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A B S T R A C T

Infectious hematopoietic necrosis virus (IHNV) is a fish viral pathogen that causes severe disease and huge
economic losses in the salmonid aquaculture industry. However, anti-IHNV drugs currently are scarce. For the
purpose of seeking out anti-IHNV drugs, the anti-IHNV activities of 32 medicinal plants were investigated by
using epithelioma papulosum cyprini (EPC) cells. Among these plants, Prunella vulgaris L. (PVL) showed the
strongest inhibition on IHNV replication with an inhibitory percentage of 99.3% at the concentration 100mg/L.
Further studies demonstrated that ursolic acid (UA), a major constituent of PVL, also showed a highly effective
anti-IHNV activity. The half-maximal inhibitory concentration (IC50) at 72 h of UA on IHNV was 8.0 μM. Besides,
UA could significantly decrease cytopathic effect (CPE) and the viral titer induced by IHNV in EPC cells. More
importantly, UA also showed a strong anti-IHNV activity in vivo, as indicated by increasing the survival rate of
rainbow trout and inhibiting viral gene expression. Intraperitoneal injection of UA increased the relative per-
centage of survival of rainbow trout by 18.9% and inhibited IHNV glycoprotein mRNA expression by> 90.0% in
the spleen at the 1st-day post-infection. Altogether, UA was expected to be a therapeutic agent against IHNV
infection in aquaculture.

1. Introduction

As the causative agent of infectious hematopoietic necrosis (IHN),
infectious hematopoietic necrosis virus (IHNV) is presently one of the
most serious pathogens harming the salmonid industry (Ammayappan
et al., 2010). Since IHNV was discovered in western North America in
Washington and Oregon in the 1950s (Rucker et al., 1953), it has ra-
pidly spread to Europe and Asia (Bovo et al., 1987; Enzmann et al.,
1992; Park et al., 1993; Rudakova et al., 2007; Sano et al., 1977; Vardić
et al., 2007; Winton, 1991). In addition, outbreaks of IHNV usually
cause symptoms of hematopoietic necrosis in a variety of salmon and
trout, with a fatality rate of 80% (Ahmadivand et al., 2017). Therefore,
it is imperative to develop an effective antiviral strategy to combat
highly lethal IHNV outbreaks.

Traditionally, most researches of prevention on IHNV have been
centered on developing vaccines, such as inactivated virus vaccines
(Anderson et al., 2008), attenuated vaccines (Ristow et al., 2000), DNA
vaccines (Anderson et al., 2008; Xu et al., 2017), and oral vaccines
(Zhao et al., 2017a). These are mainly administered by intraperitoneal
injection or intramuscular injection. In addition, vaccines are mainly

designed to protect against diseases through manipulation of the im-
mune response before the infection process is established (Gotesman
et al., 2015). In this line of combat against IHNV investigators have
focused on the discovery of anti-IHNV drugs. Previous studies report
that chemical drugs ribavirin, benzimidazole, and guanine show the
antiviral activity against IHNV (Amend, 1976; Hasobe and Saneyoshi,
1985; Hu et al., 2019d). Benzyloxycarbonyl-phenylalanyl-alanyl-fluor-
omethyl ketone, a protease inhibitor, also exhibit a potential anti-IHNV
activity (Roscow et al., 2018). However, the use of these chemical drugs
have significant risks, such as environmental pollution, host toxicity,
and so on (Bundschuh et al., 2016; Chapman et al., 1999; Sommadossi
and Carlisle, 1987).

Generally, the natural products are more environmentally for fre-
quent use as compared to the chemical drugs. Moreover, the applica-
tions of medicinal plants and their active constituents on IHNV infec-
tion have been generally explored. For instance, two bromophenols
isolated from Polysiphonia morrowii and three flavonoids isolated from
Rhus verniciflua significantly inhibit the replication of IHNV in vitro
(Kim et al., 2011; Kang et al., 2012). Moreover, lentinan from Lentinus
edodes mycelia shows the anti-IHNV activity in EPC cells (Ren et al.,

https://doi.org/10.1016/j.virusres.2019.197741
Received 31 May 2019; Received in revised form 2 September 2019; Accepted 5 September 2019

⁎ Corresponding authors.
E-mail addresses: zhubin1227@126.com (B. Zhu), wanggaoxue@126.com (G.-X. Wang).

1 These authors are joint first authors and contributed equally to this work.

Virus Research 273 (2019) 197741

Available online 05 September 2019
0168-1702/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681702
https://www.elsevier.com/locate/virusres
https://doi.org/10.1016/j.virusres.2019.197741
https://doi.org/10.1016/j.virusres.2019.197741
mailto:zhubin1227@126.com
mailto:wanggaoxue@126.com
https://doi.org/10.1016/j.virusres.2019.197741
http://crossmark.crossref.org/dialog/?doi=10.1016/j.virusres.2019.197741&domain=pdf


2018). Notably, previous studies report that several natural products
and their derivatives show good anti-IHNV potential (Hu et al., 2019a,
b; Hu et al., 2019c). Hence, it is feasible to find anti-IHNV agents from
medicinal plants.

In this study, the anti-IHNV activities of 32 medicinal plants were
checked in vitro. Data showed that Prunella vulgaris L. (PVL) had the
strongest anti-IHNV activity among the 32 plant crude extracts.
Additionally, as a major constituent of PVL, ursolic acid (UA) was found
with strong antiviral activity against IHNV which was assessed in vitro
and in vivo. To test the anti-IHNV activity in vitro, real time quantitative
PCR (RT-qPCR), titer test, and cytopathic effects (CPE) reduction assay
were carried out. Moreover, the antiviral activity of UA against IHNV in
rainbow trout was evaluated by RT-qPCR and survival rate assay. Our
results demonstrated the potential application of UA as anti-IHNV agent
in aquaculture.

2. Materials and methods

2.1. Cell lines, virus and rainbow trout husbandry

The epithelioma papulosum cyprini (EPC) cell line was kindly
provided by Prof. Ling-Bing Zeng (Yangtze River Fisheries Research
Institute, Wuhan, Hubei, China). Cells were maintained at 25 °C in 5%
CO2 atmosphere in Medium 199 (Hyclone, USA) cell culture containing
10% fetal bovine serum (FBS) (ZETA LIFE, USA), streptomycin 100 μg/
mL and penicillin 100 U/mL. The strain Sn-1203 IHNV was isolated
from infected rainbow trout in China, kindly provided by Prof. Tong-
Yan Lu (Heilongjiang River Fishery Research Institute Chinese Academy
of Fishery Sciences, Harbin, China), and propagated in EPC cells as-
previously described (Zhao, et al., 2017b).

Juvenile rainbow trout (n= 2000) were obtained from the admin-
istration of Shaanxi province stone river reservoir irrigation, with the
total length (cm) and body weight (g) of 4.50 ± 0.15 and
0.70 ± 0.07. Fish were maintained in four 500 L aquarium with a
flowthrough system of carbon filtered tap water under laboratory
conditions for 4 weeks prior to the beginning of experiments. Water-
quality readings were taken daily to monitor the following parameters:
temperature 15.0 ± 0.5 °C, pH 7.4 ± 0.1, and dissolved oxygen
9.0 ± 1.0mg/L. Photoperiod was maintained on a constant 16:8 h
(light: dark) cycle. The fish were fed three times daily with either
commercial granular food (Hanye, Beijing, China) at a daily rate of
0.1% body weight.

2.2. Medicinal plants and UA

Medicinal plants were extracted according to a previous study
(Chen et al., 2017). Briefly, the dry powder (50.0 g) of plants was re-
spectively extracted with methanol (500mL×3 times) for 4 h. Then
the extracts were filtered and evaporated under reduced pressure in a
vacuum rotary evaporator (R-201, Shanghai Shenshen) to get solidified
crude extracts. The extracts of different plants were stored at 4 °C until
used. UA was purchased from Nanjing spring & autumn biological en-
gineering Co., Ltd.

2.3. Cytotoxicity assays of 32 medicinal plants and UA

For cytotoxicity assay, EPC cells with a density of 1× 104 per well
were seeded into 96-well plates containing 100 μL growth medium and
incubated for reaching approximately 80 ∼ 90% confluence.
Subsequently, the cells were exposed to cell maintenance medium
(medium 199 supplemented with 5% FBS) with or without drugs [32
plant crude extracts (100mg/L) or UA (8.7∼87.0 μM)] and incubated
for 72 h. Cells treated without medicinal plants or UA were used as the
controls. After incubation, the viability of cells was examined with cell
counting kit-8 assay (CCK-8, Beyotime, China) according to the man-
ufacturer’s protocol. The viability was determined by measuring the

optical density at 450 nm using a microplate reader (M200, Tecan,
Mannedorf, Switzerland). Cell viability = [(experimental group - blank
group)/(control group - blank group)] × 100%. EPC cells treated
without medicinal plants or UA were used as the controls, while those
without cells were used as a blank group. According to the formula to
calculate the cell viability, 80% of the cell survival rate was determined
as the highest safe concentration of the extracts and was chosen for
further antiviral assay.

2.4. Anti-IHNV activity assay in EPC cells

Firstly, 100mg/L was chosen for the screening assay based on
testing cytotoxicity in EPC cells. To detect IHNV by qPCR, EPC cells
were cultured in 12-well plates to a monolayer and infected with IHNV
(1×103 50% tissue culture infective dose (TCID50)) for 2 h at 15 °C.
Subsequently, the media was removed, cells were washed for three
times and further incubated in 5% FBS M199 with or without drugs (32
plant crude extracts (100mg/L) or UA (5.5∼17.4 μM)) as treatments
for 72 h. Afterward, supernatants were removed and EPC cells were
washed three times with 0.1 M phosphate buffer (PBS). Then, RT-qPCR
which was explained in section 2.7 were carried out to detect IHNV.

2.5. CPE and virus titration reduction assays

Virus multiplication and titration assays were performed as de-
scribed in a previous study (Liu et al., 2015). The viral titer was eval-
uated using a TCID50 assay. Virus was serially diluted 10-fold in M199.
Then EPC cells were inoculated with the diluted virus. After 2 h of in-
fection, the medium was replaced again with maintenance medium
with or without drugs [PVL (100mg/L) or UA (6.6, 13.2, and
19.8 μM)]. Each sample was directly observed and photographed under
an inverted microscope at 48, 72, and 96 h. Viral titers were determined
by the Reed–Muench method at the indicated times.

To determine the efficacy of PVL and UA against CPE in EPC cells,
the cells were cultured in 12-well plates (1×105 cells/well) for 24 h.
Then, the medium was replaced with 1.5 mL cell maintenance medium
containing 1× 103 TCID50 IHNV. After 2 h of infection, the medium
was replaced again with maintenance medium with or without drugs
(PVL (100mg/L) or UA (20.0 μM)). Each sample was directly observed
and photographed under an inverted microscope at 72 h.

2.6. Antiviral activity of UA in vivo

To determine the toxicity of UA to rainbow trout, a total of 420
juvenile rainbow trout were reared in 21 aquariums containing 50 L
UV-sterilized water, and rearing temperatures of each aquarium was
kept at 15 ± 0.5 °C. The rainbow trout were divided into seven groups
(60 rainbow trout per treatments, 20 rainbow trout per aquarium) and
executed with the following treatments: (1) For the control group, each
rainbow trout was injected intraperitoneally with 15 μL M199 and
reared for 14 d; (2) For the UA-treated group, each rainbow trout was
injected intraperitoneally with 15 μL mixture (2.5, 5.0, 10.0, 20.0, 40.0,
and 80.0 mg/L UA with M199) and reared for 14 d.

To determine the efficacy of UA against IHN disease, a total of 450

Table 1
Sequences of primer pairs used for the analysis of gene expression by real-time
PCR.

Genes Primer sequences (from 5’ to 3’)

IHNV glycoprotein (G) Forward GCACAAAGGCTCCATCTATC
Reverse TGTACTGGGCGACGTATT

β-actin (E) Forward GCTATGTGGCTCTTGACTTCGA
Reverse CCGTCAGGCAGCTCATAGCT

β-actin (H) Forward ATGGAAGGTGAAATCGCC
Reverse TGCCAGATCTTCTCCATG
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juvenile rainbow trout were reared in nine aquariums containing 100 L
UV-sterilized water, and rearing temperatures of each aquarium was
kept at 15 ± 0.5 °C. The rainbow trout were divided into three groups
(M199, IHNV/M199 or IHNV/UA, 150 rainbow trout per treatments, 50
rainbow trout per aquarium) and executed with the following treat-
ments: (1) For the control group, each rainbow trout was injected in-
traperitoneally with 15 μL M199 and reared for 14 d; (2) Based on pre-
test, IHNV (1× 103 TCID50) was mixed with M199 or UA (20mg/L),
then each rainbow trout was injected intraperitoneally with 15 μL
mixture in the infection groups and reared for 14 d. To determine the
efficacy of UA against IHNV replication in vivo, a total of 450 Juvenile
rainbow trout were intraperitoneally injected with mixture (M199,
IHNV/M199 or IHNV/UA, 150 rainbow trout per treatments, 50
rainbow trout per aquarium), and three samples from each aquarium
were collected on the 1 st, 4th and 7th days, respectively. Then the
spleen was collected for RT-qPCR detection.

2.7. RNA isolation, cDNA synthesis, and qPCR assays

The EPC cells with a total of 1× 107 were taken from in 12-well
plates and immediately frozen in liquid nitrogen for subsequent RNA
isolation. Total RNA was extracted by the Trizol reagent (Takala,
Japan). Under the NanoDrop spectrophotometer (ND-1000, Nano-Drop
Technologies Inc., Wilmington, DE), nucleic acid concentrations were
measured at 260 nm. The purity of the extracted total RNA was de-
termined. by A260/A280 ratio, in which ratios of the absorbance at 260
and 280 nm ranged from 1.8 to 2.0. To further ensuring RNA purity,
DNA contamination was removed by treating with DNase I (Takara,
Japan) following the manufacturer’s instruction. The purified RNA was
reverse transcribed using HiScript Q Select RT SuperMix for qPCR
(+gDNA wiper) (Vazyme, China), and 500 ng/μL of RNA was used per
reaction in cDNA generation. Quantitative PCR was performed with
CFX96 Real-Time PCR Detection System (Bio-Rad, USA) using AceQ®
qPCR SYBR® Green Master Mix (TaKaRa, Japan) with the following

Fig. 1. Antiviral activity of PVL against IHNV
in EPC cells. (A) Morphologically protective
effect of PVL against IHNV in EPC cells. EPC
cells cultured in 12-well plates were exposed to
1× 103 TCID50 IHNV for 2 h and then the
medium with IHNV was removed and cells
were incubated in fresh medium containing
PVL (100mg/L) for 72 h. (B) PVL reduced the
titers of IHNV in EPC cells. EPC cells cultured
in 96-well plates were exposed to 1× 103

TCID50 IHNV for 2 h and then the medium with
IHNV was removed and cells were incubated in
fresh medium containing PVL (100mg/L) for
96 h. Data were shown as mean ± SD of three
replicate samples of three independent experi-
ments. Significance between control and PVL-
treated groups are indicated by **P < 0.01,
*P < 0.05.
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parameters: 95 °C for 30 s and then 40 cycles at 95 °C denaturation for
5 s, followed by at 60 °C annealing for 40 s. The sequences of primer
pairs are listed in Table 1 (Bilen et al., 2016; Hu et al., 2019c; Shao
et al., 2016). Relative mRNA expression was calculated using 2−△△Ct

method with the formula (Livak and Schmittgen, 2001), F= 2−△△Ct,
△△Ct = (Ct, target gene - Ct, reference gene) - (Ct, target gene - Ct, reference

gene)control. β-actin (E) and β-actin (H) were used to normalize the data in
EPC cells and in rainbow trout, respectively.

2.8. Statistical analysis

Drug response curves (Fig. 2) were represented by a logistic sig-
moidal function with a maximal effect level (Amax) and a Hill coeffi-
cient represented the sigmoidal transition, which was performed with
Origin 8.1. The data were analyzed by probit analysis which was used
for calculating the half-maximal inhibitory concentration (IC50) and
20% cytotoxic concentration (CC20) of the compound at the 95% con-
fidence interval by using the SPSS 18.0 for Windows (SPSS Inc. an IBM
Company). Data (Fig. 1B, Fig. 2, Fig. 3B, Fig. 4A, and C) were expressed
as the mean ± SD or the mean ± standard error (SEM). Statistical
analysis was performed with SPSS 18.0 software (SPSS Inc., USA), using
one-way ANOVA after logistic normalization to determine significance.
Data in Fig. 4B were shown as 95% confidence level (CL) and statistical
analysis was performed with GraphPad Prism 6 (GraphPad Software,

USA), using the Log-rank (Mantel-Cox) test to determine significance. P
values less than 0.05 were considered statistically significant, **, P <
0.01, *, P < 0.05.

3. Results

3.1. Antiviral activity of 32 plant extract

Thirty-two kinds of medicinal plants were used in this study. In the
initial test, the cell viability of EPC cells was greater than 80% in 32
crude extracts at 100mg/L (Table 2). Medicinal plant extracts were
considered safe if the cell viability was greater than 80%. Subsequently,
the cells were treated with all plant extracts with the 100mg/L in in-
fection experiment. The antiviral efficacies of selected plant extracts
were evaluated at 72 h, and the results were shown in Table 2. Med-
icinal plant extracts were considered active if the expression of IHNV G
was lower than 50%. Among the screened plants, Uncaria rhynchophylla
(Miq.) Jacks., Notopterygium incisum Ting ex H. T. Chang, Ligusticum
chuanxiong Hort., and Psoralea corylifolia L., were identified to pos-
sess> 50% IHNV inhibition activity, and PVL showed the highest an-
tiviral activity against IHNV (99.34 ± 0.04%).

To further confirm the antiviral activity of PVL against IHNV, we
evaluated the related indexes, including CPE and the titer of IHNV after
treatment with PVL. As shown in Fig. 1A, CPE of IHNV-infected cells
was decreased significantly at 72 h in the presence of PVL. In ac-
cordance with CPE assay, significant inhibition of IHNV was shown in
PVL-treated EPC cells in the measurement of the viral titer (Fig. 1B).
IHNV titers were 103.45 (48 h post-infection (p.i.)), 104.57 (72 h p.i.) and
106.52 (96 h p.i.) TCID50 /0.1 mL in the control group; whereas IHNV
titers were 102.60 (48 h p.i.), 103.31 (72 h p.i.) and 104.41 (96 h p.i.)
TCID50/0.1 mL in PVL-treated group. The results above indicated that
PVL could significantly inhibit IHNV replication in EPC cells.

3.2. Cytotoxicity and anti-IHNV activity of UA in EPC cells

UA, the major constituent of PVL, had been reported with diverse
biological activities (Chen et al., 2015; Kong et al., 2013; Oloyede et al.,
2017). Hence, we further evaluated whether UA is the major antiviral
constituents of PVL. In EPC cells, the safe concentration of UA was
calculated as 20.0 μM (Fig. 2A). As expected, by examining the antiviral
activity of UA, we found that UA was highly effective to IHNV. As
shown in Fig. 2B, UA had a concentration-dependent inhibition on the
expressions of IHNV G. The IC50 of UA on IHNV G was 8.0 μM at 72 h
p.i.

In accordance with gene expressions, CPE of IHNV-infected cells in
the presence of 20.0 μM UA was decreased significantly at 72 h
(Fig. 3A). In addition, we further evaluated the titer of IHNV after UA
treatment. As shown in Fig. 3B, UA had a concentration-dependent
inhibition on IHNV replication in the measurement of the viral titer.
The results indicated that IHNV titers were 105.09 (48 h p.i.), 106.20

(72 h p.i.), and 108.12 (96 h p.i.) TCID50/0.1mL in the control group. By
contrast, UA treatment significantly reduced the viral titer in a con-
centration-dependent manner. After the IHNV-infected EPC cells were
treated with 6.6, 13.2, and 19.8 μM of UA, IHNV titers were 104.93 (48 h
p.i.), 105.65 (72 h p.i.), 106.66 (96 h p.i.), 102.98 (48 h p.i.), 103.51 (72 h
p.i.), 104.75 (96 h p.i.), and 102.22 (48 h p.i.), 102.80 (72 h p.i.), 103.89

(96 h p.i.) TCID50/0.1mL, respectively.

3.3. UA improved survival rate and inhibit IHNV replication in rainbow
trout

To further confirm the highest safe inject concentration of UA in
vivo, we evaluated the toxicity of UA to rainbow trout with serial
concentrations. Fig. 4A showed that all of the rainbow trout were sur-
vived after treatment with 20mg/L UA, while the mortality rate ex-
ceeded 50% at 40mg/L. Therefore, 20mg/L was selected as the highest

Fig. 2. The cytotoxicity and anti-IHNV activity of UA in EPC cells. (A) The
toxicity of UA on EPC cells. EPC cells cultured in 96-well plates were exposed to
UA at six concentrations (87.0, 55.0, 34.7, 21.9, 13.8, and 8.7 μM) for 72 h.
After incubation periods, cell viability was tested by CCK-8 assay. Data were
shown as mean ± SEM of three replicate samples of three independent ex-
periments. (B) The antiviral activity of UA against IHNV in EPC cells. EPC cells
cultured in 12-well plates were exposed to 1× 103 TCID50 IHNV for 2 h and
then the medium with IHNV was removed and cells were incubated in fresh
medium containing UA (5.5, 6.9, 8.7, 11.0, 13.8, and 17.4 μM) for 72 h. The
relative RNA levels of glycoprotein genes were calculated based on the 2−△△Ct

method and relative to the control. Data were shown as mean ± SEM of three
replicate samples of three independent experiments.
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safe inject concentration. To evaluate the antiviral activity of UA in
rainbow trout, we first evaluated the survival rate after treatment with
UA. As shown in Fig. 4B, UA treatment increased the survival rate of
infected rainbow trout by 18.7%. Rainbow trout died significantly
within 3 and 6 days post-infection (dpi) and the cumulative mortality of
IHNV infected fish reached up to 78.7% at 10 dpi. After UA treatment,
the cumulative mortality of rainbow trout reduced to 60.0%. To further
confirm the antiviral activity of UA in vivo, the expression level of the G
in the spleen was evaluated by RT-qPCR. As expected, the expression of
the G was significantly inhibited following UA treatment at 1 and 4 dpi
(Fig. 4C). At 7 dpi, the expression of the G was slightly inhibited (data
not significant) by UA treatment. Overall, these results suggested that
UA has an antiviral effect on IHNV in rainbow trout.

4. Discussion

Among the screened plants extracts in this study, PVL exerted the
highest inhibition activity against IHNV. PVL is a perennial plant
commonly found in China and Europe, which was proved to be rich in
phenolic acid, flavonoids, and triterpenes (Jiang et al., 2008; Zhu,
2000). There was little information about the antiviral effect of phe-
nolic acid. In addition, kaempferol and quercetin, the two re-
presentative flavonoids in PVL, had no anti-IHNV activity according to
our initial study. Notably, UA as one of the most representative tri-
terpenes possesses considerable pharmacological effects including

hepatoprotective (Jin et al., 2012), immunomodulatory (Saaby et al.,
2011), anti-inflammatory (Ali et al., 2007; Zhang et al., 2013), and so
on. Recently, UA has been attracted rising attention for its multi-
functional antiviral activities (Kong et al., 2013; Wu et al., 2011). These
results presumed that UA might be the potential active ingredient in the
anti-IHNV effect. Under this assumption, the anti-IHNV activity of UA
was investigated. Excitingly, our study confirmed that UA significantly
inhibited IHNV replication in EPC cells.

Interestingly, the results of survival rate assay suggested that the
antiviral effect of UA begins to decline gradually after a period of
protection. Meanwhile, some studies have reported similar results that
drugs only worked in the early stages of injection (Liu et al., 2019; Shen
et al., 2018, 2019). In addition, the study on the transcription rate of
the gene encoding IHNV G documents an effect of UA on virus re-
plication over the first 4 days after infection, which is abolished by the
7th day. This limited effect might be responsible for the only slightly
increased survival to IHNV infection in rainbow trout treated with UA.
Given the above, we speculate that the decreased anti-IHNV activity
may be due to the drug metabolism in rainbow trout. The drug is hy-
drolyzed or metabolized by the fish over time. Nevertheless, these
speculations need to be studied in the future.

Although some studies have reported the regulation of UA on NF-kB
(Jang et al., 2009; Lu et al., 2011), a large number of articles have
reported that UA might be an immunosuppressive agent (Checker et al.,
2012; Li et al., 2012; Sun et al., 2005), which inhibits pro-inflammatory

Fig. 3. Antiviral activity of UA against IHNV in
EPC cells. (A) Morphologically protective effect
of UA against IHNV in EPC cells. EPC cells
cultured in 12-well plates were exposed to
1× 103 TCID50 IHNV for 2 h and then the
medium with IHNV was removed and cells
were incubated in fresh medium containing UA
(20.0 μM) for 72 h. (B) UA reduced the titers of
IHNV in EPC cells. EPC cells cultured in 96-
well plates were exposed to 1× 103 TCID50

IHNV for 2 h and then the medium with IHNV
was removed and cells were incubated in fresh
medium containing UA (6.6, 13.2, and
19.8 μM) for 96 h. Data were shown as
mean ± SD of three replicate samples of three
independent experiments. Significance be-
tween control and UA-treated groups are in-
dicated by **P < 0.01, *P < 0.05.
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factors such as IL-8, IL-12, TNF-α, and so on (Chun et al., 2014; Ikeda
et al., 2008; Takada et al., 2010). Interestingly, several im-
munosuppressive agents have also been confirmed to possess antiviral
activities. For instance, rapamycin, the third-generation im-
munosuppressive agent, was found with antiviral activity against rift
valley fever virus, herpes simplex virus, and so on (Bell et al., 2017;
Canivet et al., 2015; Ko et al., 2017). Notably, rapamycin also showed
inhibitory effect on IHNV, IL-8, IL-12, and TNF-α (Bertagnolli et al.,
1994; Charreau et al., 2000; Wang et al., 2014; Zhao et al., 2017b).
Meanwhile, rapamycin was the autophagy inducer. It’s reported that
rapamycin showed the anti-IHNV activity by inducing autophagy in
EPC cells. Therefore, we speculate that the antiviral mechanism of UA
might be the same as that of rapamycin, which needs further studies.

In summary, the natural product UA from PVL possessed a high
antiviral activity against IHNV both in vitro and in vivo. More

Fig. 4. Antiviral activity of UA against IHNV in rainbow trout. (A) The toxicity
of UA on rainbow trout. Data were shown as mean ± SEM of three in-
dependent experiments. **P < 0.01, *P < 0.05. (B) Cumulative survivorship
curves of fish intraperitoneally injected with IHNV and UA (20 mg/L). Data
were shown as 95% confidence level (CL) of three independent experiments.
**P < 0.01, *P < 0.05. (C) Expression of IHNV glycoprotein genes in the
spleen after injection. The relative RNA levels of glycoprotein genes were cal-
culated based on the 2−△△Ct method and relative to the control. Data were
shown as mean ± SEM of three replicate samples of three independent ex-
periments. **P < 0.01, *P < 0.05.
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importantly, UA treatment could reduce the mortality rate of rainbow
trout. Results so far indicated that UA is a new compound with high
anti-IHNV activity and expected to be a therapeutic agent against IHNV
infection in aquaculture.
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