Impact of Mycobacterium bovis-induced pathology on interpretation of QuantiFERON®-TB Gold assay results in African buffaloes (Syncerus caffer)

Netanya Bernitz a, Tanya J. Kerr a, Wynand J. Goosen a, Roxanne L. Higgitt a, Candice de Waal a, Charlene Clarke a, David V. Cooper b, Robin M. Warren a, Paul D. van Helden a, Sven D.C. Parsons a, Michele A. Miller a,⁎

Abstract

The cytokine interferon gamma-inducible protein 10 (IP-10) is a sensitive biomarker of Mycobacterium bovis (M. bovis) infection in African buffaloes (Syncerus caffer). However, elevated levels of IP-10 in QuantiFERON®-TB Gold (QFT) unstimulated whole blood compromises the utility of this biomarker. In this study, IP-10 and interferon gamma (IFN-γ) concentrations in whole blood samples from M. bovis culture-confirmed buffaloes with varying degrees of pathological changes (n = 72) and uninfected controls (n = 70) were measured in the IP-10 release assay (IPRA) and IFN-γ release assay (IGRA), respectively. Findings suggest that concentrations of both cytokines in QFT Nil tubes were higher in infected buffaloes with macroscopic pathological changes consistent with bovine tuberculosis compared to uninfected controls, and IGRA values increased with more severe pathological changes in infected buffaloes (p < 0.05). Finally, in culture-confirmed buffaloes with IPRA-negative and IGRA-positive test results, most animals were also those with the most advanced pathology. We conclude that IP-10 and IFN-γ concentrations measured in QFT Nil tubes may provide insight into the presence of M. bovis pathology in infected buffaloes. Furthermore, this study highlights the value in evaluating cytokine production in both antigen-stimulated and unstimulated samples when interpreting cytokine release assay results.

1. Introduction

Bovine tuberculosis (bTB) is a chronic inflammatory disease caused by the pathogen Mycobacterium bovis (M. bovis). Mycobacterium bovis has a wide mammalian host range including domestic animals, wildlife, livestock and humans (Dippenaar et al., 2017; Hlokwe et al., 2014). The disease is characterised by granulomas, formed when host immune cells infiltrate the tissue at the site of infection. Aggregates of infected macrophages fuse to form multinucleated giant cells followed by localized fibrosis and encapsulation (Palmer et al., 2007). These lesions are initially microscopic but with chronic inflammation, they increase in size. Granulomas mature and multi-focal lesions may coalesce and become diffuse in the infected tissue, with caseous necrotic centres. Advanced bTB may result in morbidity and mortality (Domingo et al., 2014).

In South Africa, African buffaloes (Syncerus caffer) are wildlife reservoirs of M. bovis and thus efforts to control bTB disease in buffaloes are aimed at reducing infection in this species and spread to others. Since bTB is a chronic disease, buffaloes may present with clinical signs only after months or years of infection. Subsequently, strategies to identify M. bovis-infected buffaloes utilise measurement of early antigen-specific cell-mediated immune responses against M. bovis.
antigens, rather than clinical disease. The early detection of infected buffaloes may enable management strategies to be implemented soon enough to limit the transmission of *M. bovis*.

In order to do this, *in vitro* cytokine release assays have been developed to quantify the production of cytokine biomarkers in plasma in response to antigen-specific whole blood stimulation. The QuantiFERON®-TB Gold (QFT) system is an easy-to-use stimulation platform comprised of i) Nil tube containing saline (unstimulated control), ii) TB antigen tube containing early secretory antigen target 6 kD (ESAT-6) and culture filtrate protein 10 kD (CFP-10) (antigen stimulated) and iii) mitogen tube containing phytohemagglutinin (stimulated positive control). The interferon gamma-inducible protein 10 (IP-10) release assay (IPRA) and the interferon gamma (IFN-γ) release assay (IGRA) measure the cytokines IP-10 and IFN-γ in plasma, respectively, following QFT whole blood stimulation (Bernitz et al., 2019). The QFT IPRA and IGRA results are calculated as the plasma concentration of the cytokine in the QFT Nil tube subtracted from the plasma concentration of the cytokine in the QFT TB antigen tube. The QFT IPRA is highly sensitive and specific for detecting *M. bovis*-infection in buffaloes (Bernitz et al., 2019), however, the utility of the assay may be compromised by high concentrations of IP-10 in the QFT Nil tube (IP-10Nil). This may cause false-negative test results in truly infected buffaloes and hinder the diagnostic performance of the QFT IPRA.

The phenomenon of elevated [IP-10Nil] has been observed in humans and cattle and although not understood in the latter, has been associated with extent of disease in humans (Chen et al., 2011; Parsons et al., 2016). Therefore, the aim of this study was to improve interpretation of QFT IPRA and IGRA results in the context of the spectrum of bTB pathology. The [IP-10Nil] and the concentration of IFN-γ in the QFT Nil tube ([IFN-γNil]) within groups of *M. bovis* culture-confirmed buffaloes with variable severity of lesions were compared to uninfected controls. Furthermore, the magnitude of QFT IPRA and IGRA values and discordant QFT assay results between groups of culture-confirmed buffaloes with different pathological features were compared.

2. Materials and methods

2.1. Animals

A total of 786 buffaloes were tested using the QFT IPRA and IGRA during bTB test-and-cull programmes in Hluhluwe iMfolozi Park, South Africa during 2016, 2017 and 2018. All test positive animals were culled and underwent post mortem examination as described below (n = 145), of which all animals confirmed positive on mycobacterial culture were used in this study (n = 72). During the same period, buffaloes from eight farms in South Africa with no known history of bTB were opportunistically tested with the QFT IPRA and IGRA when immobilised for reasons unrelated to this study. These buffaloes were used as uninfected controls (n = 70).

2.2. QFT IPRA and IGRA

Both cytokine release assays were performed on all buffaloes as previously described (Bernitz et al., 2019). Briefly, within eight hours of blood collection, 1 ml aliquots of heparinized whole blood were aseptically transferred to tubes of the QFT system (Qiagen, Venlo, Limburg, Netherlands); i) Nil; ii) antigen and iii) mitogen (respectively). Samples were inverted ten times and incubated for 20 h at 37 °C. Plasma was harvested following centrifugation. The cytokine IP-10 was measured using an in-house bovine-specific IP-10 enzyme-linked immunosorbent assay (ELISA; Kingfisher Biotech Inc., St Paul, MN, USA) and IFN-γ was measured using the commercially available cattleyte® IFN-γ ELISA (Qiagen, Venlo, Limburg, Netherlands). The IPRA results were calculated as the [IP-10Nil] subtracted from the concentration of IP-10 in the QFT TB antigen tube ([IP-10TB]). An IPRA-positive result was defined as a differential concentration of IP-10 ≥ 1486 pg/ml (Goosen et al., 2015). In contrast, the IGRA results were calculated as sample to positive control (S/P) ratios per the manufacturer’s protocol; (OD of QFT antigen – OD of QFT Nil)/ (OD cattleyte® IFN-γ ELISA positive control – OD cattleyte® IFN-γ ELISA negative control). A positive IGRA result was defined as S/P ≥ 35%. All *M. bovis*-uninfected buffaloes were test-negative on both the QFT IPRA and IGRA (data not shown).

2.3. Post mortem examinations and mycobacterial culture

Buffaloes that tested positive on one or both QFT assays were euthanised by gunshot and examined for gross bTB lesions during post mortem examination. Lymph nodes of the head and thoracic cavity and lungs were carefully dissected. Macroscopic pathological changes consistent with bTB were scored as follows: L1, one small focal lesion (diameter < 10 mm); L2, several small foci or a single lesion (diameter ≥ 10 mm and < 30 mm); and L3, a single lesion (diameter ≥ 30 mm) or multifocal/confluent lesions (Palmer et al., 2007). In addition to the lesion score, a subjective description was recorded. To limit variation in lesion scoring, a single experienced veterinarian scored the lesions from all buffaloes. The lesion scores were used as a measure of pathological changes due to *M. bovis* infection. If an animal had no visible lesions (NVL), this was recorded, and pooled tissue samples of head (parotid, retropharyngeal, submandibular, and tonsils) and thoracic (mediastinal and tracheobronchial) lymph nodes were collected. Mycobacterial culture and genetic speciation were performed on all lesions and pooled tissue samples to confirm *M. bovis* infection as previously described (Goosen et al., 2014).

2.4. Statistical analyses

A Kruskal Wallace one-way ANOVA with a Dunn’s post-test was used to compare i) [IP-10Nil] and [IFN-γNil] in *M. bovis*-unexposed buffaloes and groups of culture-confirmed buffaloes with different lesion scores and ii) QFT IPRA and IGRA values in groups of culture-confirmed buffaloes with different lesion scores (GraphPad Prism version 5 software (GraphPad Software Inc., San Diego, CA, USA)). Differences were considered statistically significant if p < 0.05. A Cochran’s Q test with Bonferroni correction for multiple comparisons was used to compare the proportions of culture-confirmed buffaloes with concordant and discordant QFT assay results in each of the lesion score groups (MedCalc Free Trial Version 19.03 https://www.medcalc.org/download.php). Differences were considered statistically significant if p < 0.0125.

3. Results

Median [IP-10Nil] were significantly higher in *M. bovis* culture-confirmed buffaloes with lesion scores of L1, L2 and L3 compared to uninfected controls (p < 0.001; Fig. 1). Similarly, median [IFN-γNil] were significantly higher in animals with lesions (L2, L3) than uninfected controls (p < 0.001). Moreover, culture-confirmed buffaloes with the highest lesion score (L3) had median [IFN-γNil] that were significantly higher than those with NVL (p < 0.05; Fig. 2).

There were no statistical differences in IPRA values between culture-confirmed buffaloes with different lesion scores (Fig. 3). However, median IGRA values for buffaloes with higher lesion scores (L2 and L3) were significantly higher than median values for buffaloes with NVL (p < 0.001) or a lesion score of L1 (p < 0.05; Fig. 4).

The proportion of IPRA-positive IGRA-positive buffaloes in different lesion score groups were not significantly different. In contrast, the greatest proportion of IPRA-negative IGRA-positive buffaloes had the highest lesion score (L3) and this was significantly greater than the proportion of animals with NVL or L2 (p = 0.002). Furthermore, the greatest proportion of IPRA-positive IGRA-negative buffaloes had the lowest lesion score (L1), although this was not significantly different.
4. Discussion

In this study, pathological changes were assessed by the presence and size of macroscopic bTB lesions in the lymph nodes and lungs of M. bovis culture-confirmed buffaloes. We evaluated antigen-stimulated and unstimulated cytokine production to interpret the QFT IPRA and IGRA results in the context of bTB pathology in buffaloes.

Both the [IP-10] and [IFN-γ] were higher in buffaloes with culture-confirmed lesions than uninfected controls, and in culture-confirmed buffaloes, the [IFN-γ] increased with lesion scores. This is consistent with studies showing the production of IP-10 and IFN-γ in unstimulated samples from human patients with active tuberculosis is higher than in uninfected controls, and unstimulated IFN-γ concentrations increase during the progression of active tuberculosis (Hasan et al., 2009). Additionally, both cytokines are included in an ex-vivo biomarker signature for the diagnosis of active tuberculosis in humans (Chegou et al., 2016; Chen et al., 2011; Hussain et al., 2010). Therefore, antigen-stimulated IFN-γ may not only be a biomarker of M. bovis infection but may provide information regarding the presence of bTB.
In contrast to the QFT IGRA, IPRA values did not differ among groups of culture-confirmed buffaloes with different lesion scores. We propose that high levels of antigen-stimulated IP-10 are produced in animals recently infected with M. bovis and so there is no marked difference between concentrations measured in culture-confirmed buffaloes with and without pathological changes. Supporting this, a study reported no significant differences between antigen-stimulated IP-10 in children with latent Mycobacterium tuberculosis infection and those with active disease (Whittaker et al., 2008).

Table 2

<table>
<thead>
<tr>
<th>IPRAa</th>
<th>IGRAb</th>
<th>Infection status</th>
<th>Further interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Uninfected</td>
<td>No macroscopic pathology</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative†</td>
<td>Early-infection</td>
<td>No or early macroscopic pathology</td>
</tr>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Infected</td>
<td>Early macroscopic pathology</td>
</tr>
<tr>
<td>Negative‡</td>
<td>Positive</td>
<td>Chronically infected</td>
<td>Advanced macroscopic pathology</td>
</tr>
</tbody>
</table>

* Interferon-gamma-inducible protein 10 release assay.
† Interferon gamma release assay.
‡ Due to elevated concentrations of IP-10 in QFT Nil tube.

IPRA result, resulting from high [IP-10^Nil] in combination with a positive QFT IGRA result, may be suggestive of the presence of disease due to M. bovis infection in buffaloes.

Funding

This work was supported by the Harry Crossley Foundation, the South African government through the South African Medical Research Council and the National Research Foundation South African Research Chair Initiative [grant #86949]. The content is the sole responsibility of the authors and does not necessarily represent the official views of the funders.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest regarding the content of this article.

Acknowledgements

We thank Dr. Stuart McKernan, Dr. Willem Burger, Dr. Andy Fraser, Alicia and Warren McCall, Dr. Birgit Eggers, Dr. Rowan Leeming, Dumisani Zwane, JP van Heerden and the Game Capture staff from KwaZulu-Natal Ezemvelo Wildlife for their assistance with this study.

References


Ruhwald, M., Bjerregaard-Andersen, M., Rabba, P., Kofoed, K., Eugen-Olsen, J., Ravn, P.,
2007. CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis patients with ESAT-6, CFP10 and TB7.7. Microbes Infect. 9, 806–812.