TO THE EDITOR:

While the endourologic community is still wondering about the most effective laser settings and strategies for intracorporeal lithotripsy, Aldoukhi et al recently tested in a laboratory setting different popcorning scenarios. Aside from the main study outcomes, the authors concluded that overall results trend favored using the highest frequency settings possible, regardless of pulse energy. More specifically, they claimed that settings with higher frequency may improve dusting outcomes.

We gladly welcome such studies aiming at improving stone treatment, and the authors should be complimented for their efforts. However, we believe that it is not clearly demonstrated that high frequency in a high power setting is clearly superior. As shown in Figure 2, popcornning at 0.5 J and 80 Hz is faster than using 40 Hz, but does not result in higher percentage of fragments <1 mm. As a whole, we should all be more cautious in defining what dust and dusting really are even in presence of fragments <1 mm, since clear evidence at this regard is currently lacking. Some other aspects deserve further discussion.

One of the purposes of working at very high frequency is to increase lithotripsy speed. With this premise, it is possible to observe a linear relationship in a laboratory setting between frequency and working speed, as the authors brilliantly showed. As the real-life experience disappointingly reminds us every day, our practice is hardly linear. When it comes to laser lithotripsy during flexible ureteroscopy, at least 3 intervening factors derange this linear effect. First, the issue of quality of vision. The authors themselves declared in the method section that better visualization and quantification of the fragmentation process at 80 Hz with the high-speed camera required using a lower number (n = 3) of stones in the caliceal mode as compared to the lithotripsy experiments (n = 10). Second, the issue of caliceal distensibility. Popcornning on a solid glass surface results in a more efficient process due to the fragments bouncing back after hitting the solid walls; however, caliceal distensible walls absorb more kinetic energy and reduce this bouncing effect. Third, as a consequence, the issue of microbleedings. Hypothetically, faster popcornning speed can stochastically cause a higher number of fragments to hit the caliceal walls; this repeated microtraumatism could increase the risk of bleeding, which could further interfere with the quality of vision.

As a whole, we are not dully standing against the use of very high frequencies. We believe that they will be able to play a major role in achieving better dusting, provided that all the above listed limitations will be worked out.

References

Eugenio Ventimiglia and Olivier Traxer
Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
Sorbonne Université, Service d’Urologie, AP-HP, Hôpital Tenon, Paris, France
Sorbonne Université, GRC no. 20, Groupe de Recherche Clinique sur la Lithiase Urinaire, Hôpital Tenon, Paris, France
E-mail: olivier.traxer@aphp.fr (O. Traxer).

https://doi.org/10.1016/j.urology.2019.01.032