) or presence (entry 8 in Table 2) of BnOH are shown in Figs. 6 and 7. As shown in Fig. 6, the major signals at m/z 6200.8 (n = 54), 6314.8 (n = 55), 6428.7 (n = 56), etc., were attributed to the cyclic PCLs ((CL)_n) clustered with K⁺ (m/z: 114.14 × n + 39.10) and the adjacent signals were separated by a CL repeating unit. There are two major series of signals in Fig. 7, located at m/z 2739.1 (n = 23), 2853.1 (n = 24), 2967.2 (n = 25), etc. and m/z 2755.0 (n = 23), 2869.1 (n = 24), 2983.2 (n = 25), etc., which correspond to linear PCLs capped with BnO and hydroxyl end groups (BnO(CL)_nOH) clustered with Li⁺ (m/z: 108.14 + 114.14 × n + 6.94) and Na⁺ (m/z: 108.14 + 114.14 × n + 22.99), respectively. The successive series showed that there was a difference of 114 in m/z between every neighbor peaks, which corresponds to the molecular weight of the CL monomer. The other small peaks were probably produced by trace impurities generated during the polymerization process. Gratifyingly, the MALDI-TOF mass analysis was consistent with the results of NMR analysis.

2.3.3. Thermal properties

Differential scanning calorimetry (DSC) was applied to analyze the thermal properties of cyclic and linear PCLs with similar molecular weight (entry 10 in Table 1 and entry 15 in Table 2). The DSC curves in Fig. 8 showed that the two samples had similar melting point around 55 °C (T_m, determined on the second heating scan). In order to determine the thermal stability of the polymers, a thermogravimetric analysis (TGA) of the cyclic and linear PCLs was carried out under a nitrogen atmosphere (Fig. 9). The results indicated that the cyclic PCLs exhibited better thermal stability than linear PCLs, with an initial degradation temperature of ca. 290 °C and 269 °C (5% weight loss), respectively. There were two thermal degradation stages observed for both samples and a similar complete degradation temperature was found at ca. 420 °C, with the fastest degradation rate at ca. 392 °C.
were carried out under an atmosphere of nitrogen using standard Schlenk techniques. Hexamethylenetetramine, 4-methylphenol, 4-chlorophenol, 4-tert-butylphenol and sodium borohydride (from Sinopharm Chemical Reagent Co., Ltd.), and 2,6-dimethylaniline and 2,6-di-iso-propylpropyline (from Aladdin) were directly used without further purification. Toluene and THF from J&K Scientific Ltd. were purified by passing through solvent purification systems (MB-SPS, MBRAUN). Anhydrous zinc chloride (ZnCl₂), lithium aluminium hydride (LiAlH₄, 1 M in THF) and methylmethylithium (MeLi, 1.6 M in diethylether) were purchased from J&K Scientific Ltd. Benzylalcohol (from J&K Scientific Ltd.) and e-caprolactone (e-CL, from Energy Chemical Ltd.) were dried over 5 Å molecular sieves and CaH₂, and further purified by vacuum distillation. All other chemicals were used directly without further purification unless otherwise stated. The starting materials, 4-methyl-2,6-diformylphenol, 4-chloro-2,6-diformylphenol and 4-tert-butyl-2,6-diformylphenol, were prepared from the corresponding 4-substituted phenols via the Dull reaction [76]. The 2,6-bis(imino)phenol ligands (L₁–L₄) were synthesized through the Schiff-base condensation reaction of 4-substituted 2,6-diformylphenols with 2,6-dimethylaniline or 2,6-diisopropylaniline according to the literature [68–70].

1H NMR and 13C(1H) NMR spectra were recorded on a Bruker DMX-400 instrument in DMSO-d₆ (for zinc complexes) or CDCl₃ (other compounds and PCLs) with TMS as the internal standard. Splitting patterns are designated as follows: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; sept, septuplet; m, multiplet. FT-IR spectra were recorded on a PerkinElmer FT-IR 2000 spectrometer by using KBr disks in the range of 4000–400 cm⁻¹. Elemental analysis was performed on a Flash EA1112 microanalyzer and were the average of a minimum of two independent measurements. The molecular weight and molecular weight distribution of PCLs were determined by GPC using Waters 2414 series system in THF at 25 °C calibrated with polystyrene standards. MALDI-TOF mass spectra of PCLs were performed on a Bruker ultraflex TOF mass spectrometer equipped with a modified Nd:YAG laser (355 nm). The mass spectra were recorded in purified THF (2 mg ml⁻¹) at 25 °C in a linear mode using 2,5-dihydroxybenzoic acid (DHB) as the matrix. Thermogravimetric analysis (TGA) was carried out under nitrogen atmosphere on a PE TGA analyzer from 50 to 550 °C. The differential scanning calorimetry (DSC) analysis was recorded on a NETZSCH 214 Polyma DSC (NETZSCH, Germany) thermal analyzer under nitrogen atmosphere. The samples were first cooled from ambient temperature to −100 °C at 50 °C/min and then heated to 100 °C at 10 °C/min to remove the thermal history, the samples were subsequently cooled to −100 °C at 10 °C/min and reheated to 100 °C at 10 °C/min.

4.2. Synthesis of ligands L₅–L₈

4.2.1. Synthesis of 2,6-bis(2,6-dimethylaminomethyl)-4-methylphenol (L₅)

The compound L₁, 2,6-bis(2,6-dimethylphenyliminomethyl)-4-methylphenol (1.52 g, 4.1 mmol) was dissolved in anhydrous methanol (25 ml). To the solution, 4.0 equiv. of sodium borohydride (0.62 g, 16.4 mmol) were slowly added at 0 °C in an ice-water bath. The reaction solution was slowly warmed to room temperature and stirred for 4 h. The color of solution changed from orange to light yellow and a pale yellow powder precipitated. A small amount of water was added slowly to quench the sodium borohydride in excess. Methanol was removed under reduced pressure and the residue was extracted with dichloromethane (30 ml × 4), and the combined organic extracts were washed with saturated brine (100 ml × 2) and then dried over anhydrous sodium sulfate and filtered. After all the volatiles were removed under reduced pressure, a pale yellow powder (L₅) was obtained. Yield: 1.45 g (94.7%).

Fig. 8. DSC curves of PCLs obtained from entry 10 in Table 1 and entry 15 in Table 2.

Fig. 9. TGA of polymers PCLs obtained from entry 10 in Table 1 and entry 15 in Table 2.

3. Conclusions

Two series of tridentate ligands (imino-phenoxy ligands and amino-phenoxy ligands) and their corresponding zinc complexes L₁–L₈ were synthesized and characterized. Complexes L₁–L₄ bearing 2,6-bis(imo)phenol ligands were inactive for the ROP of ɛ-CL in the presence or absence of BnOH. However, in combination with 4 equiv. of methylmethylithium, complexes L₅–L₈ with 2,6-bis(ami)phenol ligands were highly active for the ROP of ɛ-CL both in the presence and in the absence of BnOH. The chain extension was observed in both situations and much narrower D of PCLs were obtained in the presence of BnOH. The structural analysis by NMR and MALDI-TOF mass spectra demonstrated that the PCLs obtained in the absence of BnOH were mainly cyclic, whereas the addition of BnOH led to the formation of linear PCLs. The cyclic and linear PCLs with similar molecular weight had a similar melting point, but the former had higher thermal stability.
FT-IR (KBr, cm⁻¹): 3358, 3314, 2961, 2916, 2847, 1625, 1589, 1472, 1438, 1374, 1340, 1262, 1215, 1200, 1159, 1094, 1068, 1023, 990, 862, 839, 804, 774, 737. ¹H NMR (400 MHz, CDCl₃, δ (ppm)): 7.09 (d, 4 H, J = 7.6 Hz, Ar-H), 6.97 (s, 2 H, Ar-H), 6.96 (t, 2 H, J = 7.6 Hz, Ar-H), 4.17 (s, 4 H, CH₂NH), 3.77 (br s, 2 H, CH₂NH), 2.43 (s, 12 H, CH₂), 2.30 (s, 3 H, CH₃). ¹C NMR (100 MHz, CDCl₃, δ (ppm)): 154.1, 143.0, 141.9, 129.0, 128.5, 124.8, 124.7, and 123.8 (Ar-C), 54.1 (CH₂NH), 27.8 (CH₂(CH₃)₂), 24.3 (CH₂(CH₃)₂), 20.4 (Ar-CH₃). Anal. Calcld. for C₃H₃N₃O₂ (486.74): C, 81.43; H, 9.53; N, 5.76; found: C, 81.61; H, 9.42; N, 5.53.

4.3. Synthesis of zinc complexes (1–8)

One equivalent of anhydrous Zinc chloride (0.25 g, 1.8 mmol) was added to a stirred solution of the corresponding ligand (1.8 mmol) in anhydrous ethanol (40 ml), and the reaction mixture was stirred at room temperature for 3 h. The resulting precipitate was collected by filtration, and the filtrate was washed three times with n-hexane then dried in vacuo to give the corresponding zinc complex. All the complexes were prepared in this manner.

Complex 1: a yellow solid in 59.7% yield. FT-IR (KBr, cm⁻¹): 3348, 3041, 2969, 2921, 1634, 1605, 1588, 1543, 1498, 1471, 1386, 1351, 1324, 1277, 1232, 1184, 1093, 1070, 1047, 1000, 875, 810, 776. ¹H NMR (400 MHz, CDCl₃, δ (ppm)): 8.43 (s, 1 H, CH-N), 8.08 (s, 1 H, CH=N), 7.56 (s, 1 H, Ar-H), 7.46 (s, 1 H, Ar-H), 7.25–7.06 (m, 6 H, Ar-H), 2.45 (s, 6 H, Ar-CH₃), 2.36 (s, 6 H, Ar-CH₂), 2.29 (s, 3 H, Ar-CH₃). ¹C NMR (101 MHz, CDCl₃, δ (ppm)): 172.4 (CH=−N), 170.9 (CH=N), 165.7, 148.2, 147.6, 147.1, 135.1, 131.9, 130.1, 129.7, 129.5, 128.6, 127.9, 126.1, 121.9, and 116.8 (Ar-C), 19.7 (Ar-CH₃), 18.8 (Ar-CH₂). Anal. Calcld. for C₂H₅Cl₂N₂OZn (506.78): C, 59.25; H, 5.17; N, 5.53; found: C, 59.48; H, 5.66; N, 5.55.

Complex 2: a yellow solid in 58.0% yield. FT-IR (KBr, cm⁻¹): 3443, 2961, 1635, 1540, 1465, 1370, 1329, 1296, 1234, 1185, 1091, 1058, 1029, 990, 885, 830, 781. ¹H NMR (400 MHz, DMSO): δ (ppm): 10.43 (s, 1 H, phenol-CH), 8.74 (s, 1 H, CH=N), 8.68 (s, 1 H, CH=N), 8.09–7.85 (m, 2 H, Ar-H), 7.15–6.98 (m, 4 H, Ar-H), 6.79–6.39 (m, 34 H, Ar-H), 1.21–0.27 (m, 121 H, Ar-CH₂), 170.5 (CH=−N), 161.8, 147.6, 143.7, 141.3, 136.5, 128.4, 128.0, 127.8, 127.6, 127.3, 125.3, 124.4, 123.0, 120.8, 119.7, and 116.1 (Ar-C), 34.0 (CH₂(CH₃)₂), 31.1 and 30.9 (C(CH₃)₂), 18.12, 18.06, and 17.83 (Ar-CH₂). Anal. Calcld. for C₂H₅Cl₂N₂OZn (506.78): C, 59.25; H, 5.17; N, 5.53; found: C, 59.48; H, 5.66; N, 5.55.
A certain amount of methyl lithium solution ([MeLi] 0.02 mmol) in sealed Schlenk complex (0.02 mmol) in purified toluene was charged in a 100 mL round bottom flask and slowly warmed to room temperature and stirred for 2 h; it contained a yellow solution and white precipitate. After that, BnOH was added to the solution and stirred for 2 h; it contained a yellow solution and white precipitate. The polymer was quenched with deionized water (0.5 ml) and then poured into -hexane to precipitate the polymer. The white precipitate was filtered, dissolved by a few drops of CH2Cl2 and then finally dried under vacuum. Cyclic PCLs: 1H NMR (400 MHz, CDCl3), δ (ppm): 4.04 (t, J = 6.8 Hz, 2n H, −OCH2−), 2.28 (t, J = 7.6 Hz, 2n H, −CH2C(O)−), 1.66−1.58 (m, 4n H, −CH2−), 1.40−1.32 (m, 2n H, −CH2−). 13C NMR (100 MHz, CDCl3), δ (ppm): 173.5 (C−O), 64.1 (OCH2), 34.1, 28.3, 25.5, and 24.5 (−CH2−).

4.4. Typical procedure for ring-opening polymerization of ε-CL

In a typical polymerization experiment, a suspension of zinc complex ([MeLi][1–4] = 2 or [MeLi][5–8] = 4) was added dropwise at a temperature of −10 °C controlled with a thermostat. The mixture was slowly warmed to room temperature and stirred for 2 h; it consisted of a yellow solution and white precipitate. After that, BN0H (if needed) and ε-caprolactone were added to the above suspension in sequence at a certain temperature and the polymerization time was measured from that point. After polymerization, the reaction was quenched with deionized water (0.5 ml) and then poured into n-hexane to precipitate the polymer. The white precipitate was collected by filtration, dissolved by a few drops of CH2Cl2 and then n-hexane (3 ml) was added to precipitate the polymer; this process was repeated three times. The polymer was finally dried under vacuum.

Cyclic PCLs: 1H NMR (400 MHz, CDCl3), δ (ppm): 4.04 (t, J = 6.8 Hz, 2n H, −OCH2−), 2.28 (t, J = 7.6 Hz, 2n H, −CH2C(O)−), 1.66−1.58 (m, 4n H, −CH2−), 1.40−1.32 (m, 2n H, −CH2−). 13C NMR (100 MHz, CDCl3), δ (ppm): 173.5 (C−O), 64.1 (OCH2), 34.1, 28.3, 25.5, and 24.5 (−CH2−).

4.5. X-ray crystallographic analysis

Brown crystals of the zinc complex 4 suitable for single X-ray diffraction analysis were obtained by slow diffusion of n-hexane into their ethanol solution. The crystallographic data for 4 were collected at 296 K on a Bruker Smart Apex II CCD diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structure was solved by direct methods and refined by full-matrix least-squares on F2. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were placed in calculated positions.

The crystallographic data have been deposited within the Cambridge Crystallographic Data Centre (CCDC number 1868711). The structure requests are available free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data for complex 4. C33H42Cl2N2OZn, Mr = 618.95 g mol−1, T = 293(2) K, monoclinic crystal system, space group P21/n, a = 15.0619(12) Å, b = 16.7063(13) Å, c = 18.5154(12) Å, α = γ = 90°, β = 92.58(7)°, V = 6488.4(6) Å3, Z = 4, Dcalc = 0.877 Mg m−3, μ = 0.656 mm−1, F(000) = 1304, 8543 reflections collected, 4983 unique which were used in all calculations. GOF = 1.033, Final R indices [I>2sigma(I)] R1 = 0.0523, wR2 = 0.1350, R indices (all data) R1 = 0.0933, wR2 = 0.1609. Largest diff. peak and hole 0.452 and −0.267 e Å−3.

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2016YFC1100801) and the State Key Laboratory of Chemical Engineering (No. SKL-ChE-18D01).

Appendix A. Supplementary data

This article is available online at https://doi.org/10.1016/j.jorgangeochem.2018.12.013.

References
