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A B S T R A C T

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease affecting domestic and wild
small ruminants’ species besides camels reared in Africa, Asia and the Middle East. The virus is a serious
paramount challenge to the sustainable agriculture advancement in the developing world. The disease outbreak
was also detected for the first time in the European Union namely in Bulgaria at 2018. Therefore, the disease has
lately been aimed for eradication with the purpose of worldwide clearance by 2030. Radically, the vaccines
needed for effectively accomplishing this aim are presently convenient; however, the availableness of innovative
modern vaccines to fulfill the desideratum for Differentiating between Infected and Vaccinated Animals (DIVA)
may mitigate time spent and financial disbursement of serological monitoring and surveillance in the advanced
levels for any disease obliteration campaign. We here highlight

what is at the present time well-known about the virus and the different available diagnostic tools. Further,
we interject on current updates and insights on several novel vaccines and on the possible current and pro-
spective strategies to be applied for disease control.

1. Introduction

Peste des petits ruminants (PPR) is recognized as kata, ovine rin-
derpest, goat plague, or stomatitis-pneumoenteritis syndrome. It is a
highly infectious viral disease of domestic and wild small ruminants
across Asia, the Middle East, and Africa (Banyard et al., 2010). PPR is
considered an emerging disease in new geographical regions that have
not been identified triggering substantial socioeconomic deficits
(Banyard et al., 2014). PPRV is included in Morbillivirus genus within
the family Paramyxoviridae. Over decades, te two available attenuated
vaccine strains Sungri 96 and Nigeria 75/1 have been utilized in several
vaccine formulations for controlling the disease in endemic regions
with outstanding achievement (Sen et al., 2010). At the time, different
commercial enzyme-linked immunosorbent assay (ELISA) kits are used
for evaluating the seropositivity in a population with higher sensitivity
and specificity to detectantibodies targeting the virus H and N proteins
(Balamurugan et al., 2014). Yet, there are presently no tools that em-
power DIVA capability. Several novel vaccines have a promising clue to
the DIVA idea that may have a central role in mitigating PPR disease in
endemic regions where they are required for succeeding the eradication
campaign.

2. PPR taxonomy

PPRV is an RNA virus belonging to genus Morbillivirus, within
Paramyxovirinae sub-family inside Paramyxoviridae family of the order
Mononegavirales. together with other important veterinary viral mi-
crobes such as rinderpest virus (RPV), canine distemper virus (CDV), the
marine morbilliviruses phocine distemper virus (PDV), dolphin morbillivirus
(DMV) and porpoise morbillivirus (PMV) and the only human measles
virus (MV) (Barrett et al., 1993; Taubenberger et al., 2000). Recently,
new morbilliviruses have been characterized and reported, containing
innumerable morbilli-like viruses in bats or rodents (Drexler et al.,
2012) and feline morbillivirus in cats (Woo et al., 2012). This order in-
corporates relevant viral pathogens in the veterinary and medical dis-
cipline.

While some members of morbilliviruses have a restricted host range
(e.g., the rinderpest virus) which infects only the members of
Artiodactyla order and to date only reported aquatic mammals cetacean
morbilliviruses, other members can infect multiple species such as
measles virus which infects humans and non-human primates. Other
members (e.g., PPRV) are characterized by their broader host range as
they are even capable of infecting not only small ruminants but can also
cause massive camelids mortalities (Roger et al., 2001) and have in
felids a single event (Balamurugan et al., 2012a), even though
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additional verifications of these reports are required. This is similar to
morbillivirus CDV that had been ab initio deemed limited to canids, but
it has been depicted in many species, encompassing polar bears, tigers,
lions, hyenas, and non-human primates (Buczkowski et al., 2014). Fe-
line Morbillivirus had also been originally stated in Hong Kong in do-
mestic cats (Woo et al., 2012), However, recent identifications were
also reported in Japan (Furuya et al., 2014; Sakaguchi et al., 2014),
with proof of genetic recombination occurrence in few isolates (Park
et al., 2014).

Although the PPRV replication and transcription are still un-
characterized, most of our knowledge regarding PPRV molecular
biology and virus structure is mainly based on their comparison to a
large extent to the well studied members of the family such as measles
and some extent to CDV and RPV. This is attributed to the fact that
distinct species in the morbillivirus genus share similar characteristics
with conserved properties. Based on these similarities, many deductions
can be obtained from the same genus members studies

3. PPRV characteristics

3.1. PPRV genome structure

The size of PPR viral particles lies between 400 to 500 nm (Gibbs
et al., 1979). PPRV is a polymorphic envelope virus as shown by ne-
gative-stain electron microscopy getting from the infected cell mem-
brane during virus budding. This envelope contains many peplomers of
glycoproteins as the viral fusion (F) and haemagglutinin (H) glyco-
proteins (Fig. 1).

PPRV genome made up a single-stranded non-segmented negative-
sense RNA molecule encapsidated by nucleoprotein (N) constituting a
helical nucleocapsid, combined with the phosphoprotein (P; poly-
merase complex) as co-factor and the RNA-dependent RNA polymerase
(L; large polymerase) to make up the ribonucleoprotein (RNP) complex.

These RNP complex are found inside the viral envelope and look as a
helical structure having a herringbone appearance. The matrix protein
(M protein) forms an envelope inner surface serving as a bridge be-
tween the RNP and cytoplasmic tails of the F and H membrane glyco-
proteins. This virus is polyploidy and as such incorporate more than one
functional and independent encapsidated genome in the appearance of
RNPs (Rager et al., 2002). The polyploidy results in virions general
pleomorphic shape.

The PPRV genome consists of 15,948 nucleotides (Bailey et al.,
2005) and adapted as a multiple of six (rule-of-six) like a typical feature
for other paramyxoviruses (Calain and Roux, 1993), even though a
single virus has an insertion of hexameric nucleotide in an untranslated
region (Bao et al., 2014). The encapsidated genome by nucleoprotein is
pivotal for efficient propagation and replication of the genome (Bailey
et al., 2007).

PPRV genome comprises six transcriptional units called 3’ N, P, M,
F, H and L 5’ in order which encode the structural proteins N, P, M, F, H
and L, respectively (Bailey et al., 2007). A more two non-structural
proteins are evoked from the P gene, namely C and V via utilization of a
substitute start codons and RNA editing, consecutively (Mahapatra
et al., 2003). The conserved intergenic (IG) trinucleotides separate
transcriptional units from each other. The 3’ and 5’ terminal sequences
of PPRV genome are conserved and complementary. Similar to other
morbilliviruses, they have a vital role in regulating RNA genome re-
plication, transcription, and packaging during viral growth (Banyard
et al., 2005). The virus leader region together with the 3’ untranslated
region (UTR) of N gene comprise the genome promoter (GP). In a si-
milar way, the 5' UTR of the L gene together with a short trailer se-
quence form the anti-genome promoter (AGP) (Fig. 1). UTR between
the F and M gene open reading frame (ORF) is extremely abundant in G
and C nucleotides with 68–72% GC and is unusually longer than other
UTRs. PPRV genome is relatively maintained with 8% at the amino acid
level and a topmost difference of 12% at nucleotide (Muniraju et al.,

Fig. 1. Schematic illustration of PPRV structure (a) and PPRV genome organization (b).
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2014).
The large protein ‘L’ of the morbillivirus genus is a multifunctional

catalytic protein. It is necessary for viral genomic RNA transcription
and replication. In addition, it has mRNA capping, polyadenylation
activities and its methylation. The L protein of RPV has also guanylyl-
transferase (GTase), methyltransferase and RNA triphosphatase
(RTPase) activities. It follows the ordinary pathway for capping mRNA.
Recently the domain within PPRV L protein had been identified to have
RTPase activity (Ansari et al., 2019).

4. Diagnosis

Similarities of PPR clinical signs and those of several diseases as
bluetongue, rinderpest and contagious caprine pleuropneumonia ham-
pers disease diagnosis. Therefore, disease occurrence should be con-
firmed by laboratory diagnosis. A complication of PPR clinical signs
may occur due to secondary bacterial infections particularly
Mannheimia haemolytica. The laboratory diagnosis of PPR disease is
mainly based on virus isolation, the detecting viral antigens using lat-
eral flow rapid tests or antigen capture ELISA or the viral RNA by RT-
PCR, real-time (rt) RT-PCR, Loop-mediated isothermal amplification
(LAMP) PCR. The diagnosis can also be performed by immunological /
serological assays aiming to detect anti-PPRV specific antibodies by
virus neutralization tests (VNT) or ELISA (Fig. 2). There is no doubt that
sample collection and transportation affect sample integrity which in
turn affects the efficacy of laboratory test. According to partial se-
quences of the N or F genes, PPRVs have been genetically categorized
into four lineages associating with the geographic virus distribution.

In addition, the need for the region-specific test is essential due to
cross-reaction among members of Morbilliviruses such as measles or
canine distemper. False diagnosis is often seen in clinically healthy
serologically positive cases. Such conditions are usually attributed to
cross-reaction, previous vaccination, or subclinical infections as ob-
served in Lao goat population (Burns et al., 2019).

After successfully eradicating the rinderpest, the FAO and the OIE
have embarked an eradication strategy for global PPR control by 2030.
This is one of the three key goals resulting from GF-TADs Global
Steering Committee between FAO and OIE which as well includes
strengthening the veterinary services and in parallel, preventing and
controlling other major diseases of small ruminants.

The peak time for detecting PPRV nucleic acid in various body fluids
is from 5 to 10 dpi which regard the most infectious period for contact
transmission, the higher viral loadcan be detected via viral RNA de-
tection techniques in nasal excretions from two days post infection (PI)
until at least two weeks PI. On the other hand, percentage sample po-
sitivity is usually low in both saliva and eye swabs with intermittent
detection in later PI in individual animals in fecal material than in other
body fluids. Nasal swabs are considered the most suitable sample for
molecularly diagnosing PPRV and for supporting the eradication pro-
gram (Parida et al., 2019).

Although virus isolation is considered the gold standard test for
diagnosing PPRV and is very useful for virus characterization and re-
pository (Brindha et al., 2001; Sreenivasa et al., 2006), it detects only
live virus, requires laboratories with tissue culture facilities and is less
sensitive. However, diagnosis based on viral isolation is usually more
accurate than those based on sandwich ELISA.

For antibodies detections, many assays are in use such as VNT,
blocking ELISA, competitive (cELISA), and indirect ELISA. Filter papers
represent a cost-effective and acceptable method of transporting whole
blood samples to be later used for serological analysis (Torsson et al.,
2019).

Due to the high sensitivity of VNT, it is commonly used for anti-
bodies titration, seromonitoring and serosurveillance, and is considered
the gold standard test representing the true indication for protection
and OIE recommendation with high sensitivity and specificity.
However, other types of ELISAs can also be used for seromonitoring and

serosurveillance(Singh, Sreenivasa, Dhar, Shah et al., 2004). Although
VNT is the most reliable test in differentiating the antibodies from
different members of morbillivirus as the level of neutralization is
higher in homologus PPR viruses than rinderpest virus, it needs tissue
culture, live viruses, good quality samples and not feasible for a large
number of samples. VNT depends on detecting the differences of paired
serum samples collected during the outbreak or when clinical signs
exist and following three weeks of the disease outbreak from the same
animal. A significant 4-fold titer increment is relevant to the outbreak
of specific disease. As an alternative to VNT, a haemagglutination in-
hibition (HI) test has been applied for quantifying virus neutralizing
antibodies. For performing HI, the PPRV HA property is revealed to be
changed in cell-culture-cultivated virus, and fresh RBCs are compulsory
(Dhinakar Raj et al., 2000). To detect antigen, the counter Im-
munoelectrophoresis (CIE) techniques are to be generated for detecting
antibodies resulted from PPR infection (Anderson and McKay, 1994;
Tahir et al., 1998). Even though HI and CIE are straightforward to carry
out tests and offer an alternative solution in limited-resources labora-
tories having lower sensitivity compared to the other antibody detec-
tion assays. The competitive and blocking ELISAs are primarily de-
pendent on the hemagglutinin-neuraminidase (HN) protein of PPRV.
The relative sensitivity and specificity of cELISA in reference labora-
tories are 94,5 and 99.4% respectively (Libeau et al., 1995). In case of a
baculoviral expressing the recombinant N protein antigen the diag-
nostic sensitivity and specificity were (92.4%) and (98.4%) of this test
respectively compared to those of VNT and commercial ELISA kits
(Singh et al., 2006, 2004a).

The blocking ELISA had a 98.9% specificity and 90.4% sensitivity in
comparison to the VNT (Anderson and McKay, 1994). Both anti-H and
anti-N protein monoclonal antibodies-based cELISAs are convenient as
commercial kits for detecting antibodies of PPRV. (Anderson and
McKay, 1994; Libeau et al., 1995). Due to the non-infectious nature of
the N protein antigen, their based cELISA kit has promising use in wide
geographical regions, involving PPR free countries (Couacy-Hymann
et al., 2007; Libeau et al., 1995), handling the live viruses should be
done in PPR free countries under strict biosecurity levels and hence
would not be regularly applied as a diagnostic tool.

For viral genome detection, several assays have been used. The
multiplex TaqMan-based qPCR panel represents a rapid, sensitive and
specific diagnostic tool for accurately detecting several sheep and goat
viral pathogens (Xu et al., 2019).

For targeting the M gene, two tests (rt RT-PCR based on SYBR green
and other based on hydrolysis) have been applied. Although both of
them are used for the routine diagnosis, the latter has more sensitivity
than conventional reaching 0.5 pg from total RNA and 0.1 of TCID50
(Balamurugan et al., 2010). The sensitivity of the rt RT-PCR based on
SYBR green may reach 0–4 TCID50 of PPRV (Balamurugan et al.,
2012b), however cautions must be undertaken to prevent cross-con-
tamination. the one-step RT-LAMP Assay represents another simple,
easy to use, and highly sensitive assay. Its sensitivity is comparable with
that of rt RT-PCR (1.41*10−4 ng total RNA) and could obviate the need
of thermocycler that direct M gene. However, the presence of false
positive results and is inapplicability as a field test limit its use (Li et al.,
2010).

Tests targeting N gene or protein such as immunocapture ELISA or
sandwich ELISA can be applied in diagnosis and clinical surveillance.
These tests are user-friendly tests and can also be used in preliminary
vaccine quality control, although their sensitivity is less than RT-PCR-
ELISA and RT-PCR (Singh et al., 2004b). Another test targeting N gene
or protein is the immunocapture ELISA/sandwich ELISA. The applica-
tion of PCR-ELISA is promising as it delivers more sensitive results than
RT-PCR and sandwich ELISA during the mild form and in early and late
phases with a sensitivity detection of 0.1 TCID50/mL (Saravanan et al.,
2004). Cell-ELISA has a 97.26% sensitivity in comparison with PPRV
infectivity titration and possibility to circumvent the bias during PPRV
titration (Sarkar et al., 2012). Radiolabeled cDNA probes assay is one of
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the sensitive assays that does not require live virus and can differentiate
PPRV from rinderpest virus (Diallo et al., 1989), but it has hazardous to
handlers unlike the Biotinylated cDNA probes that are safe for use, but
are less sensitive (Pandey et al., 1992). Two-step LAMP assay has a
greater sensitivity than conventional RT-PCR as it could detect 0.1 TCID
50/mL which can be visually assessed and could be applied as a regular
diagnostic test in resource-poor laboratories. Although one-step rt RT-
PCR based on taqMan-probe is a sensitive and rapid assay over tradi-
tional RT-PCR, with less prone for contamination to be utilized for
detection and quantification, it needs a sophisticated instrument that is
expensive, and its availability for routine diagnosis is limited. Its sen-
sitivity in one study was 32 PPRV RNA copy and in another study was
8.1 cRNA copies (Bao et al., 2008; Kwiatek et al., 2011).

One-step multiplex RT-PCR is used for targeting M and N gene, but
economically it cannot be used in routine diagnosis. Its diagnostic
sensitivity reaches 100 fg of RNA (Balamurugan et al., 2006). Another
test utilizes M, and N protein is the Dot-ELISA that can be used for easy

and quick visual diagnostic techniques. Its 82% sensitivity compared to
sandwich ELISA must be taken into consideration (Saravanan et al.,
2006).

The use of field pen-side immunochromatographic test targeting
virus monoclonal H protein is rapid and an easy to perform test with
less sensitivity than RT-PCR and ELISA as it can only detect 103 to 104

TCID50 (Baron et al., 2014). Their relative sensitivity and specificity is
84% to 95% respectively compared to RT-PCR. This test can diagnose
PPR in the first four days PI. The normal RT-PCR can be used for N and
F genes for clinical surveillance or diagnosis in a large scale. While false
negative and false positive results come from RT-PCR based on F genes,
the N gene-based RT-PCR showed high sensitivity than infectivity ti-
tration with 1000 fold increment (Couacy-Hymann et al., 2002; Forsyth
and Barrett, 1995).

Fig. 2. Schematic illustration representing the available diagnostic techniques for PPR disease.
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5. Control strategies

For global PPRV eradication, collaboration among governmental
authorities, research centers, international organizations and funding
agencies are needed. PPRV is an endemic disease in most African and
Asian countries. It causes great economic losses of livestock to farmer
and herders so that the application of an international control program
is urgently required (Singh and Bandyopadhyay, 2015). However, it is
preferred to use region-specific vaccines prepared from local isolates as
the PPRV tends to mutate extensively. Alternatively, vaccine combi-
nation strategies are cost-effective and can be employed than the in-
dividual vaccination strategies containing one strain.

The epidemiological pattern of PPR and rinderpest (RP), as well as
the techniques associated with their diagnosis and control, are com-
parable. The circumstances that enabled RP eradication are also largely
present for PPR. The evolving strategy and opportunities for PPR era-
dication in light of current challenges, but also the lessons learned from
other eradication strategies in human and animal health integrating
epidemiology, economics and social science as tools for targeting and
motivating vaccination which is very crucial to know for learning the
strategical efforts from previous eradication strategies (Mariner et al.,
2016). Cattle vaccinated with wild-type PPRV vaccine failed to develop
RP infection following their challenge with living RPV experimental
infection. However, vaccinated cattle with PPRV/Sungri/96 gave par-
tial protection. Meanwhile, vaccination with PPRV/Nigeria/75/1 was
no efficient to protect event infections of challenged cattle with RPV
(Holzer et al., 2016a).

Preventive control measures should be applied in PPR free regions
involving strict restriction of importing living animals or their products
from PPR-endemic regions. The PPR could be expeditiously harnessed
via isolating and sanitary slaughtering of infected animals (herds),
proper disposable of carcasses, disinfecting the environmental mate-
rials, strict quarantine and animal movements control. PPR im-
munization is carried out with the commercial usable attenuated vac-
cines that stimulate an effective durable immune response for at least
three years post-vaccination (PV) (Sen et al., 2010). This immune re-
sponse results from solid cellular immune response and plays a sig-
nificant role in PPR prophylaxis after a single inoculation without any
side effects. The protection is conferred regardless of the circulating
lineage type. Vaccination schedules currently require immunization at
least every three years (Diallo et al., 2007; Sen et al., 2010). Animal
vaccination starts at 4- to 6-months years old (Balamurugan et al.,
2012c). Vaccination time is an essential hotspot in the PPR control
programs, as introducing unvaccinated animals into susceptible popu-
lation can result in the advent of the virus causing a fresh outbreak of
the disease. The current vaccines need cold-chain to ascertain sustain-
ment of inoculating maximal virus titer and the needed serological re-
sponse to vaccination.

Another strategy (mass vaccination) needs to be replicated in
countries having similar rearing environments and socio‐economic
concerns (Govindaraj et al., 2019). In addition, refugee camps, trade
routes, animal markets and regions of animal crowding through
droughts must be focused on monitoring, surveillance and interventions
as a part of PPR control in a region (Spiegel and Havas, 2019). Vacci-
nation of pregnant females against PPR indeed gives / induces a pro-
tective maternal immunity to their kids that can last up to 10 weeks of
the age (Markus et al., 2019). Vaccination is one of the chief tools used
nowadays for disease control. It prevents disease transmission by de-
creasing the number of susceptible population. Although mass vacci-
nation strategies may be very expensive, classification of the resources
into eight categories: vaccines, injection supplies, transport personnel,
training, maintenance and overhead, surveillance, monitoring, and so-
cial mobilization will provide the decision-maker the cost of each step.
In pastoral and mixed-crop livestock systems, components covered:
vaccine cost; vaccine delivery from the manufacturer to the regional
storage center; vaccine storage at the local facility; administration and

transport of vaccine in the field; opportunity cost of farmer’s time to be
present during the vaccination; coordination of vaccination campaign;
advertising and mobilization costs; vaccine wastage from missed shots
and vaccine discards (Lyons et al., 2019). The high serum antibody titer
recognized in local non-descript breed might be owing to their greater
accommodation to the environmental condition (Begum et al., 2016).
Mass vaccination of concentrated animals costs is lower than systems
with scattered and less accessible animals. Concurrent vaccination of
goats with PPR and foot and mouth diseases (FMD) vaccines or PPR
vaccine alone revealed similar antibody kinetics against PPR virus up
till 60 DPV (Mansoor et al., 2018).

As PPR outbreaks in Georgia revealed a closer phylogenetic re-
lationship to viruses from eastern and northern Africa than to viruses
from closer countries (Donduashvili et al., 2018), this raises the alert for
controlling the PPR as an international mass vaccination for all coun-
tries together. The control phase of the global eradication and pro-
gressive control strategy founded on mass vaccination in endemic areas
or countries was embarked by international organizations targeting
animal health. This eradication is aimed by 2030. For ensuring PPR
spread control in a specific epidemiological unit, a 70% post-vaccina-
tion immunity rate (PVIR) is required. Although mass vaccination im-
plementation is very essential in PPR control, it is expensive and dif-
ficult in small farming systems with scattered livestock with restricted
facilities. Utilization a PVIR seasonal matrix population model in dif-
ferent environmental conditions (sub-humid areas or semi-arid areas)
and different vaccination scenarios (overall schedule, their vaccination
coverage, and their delivery month) to attain the 70% PVIR. In sheep
raised in semi-arid regions, the vaccination month did impact PVIR
decline, although it did not occur in goats in rainy areas. Mass vacci-
nation is expensive and difficult in small farming systems with scattered
livestock with restricted facilities. Utilization a PVIR seasonal matrix
population model in different environmental conditions (sub-humid
areas or semi-arid areas) and different vaccination scenarios (overall
schedule, their vaccination coverage, and their delivery month) to at-
tain the 70% PVIR. In sheep raised in semi-arid regions, the vaccination
month did impact PVIR decline, although it did not occur in goats in
rainy areas (Hammami et al., 2018).

It is advisable to make seroconversion annually according to the
world health organization (WHO) recommendation with the appro-
priate sampling methods to augur the control program efficiency and
vaccination status effectiveness to reach ∼ 70% (Balamurugan et al.,
2018). A higher vaccine coverage inside villages and annual vaccina-
tion campaigns with the need of vaccination tactics adaptation to par-
ticular small ruminant population aspects and regional epidemiological
context will lead to enhanced allocation of restricted resources and
boost probability for eliminating PPR (Fournié et al., 2018).

All of these tactics are necessary for keeping the fraction of immune
animals more than 71% threshold. The recombinant HF bestows earlier
and more robust protection against both PPR and sheep and goat pox
(SGP) protecting the exposed and unexposed sheep in against the dis-
ease with DIVA capability (Fakri et al., 2018).

Reduction the time from PPR identification in a herd to the herd
vaccination will radically reduce the percentage of deaths resulting
from PPR. This information will help in developing effective contain-
ment strategies for combating PPR outbreaks. A model using mem-
oryless state transitions allowing Sensitivity Analyses (SA) to carry out
to study how the virus propagation through a herd, and to identify
effective control strategies for disparate herd configurations and en-
vironments (Mitchell et al., 2017).

As well, it is better to develop a good animal model for control
strategies which expresses the clinical signs specific to each strain
(Enchery et al., 2019). The inoculation route is also decisive in the
degree and severity of the clinical signs (Enchery et al., 2019). These
equirement are very essential in expressing the strain virulence in the
animal model as the protection against infection with strains from
lineages could be conferred via vaccination with one strain from other
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lineages. The rat model is found to be a useful model to predict vaccine
responses in goats (Ronchi et al., 2016). The inactivated vaccine for-
mulated with a delta inulin adjuvant constitutes an attractive alter-
native to living attenuated vaccines for PPR vaccination campaigns in
the non-endemic areas (Ronchi et al., 2016).

The main limitation of the existing PPR vaccine in developing
countries is the need for continuous refrigeration. Efficient control
programs require the development of a lyophilized vaccine that can
extend its utility in the field without refrigeration for a long time.
Vaccines produced using lactalbuminhydrolysate sucrose (LS) and the
rinderpest method of lyophilization characterized by their high ther-
mostability for utilization without the need of a cold-chain containment
for up to 30 days. Such formulation will greatly impact vaccine delivery
for PPR global eradication (Kumar et al., 2017).

PPR affects many of the worldwide poorest communities and de-
veloping countries which depend on farming small ruminant for their
continual and subsistence. PPRV endemicity is an everlasting risk to
their livelood. Moreover, PPRVs outbreaks usually have severe socio-
economic consequences on the population, there is a lack of basic and
applied virological research in several critical regions with respect to
PPRV. The development of strong diagnostics and next-generation ad-
vanced vaccines based on a better understanding of disease epide-
miology and transmission, taking into consideration the role of wildlife
reservoirs are urgently required (Baron et al., 2017).

Substantial seasonal and annual variation in mating, offtake rates
and mortality lead to complex population dynamics which possibly
change the consequential population PVIR (PIR) (Hammami et al.,
2016) and consequently be momentous to cogitate for implementing
vaccination campaigns.

6. Vaccines types for combating PPR

6.1. Attenuated vaccines

As PPRV is antigenically close relative to RPV, utilization of atte-
nuated tissue culture RP vaccine is found to be protective as a hetero-
logous vaccine in spite of the shortage of detectable PPRV-neutralizing
antibody (Mariner et al., 1993). Even so, the employment of this vac-
cine was forbidden during the rinderpest eradication campaign, in-
ability for DIVA and the probability of PPR replication in the challenged
animals and their spread to the contact animals. Attenuation of PPRV
was attempted to be done after 65 serial passage in primary cell culture
after their growth on sheep liver cells-based cell lines (Gilbert and
Monnier, 1962). Nigeria 75/1 strain, a virulent strain can be attenuated
by 63 serial passage on Vero cells (Adu et al., 1990) Other PPRV strains
such as Sungri 96, and Coimbatore 97, Arasur 87 can also be utilized for
vaccination after 75 passage in Vero cells (Singh et al., 2010). Although
nowadays, Sungri 96 and Nigeria 75/1 are commonly used vaccine
preparation, the use of vaccine based on Arasur 87 is restricted to India
(Fig. 3). Serological investigation by ELISA and VNT concluded that the
use of PPRV/Nigeria/75/1 (N75) based vaccine induces a stronger
antibody response than those based om PPRV/India/Sungri/96 (S96).
However, S96 based vaccines lead to a stronger cell-mediated im-
munological response, as detected by interferon gamma production and
virus antigen-induced proliferation. Although both vaccines evoked
similar numbers of PPRV-specific CD8+T cells, S96 based vaccines
could stimulate a much higher number of CD4+T cells particularly
reacting with the virus. In spite of these qualitative and quantitative
variations in the triggered immunity subsequent to vaccination, both
vaccine types protected clinically against challenge with all four PPRV
lineages (Hodgson et al., 2018).

With the aid of various chemical stabilizers, these attenuated vac-
cines are nowadays available in freeze-dried form. The stabilizers are
used to decrease the virus thermolability and diminish the necessity for
the cold-chain (Mariner et al., 1993; Sen et al., 2010; Worrall et al.,
2000). As thermo stabilizers, LS is found to be superior to weybridge

medium (WBM), trehalose dihydrate (TD), and buffered gelatin sorbitol
(BUGS) when applied for constructing vaccine utilizing PPRV Nigeria
75/1strain (Yaqub et al., 2016). The appropriate stabilizer formula-
tions, suitable PPRV inoculums MOI and their working seed quality
control will actually avoid the effective interfering particles (DIPs) that
affect viral dynamics (Bora et al., 2018).

The peak PPRV replication at 9 dpi is correlating to the significant
antiviral molecules (ISG15, IRF3, and IFN gamma) expression in both
species. With PPR progression, decreased IRF3, ISG15 and IFN gamma
expression is correlated to the decrease in N gene expression. The
predominated IFN gamma expression in both infected and vaccinated
animals shows a robust Th1 response. Persistent upregulation of the
antiviral molecular signature - ISG15 and IRF3 even after 14 days PV
most probably displays the continual stimulation of innate immune
cells (Wani et al., 2018). Several immune key sensors and antiviral
genes have been upregulated following 6 h PI including enrichment of
immune system processes with 233 genes such asIRF7/IRF1, TLR7/
TLR3, IFIT1/IFIT2, ISG20, IFITM3, TREX1 and IL27 (Manjunath et al.,
2019). Actually, 2 weeks PV, upregulation of the antiviral molecular
signature -interferon regulatory transcription factor 3 (IRF3), and the
Interferon-stimulated gene 15 (ISG15) are still noticed/persisted. This
reflects the continuous activation of innate immune cells. The lamp
gamma expression is also predominating over IL4 in infected and vac-
cinated animals (Hodgson et al., 2018).

Vaccine-derived virus circulation would have a wider effect on ef-
fective monitoring of trade and movements of animals and disease
spread, Furthermore, residual pathogenicity, which has not been seen
during field trials in endemic countries (Saravanan et al., 2010).

6.2. Recombinant subunit vaccines and viral vector vaccines

As the thermosensitivity of the PPR vaccine, needs of combination
program with other diseases and some levels of immunosuppression
induced by PPR vaccine have encouraged researchers for developing
subunit vaccines (Fig. 3). The two immunodominant PPRV integral
membrane glycoproteins are the F and H or HN proteins. While the F
protein is conjectured to virus-cell and cell-cell fusions by disrupting
the target cell membrane, the H/HN glycoprotein is the key factor for
virus attachment to the cells. These surface glycoproteins, especially
morbillivirus fusion proteins are highly immunogenic and stimulate
protective immunity.

Using the capripox vector as a vector virus against capripox and PPR
has been well investigated. Capripox harboring H or F gene of rinder-
pest or PPR conferred protective immune response against PPR
(Romero et al., 1995). Molecularly modified capripoxvirus strains to
deliver homologous PPRV proteins H (Berhe et al., 2003) have also
been demonstrated to protect goats or sheep against PPRV infection
(Chen et al., 2010). Preexisting immunity against Capri pox is one of the
hindrances affecting massive application of live vector vaccines in the
field. It diminishes the capripox vector Kenya sheep-1 harboring F or H
gene replication which sequentially decreases their expression. In turn,
the produced immunity will be partially triggered (i.e. reduced anti-
body levels) for protecting animals against PPR challenges (Caufour
et al., 2014). In addition, the preexisting immunity against PPR offers /
provides complete protection only against capripox with partial im-
munity against PPR.

Other combinations were also developed such as the small ruminant
morbillivirus (SRMV) delivering echinococcus granulosus (EG) 95 an-
tigen. This combination triggers protective immune responses toward
both pathogens and therefore can be considered as a potential candi-
date of bivalent vaccines. (Liu et al., 2019).

Recombinant adenoviruses (rAds) expressing PPRV glycoproteins
have also been generated (Qin et al., 2012; Rojas et al., 2014a; Wang
et al., 2013) eliciting strong cell-mediated and humoral immune re-
sponse that protected goats (Herbert et al., 2014) and sheep (Rojas
et al., 2014b). These types of vaccines could promote PPRV-specific T-
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cell and B- response with no clinical symptoms and undetectable PPRV
shedding were seen after their challenge in the vaccinated animals.
These vaccines also could overcome the PPR induced T cell im-
munosuppression.

Three rAds what are rAd-F, rAd-H, and rAd- F-H might be promising
candidate DIVA vaccines. The rAd-F-H delivering F-H proteins are
found to be the most effective candidate one (Wang et al., 2013). Be-
sides the human herpesviruses, a replication-competent canine adeno-
virus type-2 (CAV-2) delivering PPRV H gene has been used and sti-
mulated a long-lasting immune response in goats (Qin et al., 2012).
Such recombinant vaccines need to be tested on a large scale to in-
vestigate the duration of generated immunity, their potency, and safety
as they generate immunity against some and not all viral proteins
compared to live attenuated vaccine.

These recombinant adenoviruses expressing PPRV-H or -F proteins
induce T cell responses to the same epitopes and result in memory T cell
differentiation that could protect PPRV-challenged animals and permit
DIVA capabilities (Rojas et al., 2017). Actually, 107 pfu of AdH can
protect against PPRV challenge in goats. On the other hand, 108 pfu of
either AdH or AdF provides apparent sterile protection (Holzer et al.,
2016b).

Goats immunized with a fowl pox virus vaccine delivering PPRV F
and H proteins showed a poor humoral immune in response to the
heterologous proteins (Herbert et al., 2014). The modified vaccinia
Ankara virus vector delivering PPRV H and F proteins protects goats
against the disease appearance after two dose vaccinations (Chandran
et al., 2010). This vaccine is very vital in DIVA and provides a stable
inexpensive vaccine for the international PPR eradication Campania.
Vaccinated animals produce antibodies that completely provide com-
plete protection against virulent PPRV (Jones et al., 1993). Applying
these types of recombinant viruses would help in the PPR eradication in
endemic areas.

A recombinant bovine herpesvirus-4 (BoHV-4)-based live vector
vaccine expressing a codon-optimized PPRV-H had been evaluated in
immunocompetent C57BL/6 mice. This type of vaccine could elicit both
humoral cytotoxic T lymphocyte, specifically T cell, and serum neu-
tralizing antibodies against PPRV (Kamel and El-Sayed, 2019; Macchi

et al., 2018).

6.3. Recombinant Bombyx mori nucleopolyhedroviruses (BmNPV)
expressing the

RPV H protein and PPRV F protein on bud virions and the infected
host cell surfaces promotes immune response toward PPRV or RPV in
mice (Masmudur Rahman et al., 2003).

6.4. DNA vaccines

A suicidal DNA vaccine by virtue of Semliki Forest virus has been
constructed using the PPRV H gene. This plasmid DNA vaccine induces
strong specific Abs and cell-mediated lymphocyte proliferation re-
sponse following BALB/c mice injection (Wang et al., 2015).

6.5. Virus-like particles (VLPs)

Several prokaryotic and eukaryotic expression systems have been
employed for delivery of VLPs. VLPs consist of PPRV capsid proteins
only and lack the infectious genome (Kamel et al., 2019). Their struc-
tures mimick the conformation and organization of parental virions but
are unable to self-replicate in cells in order to construct safer vaccine
candidates. Although baculovirus/insect cell systems, bacteria, plants,
and larvae can be manipulated as systems for generating VLPs (Kamel
et al., 2019), the process of assembly and release of VLPs from PPRV
needs to be elucidated. The M protein is also shown to be essential for
supporting VLPs assembly and release (Wang et al., 2017). The co-ex-
pression of all four proteins (N, M, H, and F) leads to the VLPs release
with efficiency similar to that of the authentic virions (Wang et al.,
2017). A recombinant baculovirus co-expressing PPRV H and N pro-
teins within insect cells generates PPR VLPs that were then purified and
induced antibodies in mice, potentiating their promising role as VLP-
based vaccine candidate for providing protection levels (Liu et al.,
2015; Liu, Wu, Li et al., 2014; Liu et al., 2014b). Co-expressing N and M
proteins using baculoviruses in insect cells could be achieved at a re-
latively low level (Liu et al., 2014a). Codon optimization of the full-

Fig. 3. Schematic illustration of different traditional and novel vaccines against PPR disease.
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length M and H genes with native N gene recombinant baculoviruses
have co-expressed M, H and N proteins in insect cells at different levels
(Liu et al., 2014b).

VLPs of PPRV could also be constructed with the same baculoviral
system via simultaneously expressing PPRV M protein and F or H
protein. The generated VLPs in such case demonstrate similar mor-
phological feature to the native virus particles. Subcutaneous injection
of PPRV-H or PPRV-F VLPs into goats and mice showing similar mor-
phology to the native virus elicits IgG production specific to peste des
petits ruminants (PRRV), high levels of virus neutralizing antibodies
(VNA), and promoted lymphocyte proliferation. This type of vaccines
induce comparable immune response with DIVA capabilities even
without adjuvant to the PRRV vaccine (Li et al., 2014). Actually, the
baculoviral expressing short hairpin RNAs (shRNA) have also the
therapeutic potential to be used PPR (Nizamani et al., 2011).

PPRV HN protein has been expressed in Arachis hypogea (peanut
plants) in a biologically active form which has a neuraminidase activity
with retaining its natural conformed immunodominant epitopes. VNA
responses were induced upon oral sheep immunization lacking any
mucosal adjuvant. Additionally, specific anti-PPRV-HN cell-mediated
immune responses have also been identified within mucosal immunized
sheep (Khandelwal et al., 2011). This approach can be applied for the
production of a heat-stable form of PPR vaccine.

Collectively, Baculoviruses subunit vaccines delivering H protein
(Sinnathamby et al., 2001), F proteins (Rahman et al., 2003) or ex-
pressing H protein alone via transgenic peanut plants (Khandelwal
et al., 2011) had been generated. However, further evaluation for po-
tency and safety issues of the virus-like particle (Liu et al., 2014a) and
DNA vaccines are needed (Yang et al., 2013).

7. Improvement of current attenuated vaccines

The ideal vaccine for a successful PPR eradication program should
be thermostable, has DIVA capabilities and finally to be incorporated
with other diseases as polyvalent vaccines. Combining the two antigens
sheep pox/PPR or goat pox/PPR have shown a great promising result
(Hosamani et al., 2006; Rajak et al., 2005). While only thermostable
compounds are principally requisite for controlling the disease, vac-
cines that would significantly decrease the economic vaccination costs,
which represents a significant issue in developing countries.

Reverse genetics advances lead to more progress in vaccinology
especially for DIVA vaccines or marker vaccines by manipulating the
cDNA from the RNA genome vaccines. These marker vaccines can be
achieved by tagging (negative or positive) (Hu et al., 2012), modifying
specific epitopes or inserting immunogenic antigens or heterologous
epitopes (Das et al., 2000; Gao et al., 2008; Takeda et al., 2006; Walsh
et al., 2000; Yamaji and Nakayama, 2014). Recently, positive or ne-
gative marker vaccines have been developed against PPR (Muniraju
et al., 2015).

Establishing stable reverse genetics is not only supporting the pro-
gress of DIVA vaccines and associated diagnostic tests but it could also
establish PPRV as a virus vector because many studies implied utilizing
recombinant paramyxoviruses due to their genetic stability and relative
easy reverse genetics systems (Ge et al., 2011; Niyokwishimira et al.,
2018). Besides, stable reverse genetics improves the current under-
standing of the nature of PPRV and provides accurate and compre-
hensive molecular mechanisms of immune induction determining the
viral factors implicated in immunosuppression during its early infec-
tion. Reverse genetics techniques are also great tools for studying the
interplay between viruses and cellular receptors and supporting the
discovery of the new receptors required for virus pathogenesis (Baron
et al., 2017; Birch et al., 2013). Although these convenient reverse
genetics systems for PPRV, data concerning additional application is
still lacking (Niyokwishimira et al., 2018). Consequently, there is still a
necessity to establish or upgrade existing systems to efficiently in-
vestigate the biology and pathogenicity of the virus, epidemiology,

mechanisms of disease transmission, virus life cycle the molecular
biology and pathobiology of PPRV which are not well defined (Munir
et al., 2013; Niyokwishimira et al., 2018). Via these optimistically im-
proved systems, various disciplines of fundamental and applied vir-
ology involving virus pathobiology, molecular biology and developing
next-generation diagnostic tests and vaccines will be unveiled and
subsequently will support the planned PPRV eradication program.

A negative marker vaccine based on the epitope binding site of the
C77 monoclonal antibody which is the key monoclonal antibody that
competes against in test sera antibodies in the competitive H ELISA.
This vaccine is safe and as potent as the current Nigeria 75/1 strain
vaccine (Muniraju et al., 2015). Unfortunately, accompanying test for
DIVA capability using the C77 mAb failed under field conditions which
open questions and investigations for altering to the epitope within H

8. Conclusion

PPR is a serious disease in Africa, Asia, the Middle East and at the
borders of Europe (Bulgaria). Great efforts must be concentrated to
control it. Deep understanding of the close-related RP and the utiliza-
tion of strategies and lessons learned during its eradication will help us
a lot to eradicate PPR. The use of different diagnostic methods and
techniques directed for the identification of the virus itself and part of
it, whether serologically or molecular biologically tests having high
sensitivity and specificity is very important for the molecular epide-
miological tracing needed for PPR eradication. The use of different
strategies applied in different environmental conditions with use of
novel vaccines (DNA, viral vector and VLP vaccines) or the improved
living attenuated vaccines via reverse genetics will support the DIVA
will facilitate PPR eradication.
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