

Ursolic acid from *Prunella vulgaris* L. efficiently inhibits IHNV infection *in vitro* and *in vivo*

Bo-Yang Li^{a,1}, Yang Hu^{b,1}, Jian Li^b, Kai Shi^b, Yu-Feng Shen^b, Bin Zhu^{b,*}, Gao-Xue Wang^{b,*}

^a College of Chemistry & Pharmacy, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China

^b College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China

ARTICLE INFO

Keywords:
Ursolic acid
Antiviral activity
Rainbow trout
IHNV

ABSTRACT

Infectious hematopoietic necrosis virus (IHNV) is a fish viral pathogen that causes severe disease and huge economic losses in the salmonid aquaculture industry. However, anti-IHNV drugs currently are scarce. For the purpose of seeking out anti-IHNV drugs, the anti-IHNV activities of 32 medicinal plants were investigated by using epithelioma papulosum cyprini (EPC) cells. Among these plants, *Prunella vulgaris* L. (PVL) showed the strongest inhibition on IHNV replication with an inhibitory percentage of 99.3% at the concentration 100 mg/L. Further studies demonstrated that ursolic acid (UA), a major constituent of PVL, also showed a highly effective anti-IHNV activity. The half-maximal inhibitory concentration (IC_{50}) at 72 h of UA on IHNV was 8.0 μ M. Besides, UA could significantly decrease cytopathic effect (CPE) and the viral titer induced by IHNV in EPC cells. More importantly, UA also showed a strong anti-IHNV activity *in vivo*, as indicated by increasing the survival rate of rainbow trout and inhibiting viral gene expression. Intraperitoneal injection of UA increased the relative percentage of survival of rainbow trout by 18.9% and inhibited IHNV glycoprotein mRNA expression by > 90.0% in the spleen at the 1st-day post-infection. Altogether, UA was expected to be a therapeutic agent against IHNV infection in aquaculture.

1. Introduction

As the causative agent of infectious hematopoietic necrosis (IHN), infectious hematopoietic necrosis virus (IHNV) is presently one of the most serious pathogens harming the salmonid industry (Ammayappan et al., 2010). Since IHNV was discovered in western North America in Washington and Oregon in the 1950s (Rucker et al., 1953), it has rapidly spread to Europe and Asia (Bovo et al., 1987; Enzmann et al., 1992; Park et al., 1993; Rudakova et al., 2007; Sano et al., 1977; Vardić et al., 2007; Winton, 1991). In addition, outbreaks of IHNV usually cause symptoms of hematopoietic necrosis in a variety of salmon and trout, with a fatality rate of 80% (Ahmadivand et al., 2017). Therefore, it is imperative to develop an effective antiviral strategy to combat highly lethal IHNV outbreaks.

Traditionally, most researches of prevention on IHNV have been centered on developing vaccines, such as inactivated virus vaccines (Anderson et al., 2008), attenuated vaccines (Ristow et al., 2000), DNA vaccines (Anderson et al., 2008; Xu et al., 2017), and oral vaccines (Zhao et al., 2017a). These are mainly administered by intraperitoneal injection or intramuscular injection. In addition, vaccines are mainly

designed to protect against diseases through manipulation of the immune response before the infection process is established (Gotesman et al., 2015). In this line of combat against IHNV investigators have focused on the discovery of anti-IHNV drugs. Previous studies report that chemical drugs ribavirin, benzimidazole, and guanine show the antiviral activity against IHNV (Amend, 1976; Hasobe and Saneyoshi, 1985; Hu et al., 2019d). Benzylloxycarbonyl-phenylalanyl-alanyl-fluoromethyl ketone, a protease inhibitor, also exhibit a potential anti-IHNV activity (Roscow et al., 2018). However, the use of these chemical drugs have significant risks, such as environmental pollution, host toxicity, and so on (Bundschuh et al., 2016; Chapman et al., 1999; Sommadossi and Carlisle, 1987).

Generally, the natural products are more environmentally friendly for frequent use as compared to the chemical drugs. Moreover, the applications of medicinal plants and their active constituents on IHNV infection have been generally explored. For instance, two bromophenols isolated from *Polysiphonia morrowii* and three flavonoids isolated from *Rhus verniciflua* significantly inhibit the replication of IHNV *in vitro* (Kim et al., 2011; Kang et al., 2012). Moreover, lentinan from *Lentinus edodes* mycelia shows the anti-IHNV activity in EPC cells (Ren et al.,

* Corresponding authors.

E-mail addresses: zhubin1227@126.com (B. Zhu), wanggaoxue@126.com (G.-X. Wang).

¹ These authors are joint first authors and contributed equally to this work.

2018). Notably, previous studies report that several natural products and their derivatives show good anti-IHNV potential (Hu et al., 2019a, b; Hu et al., 2019c). Hence, it is feasible to find anti-IHNV agents from medicinal plants.

In this study, the anti-IHNV activities of 32 medicinal plants were checked *in vitro*. Data showed that *Prunella vulgaris* L. (PVL) had the strongest anti-IHNV activity among the 32 plant crude extracts. Additionally, as a major constituent of PVL, ursolic acid (UA) was found with strong antiviral activity against IHNV which was assessed *in vitro* and *in vivo*. To test the anti-IHNV activity *in vitro*, real time quantitative PCR (RT-qPCR), titer test, and cytopathic effects (CPE) reduction assay were carried out. Moreover, the antiviral activity of UA against IHNV in rainbow trout was evaluated by RT-qPCR and survival rate assay. Our results demonstrated the potential application of UA as anti-IHNV agent in aquaculture.

2. Materials and methods

2.1. Cell lines, virus and rainbow trout husbandry

The epithelioma papulosum cyprini (EPC) cell line was kindly provided by Prof. Ling-Bing Zeng (Yangtze River Fisheries Research Institute, Wuhan, Hubei, China). Cells were maintained at 25 °C in 5% CO₂ atmosphere in Medium 199 (Hyclone, USA) cell culture containing 10% fetal bovine serum (FBS) (ZETA LIFE, USA), streptomycin 100 µg/mL and penicillin 100 U/mL. The strain Sn-1203 IHNV was isolated from infected rainbow trout in China, kindly provided by Prof. Tong-Yan Lu (Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences, Harbin, China), and propagated in EPC cells as previously described (Zhao, et al., 2017b).

Juvenile rainbow trout (n = 2000) were obtained from the administration of Shaanxi province stone river reservoir irrigation, with the total length (cm) and body weight (g) of 4.50 ± 0.15 and 0.70 ± 0.07. Fish were maintained in four 500 L aquarium with a flowthrough system of carbon filtered tap water under laboratory conditions for 4 weeks prior to the beginning of experiments. Water-quality readings were taken daily to monitor the following parameters: temperature 15.0 ± 0.5 °C, pH 7.4 ± 0.1, and dissolved oxygen 9.0 ± 1.0 mg/L. Photoperiod was maintained on a constant 16:8 h (light: dark) cycle. The fish were fed three times daily with either commercial granular food (Hanye, Beijing, China) at a daily rate of 0.1% body weight.

2.2. Medicinal plants and UA

Medicinal plants were extracted according to a previous study (Chen et al., 2017). Briefly, the dry powder (50.0 g) of plants was respectively extracted with methanol (500 mL × 3 times) for 4 h. Then the extracts were filtered and evaporated under reduced pressure in a vacuum rotary evaporator (R-201, Shanghai Shenshen) to get solidified crude extracts. The extracts of different plants were stored at 4 °C until used. UA was purchased from Nanjing spring & autumn biological engineering Co., Ltd.

2.3. Cytotoxicity assays of 32 medicinal plants and UA

For cytotoxicity assay, EPC cells with a density of 1 × 10⁴ per well were seeded into 96-well plates containing 100 µL growth medium and incubated for reaching approximately 80 ~ 90% confluence. Subsequently, the cells were exposed to cell maintenance medium (medium 199 supplemented with 5% FBS) with or without drugs [32 plant crude extracts (100 mg/L) or UA (8.7 ~ 87.0 µM)] and incubated for 72 h. Cells treated without medicinal plants or UA were used as the controls. After incubation, the viability of cells was examined with cell counting kit-8 assay (CCK-8, Beyotime, China) according to the manufacturer's protocol. The viability was determined by measuring the

Table 1

Sequences of primer pairs used for the analysis of gene expression by real-time PCR.

Genes	Primer sequences (from 5' to 3')	
IHNV glycoprotein (G)	Forward	GCACAAAGGCTCCATCTATC
	Reverse	TGTACTGGGGCAGCTATT
β-actin (E)	Forward	GCTATGTGGCTCTGACTTCGA
	Reverse	CCGTCAGGCAGCTCATAGCT
β-actin (H)	Forward	ATGGAAGGTGAAATCGCC
	Reverse	TGCCAGATCTCTCCATG

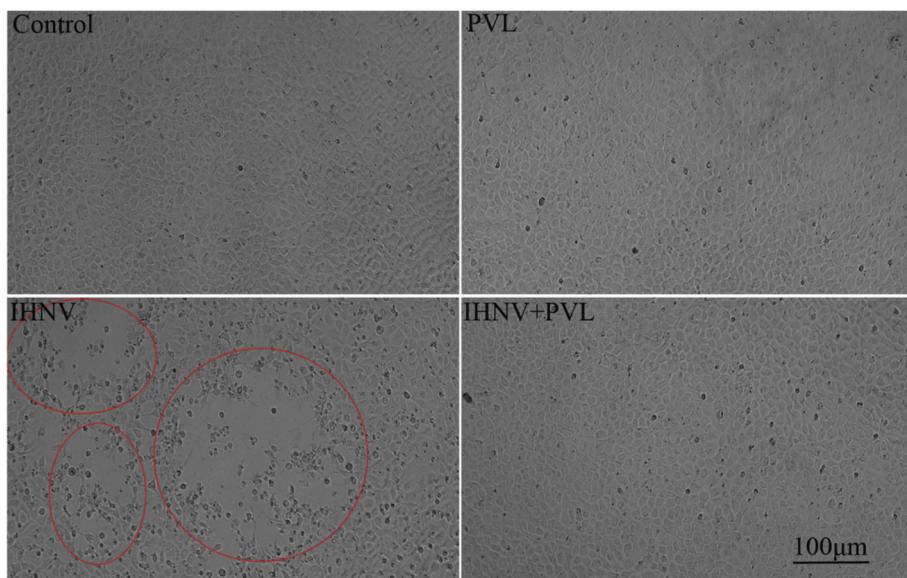
optical density at 450 nm using a microplate reader (M200, Tecan, Mannedorf, Switzerland). Cell viability = [(experimental group - blank group)/(control group - blank group)] × 100%. EPC cells treated without medicinal plants or UA were used as the controls, while those without cells were used as a blank group. According to the formula to calculate the cell viability, 80% of the cell survival rate was determined as the highest safe concentration of the extracts and was chosen for further antiviral assay.

2.4. Anti-IHNV activity assay in EPC cells

Firstly, 100 mg/L was chosen for the screening assay based on testing cytotoxicity in EPC cells. To detect IHNV by qPCR, EPC cells were cultured in 12-well plates to a monolayer and infected with IHNV (1 × 10³ 50% tissue culture infective dose (TCID₅₀)) for 2 h at 15 °C. Subsequently, the media was removed, cells were washed for three times and further incubated in 5% FBS M199 with or without drugs (32 plant crude extracts (100 mg/L) or UA (5.5 ~ 17.4 µM)) as treatments for 72 h. Afterward, supernatants were removed and EPC cells were washed three times with 0.1 M phosphate buffer (PBS). Then, RT-qPCR which was explained in section 2.7 were carried out to detect IHNV.

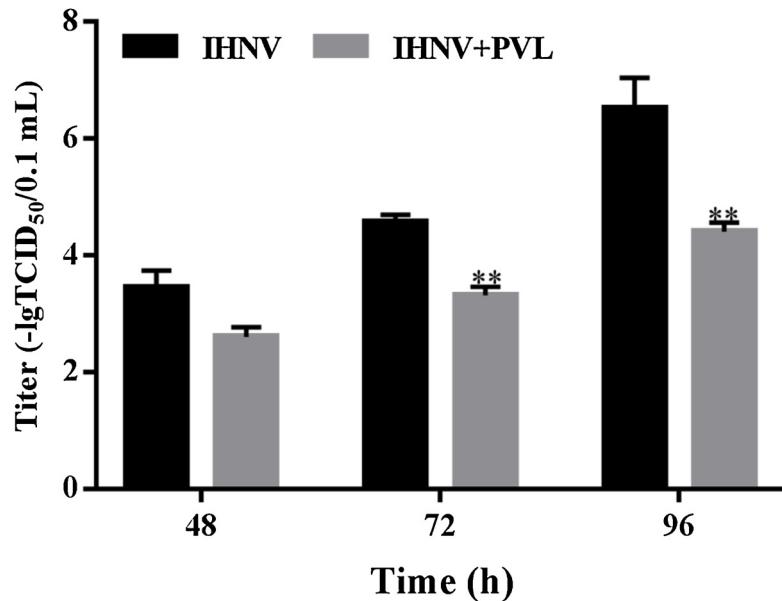
2.5. CPE and virus titration reduction assays

Virus multiplication and titration assays were performed as described in a previous study (Liu et al., 2015). The viral titer was evaluated using a TCID₅₀ assay. Virus was serially diluted 10-fold in M199. Then EPC cells were inoculated with the diluted virus. After 2 h of infection, the medium was replaced again with maintenance medium with or without drugs [PVL (100 mg/L) or UA (6.6, 13.2, and 19.8 µM)]. Each sample was directly observed and photographed under an inverted microscope at 48, 72, and 96 h. Viral titers were determined by the Reed–Muench method at the indicated times.


To determine the efficacy of PVL and UA against CPE in EPC cells, the cells were cultured in 12-well plates (1 × 10⁵ cells/well) for 24 h. Then, the medium was replaced with 1.5 mL cell maintenance medium containing 1 × 10³ TCID₅₀ IHNV. After 2 h of infection, the medium was replaced again with maintenance medium with or without drugs (PVL (100 mg/L) or UA (20.0 µM)). Each sample was directly observed and photographed under an inverted microscope at 72 h.

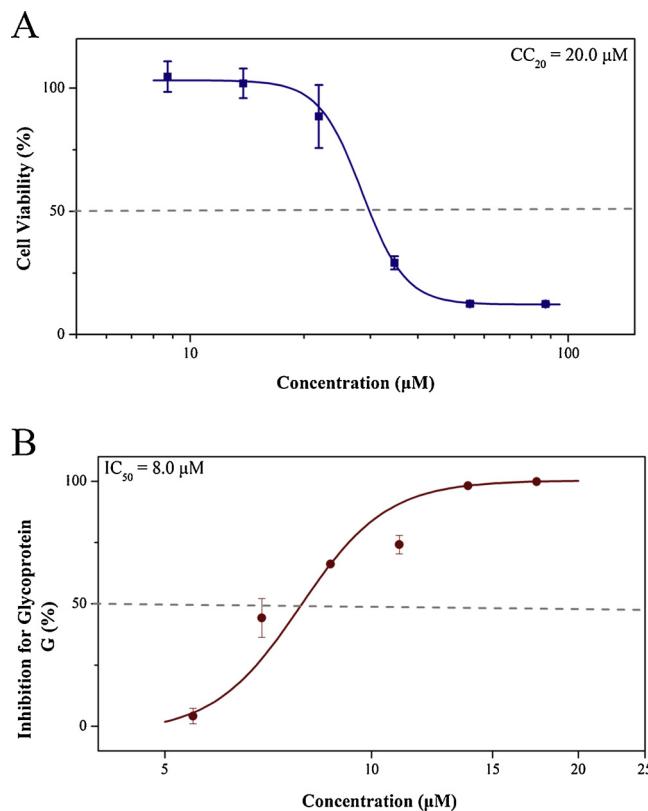
2.6. Antiviral activity of UA *in vivo*

To determine the toxicity of UA to rainbow trout, a total of 420 juvenile rainbow trout were reared in 21 aquariums containing 50 L UV-sterilized water, and rearing temperatures of each aquarium was kept at 15 ± 0.5 °C. The rainbow trout were divided into seven groups (60 rainbow trout per treatments, 20 rainbow trout per aquarium) and executed with the following treatments: (1) For the control group, each rainbow trout was injected intraperitoneally with 15 µL M199 and reared for 14 d; (2) For the UA-treated group, each rainbow trout was injected intraperitoneally with 15 µL mixture (2.5, 5.0, 10.0, 20.0, 40.0, and 80.0 mg/L UA with M199) and reared for 14 d.


To determine the efficacy of UA against IHNV disease, a total of 450

A

Fig. 1. Antiviral activity of PVL against IHNV in EPC cells. (A) Morphologically protective effect of PVL against IHNV in EPC cells. EPC cells cultured in 12-well plates were exposed to 1×10^3 TCID₅₀ IHNV for 2 h and then the medium with IHNV was removed and cells were incubated in fresh medium containing PVL (100 mg/L) for 72 h. (B) PVL reduced the titers of IHNV in EPC cells. EPC cells cultured in 96-well plates were exposed to 1×10^3 TCID₅₀ IHNV for 2 h and then the medium with IHNV was removed and cells were incubated in fresh medium containing PVL (100 mg/L) for 96 h. Data were shown as mean \pm SD of three replicate samples of three independent experiments. Significance between control and PVL-treated groups are indicated by ** $P < 0.01$, * $P < 0.05$.


B

juvenile rainbow trout were reared in nine aquariums containing 100 L UV-sterilized water, and rearing temperatures of each aquarium was kept at 15 ± 0.5 °C. The rainbow trout were divided into three groups (M199, IHNV/M199 or IHNV/UA, 150 rainbow trout per treatments, 50 rainbow trout per aquarium) and executed with the following treatments: (1) For the control group, each rainbow trout was injected intraperitoneally with 15 μ L M199 and reared for 14 d; (2) Based on pre-test, IHNV (1×10^3 TCID₅₀) was mixed with M199 or UA (20 mg/L), then each rainbow trout was injected intraperitoneally with 15 μ L mixture in the infection groups and reared for 14 d. To determine the efficacy of UA against IHNV replication *in vivo*, a total of 450 Juvenile rainbow trout were intraperitoneally injected with mixture (M199, IHNV/M199 or IHNV/UA, 150 rainbow trout per treatments, 50 rainbow trout per aquarium), and three samples from each aquarium were collected on the 1st, 4th and 7th days, respectively. Then the spleen was collected for RT-qPCR detection.

2.7. RNA isolation, cDNA synthesis, and qPCR assays

The EPC cells with a total of 1×10^7 were taken from in 12-well plates and immediately frozen in liquid nitrogen for subsequent RNA isolation. Total RNA was extracted by the Trizol reagent (Takara, Japan). Under the NanoDrop spectrophotometer (ND-1000, Nano-Drop Technologies Inc., Wilmington, DE), nucleic acid concentrations were measured at 260 nm. The purity of the extracted total RNA was determined by A260/A280 ratio, in which ratios of the absorbance at 260 and 280 nm ranged from 1.8 to 2.0. To further ensuring RNA purity, DNA contamination was removed by treating with DNase I (Takara, Japan) following the manufacturer's instruction. The purified RNA was reverse transcribed using HiScript Q Select RT SuperMix for qPCR (+ gDNA wiper) (Vazyme, China), and 500 ng/ μ L of RNA was used per reaction in cDNA generation. Quantitative PCR was performed with CFX96 Real-Time PCR Detection System (Bio-Rad, USA) using AceQ® qPCR SYBR® Green Master Mix (TaKaRa, Japan) with the following

Fig. 2. The cytotoxicity and anti-IHNV activity of UA in EPC cells. (A) The toxicity of UA on EPC cells. EPC cells cultured in 96-well plates were exposed to UA at six concentrations (87.0, 55.0, 34.7, 21.9, 13.8, and 8.7 μM) for 72 h. After incubation periods, cell viability was tested by CCK-8 assay. Data were shown as mean \pm SEM of three replicate samples of three independent experiments. (B) The antiviral activity of UA against IHNV in EPC cells. EPC cells cultured in 12-well plates were exposed to 1×10^3 TCID₅₀ IHNV for 2 h and then the medium with IHNV was removed and cells were incubated in fresh medium containing UA (5.5, 6.9, 8.7, 11.0, 13.8, and 17.4 μM) for 72 h. The relative RNA levels of glycoprotein genes were calculated based on the $2^{-\Delta\Delta Ct}$ method and relative to the control. Data were shown as mean \pm SEM of three replicate samples of three independent experiments.

parameters: 95 °C for 30 s and then 40 cycles at 95 °C denaturation for 5 s, followed by at 60 °C annealing for 40 s. The sequences of primer pairs are listed in Table 1 (Bilen et al., 2016; Hu et al., 2019c; Shao et al., 2016). Relative mRNA expression was calculated using $2^{-\Delta\Delta Ct}$ method with the formula (Livak and Schmittgen, 2001), $F = 2^{-\Delta\Delta Ct}$, $\Delta\Delta Ct = (C_t, \text{target gene} - C_t, \text{reference gene}) - (C_t, \text{target gene} - C_t, \text{reference gene})_{\text{control}}$. $\beta\text{-actin}$ (E) and $\beta\text{-actin}$ (H) were used to normalize the data in EPC cells and in rainbow trout, respectively.

2.8. Statistical analysis

Drug response curves (Fig. 2) were represented by a logistic sigmoidal function with a maximal effect level (Amax) and a Hill coefficient represented the sigmoidal transition, which was performed with Origin 8.1. The data were analyzed by probit analysis which was used for calculating the half-maximal inhibitory concentration (IC₅₀) and 20% cytotoxic concentration (CC₂₀) of the compound at the 95% confidence interval by using the SPSS 18.0 for Windows (SPSS Inc. an IBM Company). Data (Fig. 1B, Fig. 2, Fig. 3B, Fig. 4A, and C) were expressed as the mean \pm SD or the mean \pm standard error (SEM). Statistical analysis was performed with SPSS 18.0 software (SPSS Inc., USA), using one-way ANOVA after logistic normalization to determine significance. Data in Fig. 4B were shown as 95% confidence level (CL) and statistical analysis was performed with GraphPad Prism 6 (GraphPad Software,

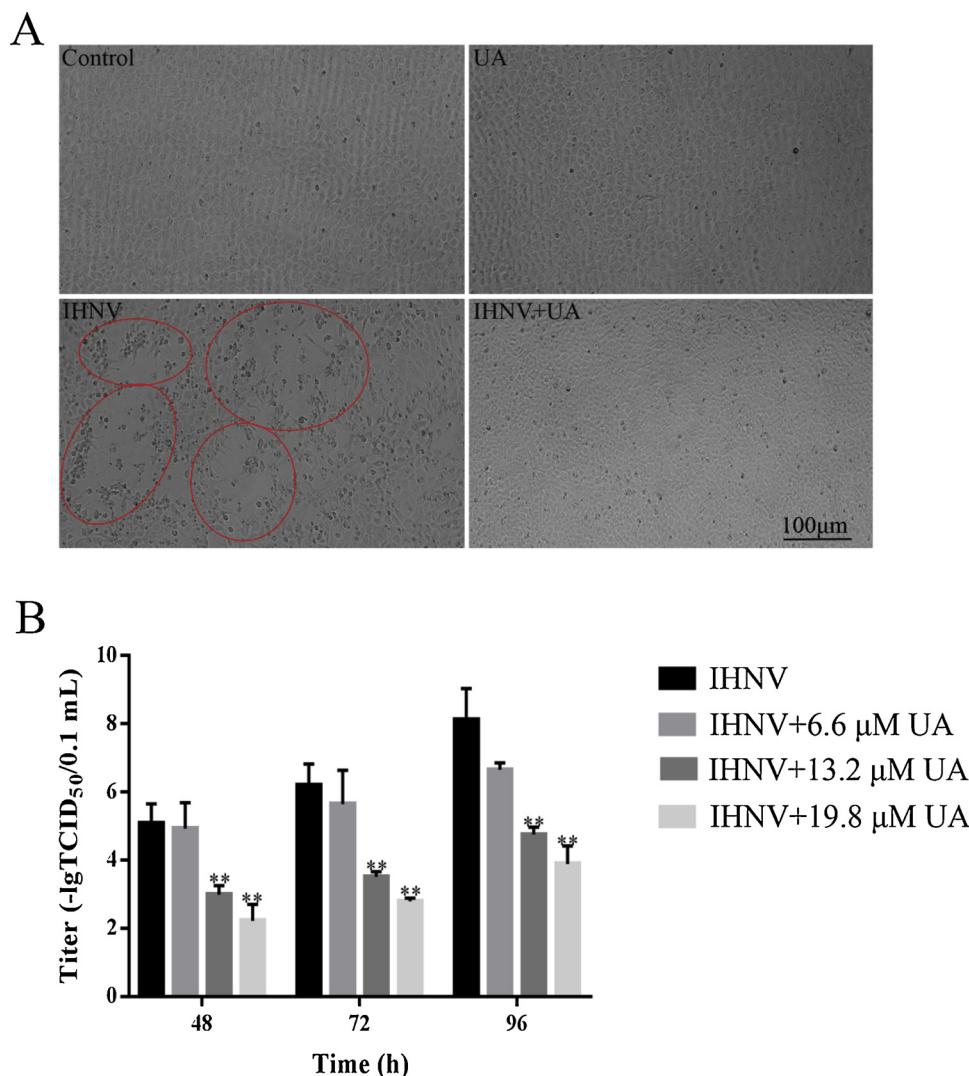
USA), using the Log-rank (Mantel-Cox) test to determine significance. *P* values less than 0.05 were considered statistically significant, **, *P* < 0.01, *, *P* < 0.05.

3. Results

3.1. Antiviral activity of 32 plant extract

Thirty-two kinds of medicinal plants were used in this study. In the initial test, the cell viability of EPC cells was greater than 80% in 32 crude extracts at 100 mg/L (Table 2). Medicinal plant extracts were considered safe if the cell viability was greater than 80%. Subsequently, the cells were treated with all plant extracts with the 100 mg/L in infection experiment. The antiviral efficacies of selected plant extracts were evaluated at 72 h, and the results were shown in Table 2. Medicinal plant extracts were considered active if the expression of IHNV G was lower than 50%. Among the screened plants, *Uncaria rhynchophylla* (Miq.) Jacks., *Notopterygium incisum* Ting ex H. T. Chang, *Ligusticum chuanxiong* Hort., and *Psoralea corylifolia* L., were identified to possess > 50% IHNV inhibition activity, and PVL showed the highest antiviral activity against IHNV (99.34 \pm 0.04%).

To further confirm the antiviral activity of PVL against IHNV, we evaluated the related indexes, including CPE and the titer of IHNV after treatment with PVL. As shown in Fig. 1A, CPE of IHNV-infected cells was decreased significantly at 72 h in the presence of PVL. In accordance with CPE assay, significant inhibition of IHNV was shown in PVL-treated EPC cells in the measurement of the viral titer (Fig. 1B). IHNV titers were $10^{3.45}$ (48 h post-infection (p.i.)), $10^{4.57}$ (72 h p.i.) and $10^{6.52}$ (96 h p.i.) TCID₅₀ /0.1 mL in the control group; whereas IHNV titers were $10^{2.60}$ (48 h p.i.), $10^{3.31}$ (72 h p.i.) and $10^{4.41}$ (96 h p.i.) TCID₅₀ /0.1 mL in PVL-treated group. The results above indicated that PVL could significantly inhibit IHNV replication in EPC cells.


3.2. Cytotoxicity and anti-IHNV activity of UA in EPC cells

UA, the major constituent of PVL, had been reported with diverse biological activities (Chen et al., 2015; Kong et al., 2013; Oloyede et al., 2017). Hence, we further evaluated whether UA is the major antiviral constituents of PVL. In EPC cells, the safe concentration of UA was calculated as 20.0 μM (Fig. 2A). As expected, by examining the antiviral activity of UA, we found that UA was highly effective to IHNV. As shown in Fig. 2B, UA had a concentration-dependent inhibition on the expressions of IHNV G. The IC₅₀ of UA on IHNV G was 8.0 μM at 72 h p.i.

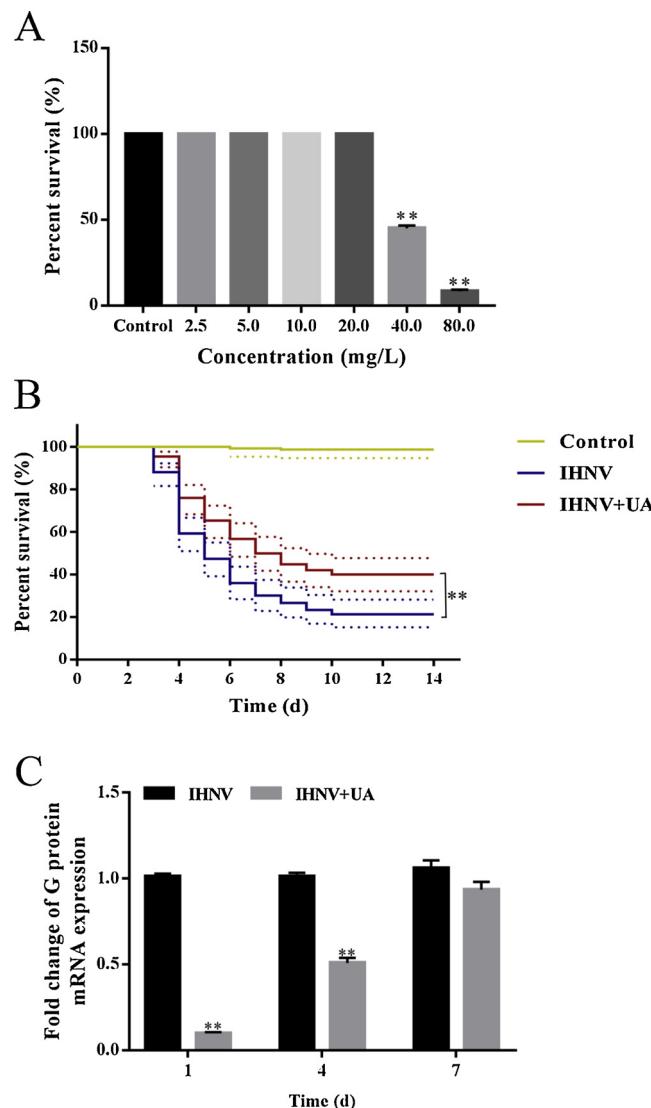
In accordance with gene expressions, CPE of IHNV-infected cells in the presence of 20.0 μM UA was decreased significantly at 72 h (Fig. 3A). In addition, we further evaluated the titer of IHNV after UA treatment. As shown in Fig. 3B, UA had a concentration-dependent inhibition on IHNV replication in the measurement of the viral titer. The results indicated that IHNV titers were $10^{5.09}$ (48 h p.i.), $10^{6.20}$ (72 h p.i.), and $10^{8.12}$ (96 h p.i.) TCID₅₀ /0.1 mL in the control group. By contrast, UA treatment significantly reduced the viral titer in a concentration-dependent manner. After the IHNV-infected EPC cells were treated with 6.6, 13.2, and 19.8 μM of UA, IHNV titers were $10^{4.93}$ (48 h p.i.), $10^{5.65}$ (72 h p.i.), $10^{6.66}$ (96 h p.i.), $10^{2.98}$ (48 h p.i.), $10^{3.51}$ (72 h p.i.), $10^{4.75}$ (96 h p.i.), and $10^{2.22}$ (48 h p.i.), $10^{2.80}$ (72 h p.i.), $10^{3.89}$ (96 h p.i.) TCID₅₀ /0.1 mL, respectively.

3.3. UA improved survival rate and inhibit IHNV replication in rainbow trout

To further confirm the highest safe inject concentration of UA *in vivo*, we evaluated the toxicity of UA to rainbow trout with serial concentrations. Fig. 4A showed that all of the rainbow trout were survived after treatment with 20 mg/L UA, while the mortality rate exceeded 50% at 40 mg/L. Therefore, 20 mg/L was selected as the highest

Fig. 3. Antiviral activity of UA against IHNV in EPC cells. (A) Morphologically protective effect of UA against IHNV in EPC cells. EPC cells cultured in 12-well plates were exposed to 1×10^3 TCID₅₀ IHNV for 2 h and then the medium with IHNV was removed and cells were incubated in fresh medium containing UA (20.0 μ M) for 72 h. (B) UA reduced the titers of IHNV in EPC cells. EPC cells cultured in 96-well plates were exposed to 1×10^3 TCID₅₀ IHNV for 2 h and then the medium with IHNV was removed and cells were incubated in fresh medium containing UA (6.6, 13.2, and 19.8 μ M) for 96 h. Data were shown as mean \pm SD of three replicate samples of three independent experiments. Significance between control and UA-treated groups are indicated by $^{**}P < 0.01$, $^{*}P < 0.05$.

safe inject concentration. To evaluate the antiviral activity of UA in rainbow trout, we first evaluated the survival rate after treatment with UA. As shown in Fig. 4B, UA treatment increased the survival rate of infected rainbow trout by 18.7%. Rainbow trout died significantly within 3 and 6 days post-infection (dpi) and the cumulative mortality of IHNV infected fish reached up to 78.7% at 10 dpi. After UA treatment, the cumulative mortality of rainbow trout reduced to 60.0%. To further confirm the antiviral activity of UA *in vivo*, the expression level of the G in the spleen was evaluated by RT-qPCR. As expected, the expression of the G was significantly inhibited following UA treatment at 1 and 4 dpi (Fig. 4C). At 7 dpi, the expression of the G was slightly inhibited (data not significant) by UA treatment. Overall, these results suggested that UA has an antiviral effect on IHNV in rainbow trout.


4. Discussion

Among the screened plants extracts in this study, PVL exerted the highest inhibition activity against IHNV. PVL is a perennial plant commonly found in China and Europe, which was proved to be rich in phenolic acid, flavonoids, and triterpenes (Jiang et al., 2008; Zhu, 2000). There was little information about the antiviral effect of phenolic acid. In addition, kaempferol and quercetin, the two representative flavonoids in PVL, had no anti-IHNV activity according to our initial study. Notably, UA as one of the most representative triterpenes possesses considerable pharmacological effects including

hepatoprotective (Jin et al., 2012), immunomodulatory (Saaby et al., 2011), anti-inflammatory (Ali et al., 2007; Zhang et al., 2013), and so on. Recently, UA has been attracted rising attention for its multi-functional antiviral activities (Kong et al., 2013; Wu et al., 2011). These results presumed that UA might be the potential active ingredient in the anti-IHNV effect. Under this assumption, the anti-IHNV activity of UA was investigated. Excitingly, our study confirmed that UA significantly inhibited IHNV replication in EPC cells.

Interestingly, the results of survival rate assay suggested that the antiviral effect of UA begins to decline gradually after a period of protection. Meanwhile, some studies have reported similar results that drugs only worked in the early stages of injection (Liu et al., 2019; Shen et al., 2018, 2019). In addition, the study on the transcription rate of the gene encoding IHNV G documents an effect of UA on virus replication over the first 4 days after infection, which is abolished by the 7th day. This limited effect might be responsible for the only slightly increased survival to IHNV infection in rainbow trout treated with UA. Given the above, we speculate that the decreased anti-IHNV activity may be due to the drug metabolism in rainbow trout. The drug is hydrolyzed or metabolized by the fish over time. Nevertheless, these speculations need to be studied in the future.

Although some studies have reported the regulation of UA on NF- κ B (Jang et al., 2009; Lu et al., 2011), a large number of articles have reported that UA might be an immunosuppressive agent (Checker et al., 2012; Li et al., 2012; Sun et al., 2005), which inhibits pro-inflammatory

Fig. 4. Antiviral activity of UA against IHNV in rainbow trout. (A) The toxicity of UA on rainbow trout. Data were shown as mean \pm SEM of three independent experiments. ** $P < 0.01$, * $P < 0.05$. (B) Cumulative survivorship curves of fish intraperitoneally injected with IHNV and UA (20 mg/L). Data were shown as 95% confidence level (CL) of three independent experiments. ** $P < 0.01$, * $P < 0.05$. (C) Expression of IHNV glycoprotein genes in the spleen after injection. The relative RNA levels of glycoprotein genes were calculated based on the $2^{-\Delta\Delta Ct}$ method and relative to the control. Data were shown as mean \pm SEM of three replicate samples of three independent experiments. ** $P < 0.01$, * $P < 0.05$.

factors such as *IL-8*, *IL-12*, *TNF- α* , and so on (Chun et al., 2014; Ikeda et al., 2008; Takada et al., 2010). Interestingly, several immunosuppressive agents have also been confirmed to possess antiviral activities. For instance, rapamycin, the third-generation immunosuppressive agent, was found with antiviral activity against rift valley fever virus, herpes simplex virus, and so on (Bell et al., 2017; Canivet et al., 2015; Ko et al., 2017). Notably, rapamycin also showed inhibitory effect on IHNV, *IL-8*, *IL-12*, and *TNF- α* (Bertagnolli et al., 1994; Charreau et al., 2000; Wang et al., 2014; Zhao et al., 2017b). Meanwhile, rapamycin was the autophagy inducer. It's reported that rapamycin showed the anti-IHNV activity by inducing autophagy in EPC cells. Therefore, we speculate that the antiviral mechanism of UA might be the same as that of rapamycin, which needs further studies.

In summary, the natural product UA from PVL possessed a high antiviral activity against IHNV both *in vitro* and *in vivo*. More

Table 2
List of all medicinal plants used in the study, their cell viability and effects on the expression of IHNV glycoprotein.^a

Medicinal plants	Cell Viability (%) ^a	Expression of IHNV glycoprotein(%) ^a	Medicinal plants	Cell Viability (%) ^a	Expression of IHNV glycoprotein(%) ^a
<i>Fallopia multiflora</i> Thunb.	90.34 \pm 2.13	67.52 \pm 0.73	<i>Curcuma phaeocaulis</i> Valeton.	86.52 \pm 3.45	75.83 \pm 6.23
<i>Ligustrum lucidum</i> Ait.	89.14 \pm 3.22	467.23 \pm 11.91	<i>Paeonia suffruticosa</i> Andr.	87.34 \pm 4.12	561.77 \pm 20.87
<i>Adenophora stricta</i> Miq.	94.36 \pm 6.84	483.21 \pm 10.09	<i>Plantago asiatica</i> L.	89.18 \pm 11.58	129.68 \pm 3.03
<i>Ligusticum Sinense</i> Oliv.	84.42 \pm 3.16	271.21 \pm 11.42	<i>Angelica dahurica</i> (Fisch. ex Hoffm.) Benth. et Hook. f.	82.31 \pm 2.34	103.79 \pm 1.69
<i>Peucedanum praeruptorum</i> Dunn.	91.57 \pm 8.76	122.34 \pm 6.86	<i>Notopterygium incisum</i> Ting ex H. T. Chang.	99.12 \pm 1.12	31.39 \pm 1.38
<i>Gastrodia elata</i> Bl.	96.77 \pm 4.75	186.48 \pm 12.68	<i>Acorus calamus</i> L.	84.37 \pm 6.44	113.26 \pm 4.00
<i>Glycyrrhiza uralensis</i> Fisch.	86.40 \pm 0.44	27.78 \pm 1.70	<i>Spatholobus suberectus</i> Dunn.	84.34 \pm 3.76	44.06 \pm 1.71
<i>Gentiana macrophylla</i> Pall.	81.80 \pm 0.62	85.65 \pm 4.95	<i>Ligusticum chuanxiong</i> Hort.	88.68 \pm 1.97	43.32 \pm 1.61
<i>Pinellia ternata</i> (Thunb.) Breit.	98.34 \pm 9.27	19.23 \pm 0.75	<i>Homalomena occulta</i> (Lour.) Schott.	87.51 \pm 1.36	80.21 \pm 2.31
<i>Citrus aurantium</i> L.	96.52 \pm 6.59	120.46 \pm 3.30	<i>Stellaria dichotoma</i> L. var. <i>lanceolata</i> Bge.	90.45 \pm 3.11	95.35 \pm 5.71
<i>Asparagus cochinchinensis</i> (Lour.) Mevr.	97.50 \pm 3.19	384.54 \pm 23.76	<i>Prunella vulgaris</i> L.	86.45 \pm 2.74	0.66 \pm 0.04
<i>Atractylodes macrocephala</i> Koidz.	91.23 \pm 2.23	417.31 \pm 27.67	<i>Acanthopanax gracilifolius</i> W.W.Smith.	92.78 \pm 6.14	33.00 \pm 1.54
<i>Cynometra songoricum</i> Rupr.	83.20 \pm 0.48	78.90 \pm 7.68	<i>Psoralea corylifolia</i> L.	88.27 \pm 5.89	43.67 \pm 0.97
<i>Rehmannia glutinosa</i> Libosch.	85.85 \pm 2.63	137.06 \pm 4.87	<i>Platycodon grandiflorus</i> (Jacq.) A. DC.	96.13 \pm 3.18	360.63 \pm 13.13
<i>Uncaria rhynchophylla</i> (Miq.) Jacks.	94.54 \pm 3.22	44.56 \pm 1.17	<i>Peonia lactiflora</i> Pall.	95.14 \pm 4.28	86.59 \pm 2.59
<i>Bletilla striata</i> (Thunb.) Reichb.f.	92.52 \pm 2.53	54.62 \pm 2.40	<i>Cinnamomum cassia</i> Presl.	86.34 \pm 6.92	73.83 \pm 1.90

^a The concentrations of all medicinal plants were 100 mg/L. Each value represents mean \pm SEM.

importantly, UA treatment could reduce the mortality rate of rainbow trout. Results so far indicated that UA is a new compound with high anti-IHNV activity and expected to be a therapeutic agent against IHNV infection in aquaculture.

Declaration of Competing Interest

The authors declare no competing financial interest.

Acknowledgments

The authors thank Prof. Ling-Bing Zeng in Yangtze River Fisheries Research Institute for providing EPC cells and Professor Tong-Yan Lu in Heilongjiang River Fishery Research Institute Chinese Academy of Fishery Sciences for providing IHNV strains. This work was supported by the National Natural Science Foundation of China (No.31772873) and the Excellent Young Talents Program of Northwest A&F University (No. 2452018029).

References

Ahmadvand, S., Soltani, M., Mardani, K., Shokrpoor, S., Hassanzadeh, R., Ahmadpoor, M., Rahmati-Holasoo, H., Meshkini, S., 2017. Infectious hematopoietic necrosis virus (IHNV) outbreak in farmed rainbow trout in Iran: viral isolation, pathological findings, molecular confirmation, and genetic analysis. *Virus Res.* 229, 17–23.

Ali, M.S., Ibrahim, S.A., Jalil, S., Choudhary, M.I., 2007. Ursolic acid: a potent inhibitor of superoxides produced in the cellular system. *Phytother. Res.* 21 (6), 558–561.

Amend, D.F., 1976. Prevention and control of viral diseases of salmonids. *J. Fisheries Board Canada* 33 (4), 1059–1066.

Ammayappan, A., Lapatra, S.E., Vakharia, V.N., 2010. Molecular characterization of the virulent infectious hematopoietic necrosis virus (IHNV) strain 220-90. *Virol. J.* 7 (1), 1–11.

Anderson, E., Clouthier, S., Shewmaker, W., Weighall, A., LaPatra, S., 2008. Inactivated infectious haematopoietic necrosis virus (IHNV) vaccines. *J. Fish Dis.* 31 (10), 729–745.

Bell, T.M., Espina, V., Senina, S., Woodson, C., Brahms, A., Carey, B., Lin, S.-C., Lundberg, L., Pinkham, C., Baer, A., 2017. Rapamycin modulation of p70 S6 kinase signaling inhibits Rift Valley fever virus pathogenesis. *Antivir. Res.* 143, 162–175.

Bertagnolli, M.M., Yang, L., Herrmann, S.H., Kirkman, R.L., 1994. Evidence that rapamycin inhibits interleukin-12-induced proliferation of activated T lymphocytes. *Transplantation* 58 (10), 1091–1096.

Bilen, S., Altunoglu, Y.C., Ulu, F., Biswas, G., 2016. Innate immune and growth promoting responses to caper (*Capparis spinosa*) extract in rainbow trout (*Oncorhynchus mykiss*). *Fish Shellfish Immunol.* 57, 206–212.

Bovo, G., Giorgetti, G., Jorgensen, P., Olesen, N., 1987. Infectious haematopoietic necrosis: first detection in Italy. *B. Eur. Assoc. Fish Pat.* 7 (5), 124.

Bundschuh, M., Hahn, T., Ehrlich, B., Höltge, S., Kreuzig, R., Schulz, R., 2016. Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. *B. Environ. Contam. Tox.* 96 (2), 139–143.

Canivet, C., Menasria, R., Rhéaume, C., Piret, J., Boivin, G., 2015. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone. *Antivir. Res.* 123, 105–113.

Chapman, L.E., Mertz, G.J., Peters, C.J., Jolson, H.M., Khan, A.S., Ksiazek, T.G., Koster, F.T., Baum, K.F., Rollin, P.E., Pavia, A.T., Holman, R.C., Christenson, J.C., Rubin, P.J., Behrman, R.E., Bell, L.J., Simpson, G.L., Sadek, R.F., 1999. Intravenous ribavirin for hantavirus pulmonary syndrome: safety and tolerance during 1 year of open-label experience. *Antivir. Ther.* 4 (4), 211–222.

Charreau, B., Coupel, S., Goret, F., Pourcel, C., Soulliou, J.P., 2000. Association of glucocorticoids and cyclosporin A or rapamycin prevents E-selectin and IL-8 expression during LPS- and TNFα-mediated endothelial cell activation. *Transplantation* 69 (5), 945–953.

Checker, R., Sandur, S.K., Sharma, D., Patwardhan, R.S., Jayakumar, S., Kohli, V., Sethi, G., Aggarwal, B.B., Sainis, K.B., 2012. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. *PLoS One* 7 (2), e31318.

Chen, H., Gao, Y., Wang, A., Zhou, X., Zheng, Y., Zhou, J., 2015. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. *Eur. J. Med. Chem.* 46 (15), 648–655.

Chen, X., Hu, Y., Shan, L., Yu, X., Hao, K., Wang, G.X., 2017. Magnolol and honokiol from *Magnolia officinalis* enhanced antiviral immune responses against grass carp reovirus in *Ctenopharyngodon idella* kidney cells. *Fish Shellfish Immunol.* 63, 245–254.

Chun, J., Lee, C., Hwang, S.W., Im, J.P., Kim, J.S., 2014. Ursolic acid inhibits nuclear factor-κB signaling in intestinal epithelial cells and macrophages, and attenuates experimental colitis in mice. *Life Sci.* 110 (1), 23–34.

Enzmann, P., Dangschat, H., Feneis, B., Schmitt, D., Wizigmann, G., Schlotfeldt, H., 1992. Demonstration of IHN [infectious haematopoietic necrosis] virus in Germany. *B. Eur. Assoc. Fish Pat.* 12 (6).

Gotesman, M., Soliman, H., Besch, R., Matbouli, M., 2015. Inhibition of spring viraemia of carp virus replication in an E pithelioma papulosum cyprini cell line by RNA i. *J. Fish Dis.* 38 (2), 197–207.

Hasobe, M., Saneyoshi, M., 1985. On the approach to the viral chemotherapy against infectious hematopoietic necrosis virus (IHNV) in vitro and in vivo on salmonid fishes. *Fish Pathol.* 20 (2-3), 343–351.

Hu, Y., Chen, W.C., Shen, Y.F., Zhu, B., Wang, G.X., 2019a. Synthesis and antiviral activity of a new arctigenin derivative against IHNV *in vitro* and *in vivo*. *Fish Shellfish Immunol.* 92, 736–745.

Hu, Y., Chen, W., Shen, Y., Zhu, B., Wang, G.X., 2019b. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. *Bioorg. Med. Chem. Lett.* 29 (14), 1749–1755.

Hu, Y., Liu, L., Li, B., Shen, Y., Wang, G.X., Zhu, B., 2019c. Synthesis of arctigenin derivatives against infectious hematopoietic necrosis virus. *Eur. J. Med. Chem.* 163, 183–194.

Hu, Y., Shen, Y., Li, B., Wang, G.X., Zhu, B., 2019d. Evaluation on the antiviral activity of ribavirin against infectious hematopoietic necrosis virus in epithelioma papulosum cyprini cells. *Virus Res.* 263, 73–79.

Ikeda, Y., Murakami, A., Ohigashi, H., 2008. Ursolic acid: an anti-and pro-inflammatory triterpenoid. *Mol. Nutr. Food Res.* 52 (1), 26–42.

Jang, S.M., Yee, S.T., Choi, J., Choi, M.S., Do, G.M., Jeon, S.M., Yeo, J., Kim, M.J., Seo, K.I., Lee, M.K., 2009. Ursolic acid enhances the cellular immune system and pancreatic β-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. *Int. Immunopharmacol.* 9 (1), 113–119.

Jiang, S., Zhao, L., Yu, Y., Duan, L., Tan, B., 2008. Study on optimization of supercritical fluid extraction conditions of ursolic acid from *Prunella vulgaris* Linn. leaves. *Food Sci.* 29, 294–297.

Jin, Y.R., Jin, J., Li, C.H., Piao, X.X., Jin, N.G., 2012. Ursolic acid enhances mouse liver regeneration after partial hepatectomy. *Pharm. Biol.* 50 (4), 523–528.

Kang, S.Y., Kang, J.Y., Oh, M.J., 2012. Antiviral activities of flavonoids isolated from the bark of *Rhus verniciflua* Stokes against fish pathogenic viruses *in vitro*. *J. Microbiol.* 50 (2), 293–300.

Kim, S.Y., Kim, S.R., Oh, M.J., Jung, S.J., Kang, S.Y., 2011. In Vitro antiviral activity of red alga, *Polysiphonia morrowii* extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. *J. Microbiol.* 49 (1), 102.

Ko, S., Gu, M.J., Kim, C.G., Kye, Y.C., Lim, Y., Lee, J.E., Park, B.C., Chu, H., Han, S.H., Yun, C.H., 2017. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells. *Antivir. Res.* 146, 86–95.

Kong, L., Li, S., Liao, Q., Zhang, Y., Sun, R., Zhu, X., Zhang, Q., Wang, J., Wu, X., Fang, X., 2013. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity. *Antivir. Res.* 98 (1), 44–53.

Li, J., Liang, X., Yang, X., 2012. Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-κB pathways. *Oncol. Rep.* 28 (2), 501–510.

Liu, L., Hu, Y., Lu, J., Wang, G., 2019. An imidazole coumarin derivative enhances the antiviral response to spring viremia of carp virus infection in zebrafish. *Virus Res.* 263, 112–118.

Liu, L., Zhu, B., Wu, S., Lin, L., Liu, G., Zhou, Y., Wang, W., Asim, M., Yuan, J., Li, L., 2015. Spring viraemia of carp virus induces autophagy for necessary viral replication. *Cell. Microbiol.* 17 (4), 595–605.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-ΔΔCT} method. *Methods* 25 (4), 402–408.

Lu, J., Wu, D.M., Zheng, Y.L., Hu, B., Cheng, W., Zhang, Z.F., Shan, Q., 2011. Ursolic acid improves high fat diet-induced cognitive impairments by blocking endoplasmic reticulum stress and IκB kinase β/nuclear factor-κB-mediated inflammatory pathways in mice. *Brain Behav. Immun.* 25 (8), 1658–1667.

Oloyede, H.O.B., Ajiboye, H.O., Salawu, M.O., Ajiboye, T.O., 2017. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. *Microb. Pathogenes* 111, 338–344.

Park, M., Sohn, S., Lee, S., Chun, S., Park, J., Fryer, J., Hah, Y., 1993. Infectious haematopoietic necrosis virus from salmonids cultured in Korea. *J. Fish Dis.* 16 (5), 471–478.

Ren, G., Xu, L., Lu, T., Yin, J., 2018. Structural characterization and antiviral activity of lentinan from *Lentinus edodes* mycelia against infectious hematopoietic necrosis virus. *Int. J. Biol. Macromol.* 115, 1202–1210.

Ristow, S.S., LaPatra, S.E., Dixon, R., Pedrow, C.R., Shewmaker, W.D., Park, J.-W., Thorgaard, G.H., 2000. Responses of cloned rainbow trout *Oncorhynchus mykiss* to an attenuated strain of infectious hematopoietic necrosis virus. *Dis. Aquat. Organ.* 42 (3), 163–172.

Roscow, O., Ganassin, R., Garver, K., Polinski, M., 2018. Z-FA-FMK demonstrates differential inhibition of aquatic orthoreovirus (PRV), aquareovirus (CSRV), and rhabdovirus (IHNV) replication. *Virus Res.* 244, 194–198.

Rucker, R.R., Whipple, W.J., Parvin, J.R., Evans, C.A., 1953. A Contagious Disease of Salmon Possibly of Virus Origin. Washington the Service U.S.govt Print.off pp. 76.

Rudakova, S.L., Kurath, G., Bochkova, E.V., 2007. Occurrence and genetic typing of infectious hematopoietic necrosis virus in Kamchatka, Russia. *Dis. Aquat. Organ.* 75 (1), 1–11.

Saaby, L., Jäger, A.K., Moesby, L., Hansen, E.W., Christensen, S.B., 2011. Isolation of immunomodulatory triterpenoid acids from a standardized rose hip powder (*Rosa canina* L.). *Phytother. Res.* 25 (2), 195–201.

Sano, T., Nishimura, T., Okamoto, N., Yamazaki, T., Hanada, H., Watanabe, Y., 1977. Studies on viral diseases of Japanese fishes. VI. Infectious hematopoietic necrosis (IHN) of salmonids in the mainland of Japan. *J. Tokyo Univ. Fish.* 63 (2), 81–85.

Shao, J., Huang, J., Guo, Y., Li, L., Liu, X., Chen, X., Yuan, J., 2016. Up-regulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of SVCV. *Fish Shellfish Immunol.* 58, 474–482.

Shen, Y.F., Hu, Y., Zhang, Z., Liu, L., Chen, C., Tu, X., Wang, G.X., Zhu, B., 2019.

Saikosaponin D efficiently inhibits SVCV infection *in vitro* and *in vivo*. Aquaculture 504, 281–290.

Shen, Y.F., Liu, L., Feng, C.Z., Hu, Y., Chen, C., Wang, G.X., Zhu, B., 2018. Synthesis and antiviral activity of a new coumarin derivative against spring viraemia of carp virus. Fish Shellfish Immunol. 81, 57–66.

Sommadossi, J.P., Carlisle, R., 1987. Toxicity of 3'-azido-3'-deoxythymidine and 9-(1, 3-dihydroxy-2-propoxymethyl) guanine for normal human hematopoietic progenitor cells *in vitro*. Antimicrob. Agents (3), 452–454 Ch. 31.

Sun, H.X., Qin, F., Pan, Y.J., 2005. In vitro and *in vivo* immunosuppressive activity of *Spica Prunellae* ethanol extract on the immune responses in mice. J. Ethnopharmacol. 101 (1-3), 31–36.

Takada, K., Nakane, T., Masuda, K., Ishii, H., 2010. Ursolic acid and oleanolic acid, members of pentacyclic triterpenoid acids, suppress TNF- α -induced E-selectin expression by cultured umbilical vein endothelial cells. Phytomedicine 17 (14), 1114–1119.

Vardić, I., Kapetanović, D., Teskeredžić, Z., Teskeredžić, E., 2007. First record of infectious haematopoietic necrosis virus in rainbow trout fry in Croatia. Acta. Vet. Brno 76 (1), 65–70.

Wang, C., Qin, L., Manes, T.D., Kirkiles-Smith, N.C., Tellides, G., Pober, J.S., 2014. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. J. Exp. Med. 211 (3), 395–404.

Winton, J.R., 1991. Recent advances in detection and control of infectious hematopoietic necrosis virus in aquaculture. Annu. Rev. Fish Dis. 1, 83–93.

Wu, H.Y., Chang, C., Lin, B.W., Yu, F.L., Lin, P.Y., Hsu, J.L., Yen, C.H., Liao, M.H., Shih, W.L., 2011. Suppression of hepatitis B virus X protein-mediated tumorigenic effects by ursolic acid. J. Agric. Food Chem. 59 (5), 1713–1722.

Xu, L., Zhao, J., Liu, M., Kurath, G., Ren, G., LaPatra, S.E., Yin, J., Liu, H., Feng, J., Lu, T., 2017. A effective DNA vaccine against diverse genotype J infectious hematopoietic necrosis virus strains prevalent in China. Vaccine 35 (18), 2420–2426.

Zhang, P., Cheng, Y., Duan, R.D., 2013. Ursolic acid inhibits acid sphingomyelinase in intestinal cells. Phytother. Res. 27 (2), 173–178.

Zhao, J.Z., Xu, L.M., Liu, M., Cao, Y.S., LaPatra, S.E., Yin, J.S., Liu, H.B., Lu, T.Y., 2017a. Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol. Immunol. 85, 196–204.

Zhao, J.Z., Xu, L.M., Liu, M., Zhang, Z.Y., Yin, J.S., Liu, H.B., Lu, T.Y., 2017b. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. Dev. Comp. Immunol. 77, 88–94.

Zhu, J., 2000. Depsides from *Prunella vulgaris*. Chin. Chem. Lett. 11, 997–1000.