Distribution of regulatory T cells in inflammatory colorectal polyps of miniature dachshunds

Keisuke Konishi, Hirotaka Igarashi,⁎ Shingo Maeda, Eri Uchida, Kiwamu Hanazono, Takashi Tamamoto, Kazuyuki Uchida, Daiji Endoh, Koichi Ohno

Laboratory of Veterinary Radiation Biology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuoku, Sagamihara, Kanagawa 252-5201, Japan
Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan

ARTICLE INFO

Keywords:
Inflammatory colorectal polyp
Miniature dachshund
Regulatory T cells
Anti-Inflammatory cytokine

ABSTRACT

Inflammatory colorectal polyp (ICRP) is an emerging disease in Miniature Dachshunds (MDs). Animals with this disease exhibit multiple polyps with severe neutrophil infiltration that respond to immunosuppressive therapy. Macrophages in polyoid lesions have been described to play an important role in neutrophil infiltration in the lesion by producing IL-8. In contrast, IL-10, an anti-inflammatory cytokine, was also reported to be upregulated in polyoid lesions, but its significance in the pathogenesis of ICRP has not been clarified. Regulatory T cells (Tregs) are the main source of IL-10 production and contribute to the maintenance of intestinal homeostasis. Therefore, the objective of this research was to compare the distribution of Tregs in polyoid lesions of ICRPs and the association between the distribution and expression of pro- or anti-inflammatory cytokines. Tissue biopsy specimens of polyoid lesions were collected from 28 MDs with ICRPs. Those of macroscopically non-polyoid colonic mucosa from 24 MDs with ICRPs and 21 control dogs were further included as controls. Real-time quantitative polymerase chain reaction was used to quantify gene expression of IL-1β, IL-4, IL-6, IL-8, IL-10, IL-17, IL-22, IFN-γ, TNF-α, TGF-β, and forkhead box protein P3 (Foxp3) in each tissue sample. The numbers of Foxp3-positive cells (Tregs) and ionized calcium binding adapter molecule 1 (Iba-1)-positive cells (macrophages) were determined by immunohistochemistry. The gene expression of IL-1β, IL-6, IL-8, TNF-α, IFN-γ, IL-17, IL-10, TGF-β, and Foxp3 was significantly upregulated in polyoid lesions relative to control levels. The numbers of Foxp3-positive Tregs and Iba-1-positive macrophages were significantly increased in polyoid lesions compared to those in the non-polyoid colonic mucosa of MDs with ICRPs and control dogs. The upregulation of IL-10 was moderately correlated with the distribution of Tregs in polyoid lesions from MDs with ICRPs. In addition, the relative upregulation of IL-1β, IL-6, and IL-8 in polyoid lesions, compared to expression in non-polyoid colonic mucosa of MDs with ICRPs, was significantly greater than that of IL-10. These results indicate that increases in Treg numbers and anti-inflammatory cytokines in polyoid lesions comprise reactive changes in response to the inflammation, which warrants further investigation.

1. Introduction

Inflammatory colorectal polyps (ICRPs) often develop in Miniature Dachshunds (MDs) in Japan, and these are characterized by hematochezia, mucoid feces, and tenesmus. ICRPs in MDs emerge as single or multiple outgrowth located in the colorectal region.
Histopathologically, this is associated with severe inflammatory infiltration, composed of neutrophils and macrophages, in the thickened mucosa (Ohmi et al., 2012; Uchida et al., 2016). ICRPs in MDs exhibit a good response to immunosuppressive therapy including prednisolone, cyclosporine, or leflunomide (Fukushima et al., 2015; Ohmi et al., 2012). Therefore, they are speculated to comprise a novel form of canine inflammatory bowel disease (IBD) (Ohta et al., 2013).

Although the pathogenesis of both human and canine IBD remains unclear, dysregulation of the mucosal immune system, especially regulatory T cells (Tregs), is thought to contribute to the pathogenesis of IBD in both species. Tregs are essential for maintaining mucosal immune tolerance because of their suppressive effect on effector T cells, which occurs via the secretion of anti-inflammatory cytokines such as IL-10 and TGF-β (Sakuguchi et al., 2008). Furthermore, expression of the transcription factor forkhead box protein P3 (Foxp3), which is expressed predominantly in Tregs, is critical for the differentiation of these cells (Ziegler, 2006).

In humans, the number of Tregs is increased in the inflamed mucosa of patients with IBD, which is considered a reactive change that occurs to maintain homeostasis (Wang et al., 2011). In addition, the mRNA levels of pro-inflammatory cytokines are up-regulated in the inflamed mucosa of patients with IBD (Kobayashi et al., 2008; Roberts-Thomson et al., 2011). In contrast, the number of Tregs was found to be decreased in the duodenal mucosa of dogs with IBD (Junginger et al., 2012; Maeda et al., 2016). Moreover, the levels of mRNA encoding pro-inflammatory cytokines are not increased in the inflamed intestinal mucosa of dogs with IBD (Jergens et al., 2009; Tamura et al., 2014). Therefore, the pathogenesis of canine IBD is considered different from that of human disease.

Regarding ICRPs in MDs, recent investigations have demonstrated that the mRNA expression of pro-inflammatory cytokines is increased in the colorectal mucosa of MDs with ICRPs (Igarashi et al., 2014; Ohta et al., 2013). Especially, IL-8, a neutrophil chemotactic factor that is produced by macrophages, was found to be markedly increased in the polyoid lesions of ICRPs in MDs (Tamura et al., 2013). In contrast, the gene expression of IL-10, which encodes a cytokine that inhibits T cell proliferation and pro-inflammatory cytokine secretion (Roncarolo et al., 2006), was found to be upregulated in the colorectal mucosa of MDs with ICRPs (Ohta et al., 2013). Thus, concerning cytokine levels, the pathogenesis of ICRPs in MDs seems to share several common features with human IBD.

Nevertheless, to date, there have been no reports on changes in the number of Tregs in the colorectal mucosa of MDs with ICRPs. Therefore, this study aimed to evaluate the distribution of Tregs in the polyoid lesions of ICRPs in MDs, as well as the association between the distribution and expression levels of pro- or anti-inflammatory cytokines.

2. Materials and methods

2.1. Study population

Colorectal mucosal specimens were obtained from 28 MDs at the Veterinary Medical Center of the University of Tokyo to inspect the cause of chronic hematochezia, mucoid feces, and tenesmus, and were taken endoscopically from both polyoid and non-polyoid lesions between July 2011 and April 2014. All dogs were diagnosed histopathologically with ICRPs by excluding the cases with neoplastic polyyp or ICRPs accompanied by adenoma or adenocarcinoma (Uchida et al., 2016; Saito et al., 2018). Twelve ICRP-affected MDs had received treatment with prednisolone (0.25 – 1.0 mg/kg/day). In addition, cyclosporine or leflunomide had been used in four or two ICRP-affected cases, respectively. No anti-inflammatory agent was used in 14 ICRP-affected MDs. The median age of these dogs was 125.5 months (range, 48 – 168 months) with 11 females (three intact and eight spayed) and 17 males (four intact and 13 castrated). The median body weight was 5.55 kg (range, 3.40–7.40 kg). In addition, colorectal mucosal specimens were obtained endoscopically from 21 Beagles that had no gastrointestinal signs or disease based on blood tests, fecal examination, and ultrasound, as healthy controls. The median age of these dogs was 82 months (range, 34–105 months) with 14 females (eight intact and six spayed) and seven males (one intact and six castrated). The use of dogs in this study was approved by the Animal Care Committee of the University of Tokyo (Approval No. P11-530, 2 June 2011).

Colonoscopy was performed on all dogs using a VQ-8143B fiberoptic videoendoscope (Olympus Medical Systems Co., Tokyo, Japan). Both polyoid and non-polyoid lesion specimens were collected from the colorectal mucosa of MDs with ICRPs. Similarly, colorectal mucosa was collected from control dogs. Mucosal biopsies were taken using FB-54Q-1 biopsy forceps (Olympus Medical Systems Co.) or an electrosurgical snare (ICC 200, ERBE Co., Tubingen, Germany). Biopsy specimens for histopathology were fixed in 10% formalin and stained with hematoxylin and eosin. One or two mucosal specimens collected from polyoid or non-polyoid lesions were used for RNA extraction, and at least four mucosal specimens or a large polyoid tissue excised by polypectomy were submitted for histopathology. Samples for total RNA extraction were placed immediately in RNAlater (Qiagen Inc., Hilden, CA) and stored at −80°C until use. Of these, tissue samples obtained from 24 ICRP-affected MDs and all 21 control dogs were used in our previous study (Igarashi et al., 2014).

2.2. Quantification of Foxp3 and cytokine mRNA expression by qPCR

Total RNA was extracted from all tissue samples (i.e. 28 polyoid lesions and 24 non-polyoid colonic mucosal specimens from ICRP cases, and 21 colonic mucosal samples from control dogs) with a commercially available kit (RNeasy Mini RNA Isolation Kit, GE Healthcare UK Ltd., Buckinghamshire, England) according to the manufacturer’s manual. Genomic DNA was removed from the samples with a TURBO DNA-free Kit (Applied Biosystems, Foster City, CA) and stored at −80°C until use.

Reverse transcription was performed using a PrimeScript RT Reagent Kit (Takara Bio Inc., Shiga, Japan) to synthesize complementary DNA from total RNA according to the manufacturer's instructions. Subsequently, quantitative real-time PCR was performed using SYBR Premix Ex Taq II (Takara Bio Inc.) and a Thermal Cycler Dice Real Time System (Takara Bio Inc.) in a final reaction volume of 25 μl. Information on the primers for Foxp3 and cytokine-encoding mRNA is depicted in Table 1 (Hosin et al., 2015; Maccoux et al., 2007; Maeda et al., 2009; Peters et al., 2007; Schmitz et al., 2012). Hydroxymethylbilan synthase, ribosomal protein L32, and ribosomal protein S18 were used as reference genes, according to a previous study (Igarashi et al., 2014). The amplification conditions were as follows: 95°C for 10 s, 40 cycles of PCR (95°C for 5 s and 60°C for 30 s), and dissociation (95°C for 15 s, 60°C for 30 s, and 95°C for 15 s). Nuclease-free water and non-reverse transcription controls were used as negative controls. A sample with a known cycle threshold (Ct) value (as a positive control) was included with all sample runs to control for run-to-run Ct variations. The real-time data were analyzed using Thermal Cycler Dice Real Time System software version 4.01A (Takara Bio Inc.). Ct values were determined with the second derivative maximum cycles method.

Gene expression data for IL-1β, IL-6, IL-8, and TNF-α in dogs from a previous study (Igarashi et al., 2014) were also used to compare the rate of increase in the polyoid lesion with other genes and to evaluate the correlation of mRNA expression of each gene.

2.3. Immunohistochemistry for Foxp3 and Iba-1

Immunohistochemistry (IHC) was performed using paraffin-embedded tissues, including 16 polyoid lesions from ICRP-affected MDs and 10 colonic mucosal samples from control dogs. In addition, seven non-polyoid colonic mucosal specimens from the 16 ICRP cases were
further included. IHC for Foxp3 and ionized calcium binding adapter molecule 1 (Iba-1) was conducted using serial sections of paraffin-embedded, 4 μm-thick tissues to detect Tregs and macrophages, respectively. Heat-induced antigen retrieval was performed by autoclaving the sections for 10 min at 121°C in 10 mM sodium citrate buffer (pH 6.0). Endogenous peroxidase activity was blocked by incubating the samples with REAL Peroxidase-Blocking Solution (Dako, Glostrup, Denmark) at room temperature for 10 min (Foxp3) or 30 min (Iba-1). The sections were blocked with 5% (Foxp3) or 8% (Iba-1) skim milk in tris-buffered saline with 0.1% tween 20 (TBST) for 60 min and then incubated with a rabbit anti-mouse Foxp3 mAb (1:400; clone FJK-16s; eBioscience, San Diego, CA) or a rabbit anti-human Iba-1 pAb (1:250; FUJIFILM Wako Pure Chemical Corp, Osaka, Japan) at 4°C overnight. The cross-reactivity of these antibodies with canine Foxp3, forkhead box protein P3; HMBS, hydroxymethylbilane synthase; RPL32, ribosomal protein L32; RPS18, ribosomal protein S18.

Table 1

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences (5’–3’)</th>
<th>Product length (bp)</th>
<th>GenBank accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β</td>
<td>Forward ACCCGAATCACCAGTGAAATG 110 XM_001037971</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse GTTCAGGCTGTGGCAAGCAG 125 NM_001003159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Forward CTTGGCAAGTCTTCATAAATAGCAGCA 151 NM_001003174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-8</td>
<td>Forward CCAAGTGCAAGGAGCTGTC 146 NM_001003244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-10</td>
<td>Forward CAGAGGAGGAGCACTTATGTGTA 125 NM_001003309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-17A</td>
<td>Forward CACATGTTGCGAGTATAGGAA 72 NM_00165878.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-22</td>
<td>Forward TCAAGCAACCATATATCCCACAC 254 XM_538274.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMBS</td>
<td>Forward TCAGCAGGAGCTGTC 179 NM_00168461.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPL32</td>
<td>Forward GTGGGCTAAGGAGCAAAAGAATAA 100 XM_848016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS18</td>
<td>Forward TCTTATGCGGTGATTGTTCTG 116 XM_523106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Foxp3, forkhead box protein P3; HMBS, hydroxymethylbilane synthase; RPL32, ribosomal protein L32; RS18, ribosomal protein S18.

4. Statistical analyses were performed using JMP 12.0.1 (SAS Institute Inc., Cary, NC, USA). The Kruskal–Wallis test was used to test overall differences in the number of Foxp3-positive Tregs and Iba-1-positive macrophages, as well as the mRNA expression of Foxp3 and each cytokine among polypoid lesions, non-polypoid colonic mucosa of affected dogs, and colonic mucosa of healthy dogs. The Steel–Dwass test was used as a post-hoc test to determine between-group differences. The Dunn’s test was used as a post-hoc test to compare the rate of increase in mRNA expression (polypoid lesions/non-polypoid lesions) of IL-10 relative to that of Foxp3 and other cytokines. The relationships among the number of Tregs or macrophages and mRNA expression of each gene were evaluated using the Spearman’s rank correlation coefficient. A value of $P < 0.05$ was considered significant.

3. Results

3.1. Macroscopic and histopathologic findings

Eight MDs had diffused multiple small polyps in the colorectal region, while other 20 MDs had both large and small polyps in that region. Histopathologically, severe neutrophil infiltration, moderate to severe infiltration with macrophages, lymphocyte, and/or plasma cells in lamina propria, fibrosis, edema, crypt expansion, and mucous hyperplasia were observed in polypoid lesion in all MDs. In addition, histopathology was also performed in non-polypoid colonic mucosa in 17 of 24 MDs with ICRPs; six of them showed no abnormality while 11 of them had mild lymphocytic–plasmacytic colitis based on World Small Animal Veterinary Association guidelines.

3.2. Quantification of mRNA expression levels of Foxp3 and pro- or anti-inflammatory cytokines

The relative expression levels of all cytokines except for IL-4 were significantly higher in polypoid lesions than in the non-polypoid colonic mucosa of ICRPs in MDs and control dogs (Fig. 1). However, there was no significant difference in the mRNA expression level of IL-4 among the three groups (Fig. 1). Whereas the mRNA expression levels of IL-1β and IL-8 were significantly higher in the non-polypoid colonic mucosa of ICRPs of MDs compared to that in control dogs, mRNA levels of Foxp3 were significantly lower in the non-polypoid colonic mucosa of...
ICRPs in MDs compared to that in control dogs (Fig. 1). Comparing the rate of increase in mRNA expression (polypoid lesions/non-polypoid lesions) of IL-10 to that of Foxp3 and other cytokines in MDs with ICRPs, rates for IL-1β, IL-6, and IL-8 were significantly higher than those of IL-10 (Fig. 2). In contrast, the rate of IL-4 was significantly lower than that of IL-10 (Fig. 2).

### 3.3. Foxp3-positive Tregs and Iba-1-positive macrophages in the colorectal mucosa

In polypoid lesions, mild infiltration of Foxp3-positive Tregs and moderate infiltration of Iba-1-positive macrophages were observed in the lamina propria (Fig. 3A and B). In contrast, there were minimal to mild infiltration of Foxp3-positive Tregs and Iba-1-positive macrophages in both the non-polypoid colonic mucosa of ICRPs in MDs and
control dogs (Fig. 3C – F). The numbers of both Foxp3-positive Tregs and Iba-1-positive macrophages were significantly increased in polyloid lesions compared to those in the non-polyloid colonic mucosa of ICRPs in MDs or control dogs (Fig. 4A and B). Whereas the number of Foxp3-positive Tregs was significantly higher in the non-polyloid colonic mucosa of ICRPs in MDs compared to that in control dogs (Fig. 4A), there was no significant difference in the number of Iba-1-positive macrophages between the non-polyloid colonic mucosa of ICRPs in MDs and that of control dogs (Fig. 4B).

3.4. Correlation among the number of Foxp3-positive Tregs and mRNA expression levels of Foxp3 and IL-10

We next examined correlations among the mRNA expression levels of IL-10 and Foxp3 with other genes and the number of Foxp3-positive Tregs or Iba-1-positive macrophages (Table 2). Data of correlation among all gene expression and the number of Foxp3- or Iba-1-positive cells were listed in a supplementary Table 1. The most relevant association with Foxp3 gene expression was found in IL-17 gene expression (r = 0.780, P < 0.001); that with IL-10 gene expression was TNF-α gene expression (r = 0.910, P < 0.001).

4. Discussion

This study demonstrated the distribution of Tregs and macrophages in the polyloid lesions of ICRPs in MDs and the association between the distribution and expression levels of genes encoding pro- or anti-inflammatory cytokines. The results showed that the numbers of Tregs and macrophages were significantly increased concomitant with the upregulation of several pro- and anti-inflammatory cytokines in polyloid lesions. Moreover, the rates at which mRNA expression increased in the polyloid lesion, as compared to levels in the non-polyloid colonic mucosal ICRPs of MDs, were significantly higher for pro-inflammatory cytokines than for IL-10.

In the present study, we observed an increase of Foxp3-positive Tregs in the polyloid lesions of ICRPs in MDs. This is an opposite result to that previously reported for canine IBD (Junginger et al., 2012; Maeda et al., 2016), but is consistent with reports of human IBD (Wang et al., 2011). In addition, we also detected the upregulation of Foxp3, IL-10, and TGF-β mRNA in polyloid lesions, which is in line with a previous study (Ohta et al., 2013). Furthermore, previous studies have also shown that the mRNA transcription of anti-inflammatory cytokines (IL-10 and TGF-β) or Foxp3 is increased in the human intestinal mucosa during IBD (Eastaff-Leung et al., 2010; Melgar et al., 2003). Since higher correlations were observed among Th17 cytokines (i.e., IL-17 and IL-22), pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), and Treg status (IL-10, TGF-β, and Foxp3) than those with Th1 (IFN-γ) or Th2 (IL-4) cytokines, infiltration of Tregs was speculated to occur concurrently with Th17 and macrophage infiltration, rather than with Th1 or Th2 cells. There were moderate positive correlations for any combination of Foxp3-negative Treg numbers and the expression levels of Foxp3 or IL-10 in the polyloid lesions of ICRPs in MDs. Thus, it was indicated that increased infiltration of Foxp3-negative Tregs resulted in an elevated production of anti-inflammatory cytokines including IL-10 and TGF-β in canine ICRPs. Tregs play an important role for regulating mucosal immune tolerance, which suppresses the immune response to non-pathogenic antigens in the intestinal mucosa, by producing IL-10 and TGF-β (Lan et al., 2007). In addition, TGF-β also plays a role in promoting Foxp3 expression and generating Tregs in the intestinal mucosa (Konkel and Chen, 2011). Tregs can be recruited to the inflamed mucosa during human IBD in an attempt to control the inflammation (Pedros et al., 2016). Thus, the increase in the numbers of Tregs and anti-inflammatory cytokines in polyloid lesions of ICRPs in MDs is considered a reactive change in response to the inflammation, as occurs in human IBD.

In contrast, levels of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α were found to be higher in the polyloid lesions of ICRPs in MDs, as we reported previously (Igarashi et al., 2014). This was in line with previous studies on the inflammatory lesions of both human IBD and ICRPs in MDs (Sakai et al., 2018). Further, glucocorticoids increase the Treg status (IL-10, TGF-β, and Foxp3) or Th1 (IFN-γ) and Th2 (IL-4) cytokines, but inhibit the production of anti-inflammatory cytokines such as IL-10 and TGF-β (Konkel and Chen, 2011). In contrast, Th17 cytokines (i.e., IL-17) are upregulated in the polyloid lesions of ICRPs in MDs and control dogs, they do not appropriately function to suppress the severe inflammation that occurs in the polyloid lesion. Further analysis on the mechanism of this phenomenon is required. In contrast, there was no difference in the climb rate of TNF-α expression compared to that of IL-10. However, recent studies showed that TNF-α induces IL-8 secretion from monocytes in vitro (O’Dwyer et al., 2016). Thus, the upregulation of TNF-α could also promote inflammation in polyloid lesions, even if the activity of this cytokine appears to be weak in such lesions.

IL-17, which is a pro-inflammatory cytokine within the IL-17 family and is produced by Th17 cells, mediates the upregulation of IL-1β, IL-6, IL-8, and TNF-α, leading to the recruitment of neutrophils in the intestinal mucosa (Neurath, 2014). In contrast, IL-22, which is a cytokine of the IL-10 family and is produced by Th17 cells and human Th22 cells, induces the production of anti-bacterial peptides and facilitates the maintenance of the intestinal epithelial barrier (Nikoopour et al., 2015). In the present study, IL-17 and IL-22 mRNA expression levels were also upregulated in the polyloid lesions of ICRPs in MDs. This result is consistent with the observed inflamed mucosa of human IBD (Jiang et al., 2014). Moreover, in an environment rich in pro-inflammatory cytokines, with high IL-1β and IL-6 levels, Tregs lose their suppressive function and convert to IL-17-producing Tregs; this might indicate that Tregs cannot exert suppressive activity despite the high expression of Foxp3 in the intestinal mucosa during human IBD (Eastaff-Leung et al., 2010).

A recent study reported that ICRPs in MDs sometimes develop into colorectal adenoma and adenocarcinoma (Saito et al., 2018). In humans, tumor-infiltrating Tregs inhibit the anti-tumor immune response and promote tumor angiogenesis (Facciabene et al., 2012). Similarly, in dogs, tumor-infiltrating Tregs are detected in various neoplasms, and their abundance contributes to reduced survival times (Maeda et al., 2016; Saka et al., 2018). Further, glucocorticoids increase the Treg...
population and shift the immunological balance to a Treg-centered environment (Liberman et al., 2018), whereas NSAIDs reduce the Treg population and function within the tumor (Sharma et al., 2005). Thus, further studies should be performed to determine the mechanisms underlying tumorigenesis by compared ICRPs with colorectal neoplasms, in addition to the association between Treg distribution and prognosis or therapeutic response in MDs with ICRPs.

There were several limitations to this study. First, we used whole endoscopic biopsy specimens to detect the mRNA expression of cytokines. This does not always correlate with protein production, which remains undetermined in this study; however, the amount of IL-8 protein and the number of IL-8-producing macrophages have been reported to be increased in ICRP lesions in MDs (Tamura et al., 2013). Second, we did not examine the distribution of CD4+ T cell subsets, especially Th1, Th2, Th17, and Th22 cells in the lamina propria. These helper T cells are suggested to produce various cytokines in the colorectal mucosa of ICRPs in MDs. Hence, each CD4+ T cell subset in the lamina propria should also be distinguished by IHC or flow cytometry if canine-specific antibodies are available. Third, the cellular source of IL-10 gene or protein production and its distribution in the lesion should be confirmed by double-labeling immunofluorescence analysis or in situ hybridization in the future. Fourth, all whole endoscopic biopsy specimens were used to measure the numbers of Tregs and macrophages in the lamina propria in the current study. Although biopsy specimens obtained from full-thickness surgical excision are desirable for a more precise evaluation of cell distribution, it was ethically difficult to collect all samples by surgical excision. Fifth, this study did not consider the severity of ICRPs because of the limited number of cases. ICRPs with early stage have been documented to exhibit mild lymphocyte and macrophage infiltration, whereas those with later stages show severe neutrophil infiltration (Uchida et al., 2016). Therefore, the association between Treg infiltration and histopathological stage should be evaluated in a larger population to clarify the role of Tregs in the pathogenesis of ICRPs. Finally, we used normal Beagles which was not an
ideal control group for the study in terms of age, gender, and breed. Since it was difficult to collect the colonic tissues from client-owned healthy MDs due to the ethical problem. In addition, difference in the treatment status received prior to colonoscopy also affect the results of the study. However, these confounding factors should not interfere with the difference between polypoid lesion and non-polypoid colonic mucosa, which were obtained from same cases. Moreover, the upregulation of cytokine genes and expression of Foxp3- or Iba-1-positive cells inasusceptible experimental model of canine osteoarthritis tissues. Vet. Immunol. Immunopathol. 118, 59–67.

### Table 2

<table>
<thead>
<tr>
<th>Correlation coefficient between Foxp3 or IL-10 mRNA expression and other cytokine genes or the number of Foxp3- or Iba-1-positive cells.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Foxp3 gene</strong></td>
</tr>
<tr>
<td>Foxp3 gene</td>
</tr>
<tr>
<td>IL-1β</td>
</tr>
<tr>
<td>IL-4</td>
</tr>
<tr>
<td>IL-6</td>
</tr>
<tr>
<td>IL-10</td>
</tr>
<tr>
<td>IL-17</td>
</tr>
<tr>
<td>IL-22</td>
</tr>
<tr>
<td>IFN-γ</td>
</tr>
<tr>
<td>TNF-α</td>
</tr>
<tr>
<td>TGF-β</td>
</tr>
<tr>
<td>Foxp3+ cell</td>
</tr>
<tr>
<td>Iba-1+ cell</td>
</tr>
</tbody>
</table>

Each data represents the value of Spearman’s r.

### Declaration of Competing Interest

The authors of this paper do not have a financial or personal relationship with other individuals or organizations that could inappropriately influence or bias the content of the paper.

### Acknowledgements

This work was supported by JSPS KAKENHI [grant number 16K18801]. The abstract was presented at 2018 American College of Veterinary Internal Medicine (ACVIM) Forum, 14–16 June 2018, Seattle, WA.

### Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jvetimm.2019.109938.

### References


### Fig. 4

The numbers of Foxp3-positive cells (A) and Iba-1-positive cells (B) in the polypoid lesion (inflammatory colorectal polyps; ICRP polyps; n = 16), the non-polypoid colonic mucosa (ICRP colon; n = 7), and the colorectal mucosa of control dogs (healthy colon; n = 10). The top and bottom of the box represent the 75th and 25th percentiles, respectively; the middle line represents the median; the whiskers indicate the highest and lowest data points within 1.5 times the length of the quartiles; the circles represent outliers. Asterisks indicate statistical differences (*P < 0.05, **P < 0.01, ***P < 0.001).


Nikoopour, E., Bellemore, S.M., Singh, B., 2015. IL-22, cell regeneration and autoimmunity. Cytokine 74, 35–42.


