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ARTICLE INFO ABSTRACT

Keywords: Pneumoviruses represent a major public health burden across the world. Respiratory syncytial virus (RSV) and
Pneumoviruses human metapneumovirus (HMPV), two of the most recognizable pediatric infectious agents, belong to this fa-
Spread mily. These viruses are enveloped with a non-segmented negative-sense RNA genome, and their replication
En bloc occurs in specialized cytosolic organelles named inclusion bodies (IB). The critical role of IBs in replication of
Inclusion bodies : has b be elucidated d d di he hiehly d .

Nucleocapsids pneumoviruses has begun to be elucidated, and our current understanding suggests they are highly dynamic

structures. From IBs, newly synthesized nucleocapsids are transported to assembly sites, potentially via the actin
cytoskeleton, to be incorporated into nascent virions. Released virions, which generally contain one genome, can
then diffuse in the extracellular environment to target new cells and reinitiate the process of infection. This is a
challenging business for virions, which must face several risks including the extracellular immune responses. In
addition, several recent studies suggest that successful infection may be achieved more rapidly by multiple,
rather than single, genomic copies being deposited into a target cell. Interestingly, recent data indicate that
pneumoviruses have several mechanisms that permit their transmission en bloc, i.e. transmission of multiple
genomes at the same time. These mechanisms include the well-studied syncytia formation as well as the newly
described formation of long actin-based intercellular extensions. These not only permit en bloc viral transmis-
sion, but also bypass assembly of complete virions. In this review we describe several aspects of en bloc viral
transmission and how these mechanisms are reshaping our understanding of pneumovirus replication, assembly
and spread.

1. Introduction

Pneumoviruses are a family of enveloped, non-segmented negative-
sense RNA viruses (nsNSVs) (Afonso et al.,, 2016). Two of the most
significant pediatric respiratory viruses, human metapneumovirus
(HMPV) and respiratory syncytial virus (RSV) belong to this family.
Both viruses can cause upper and lower respiratory tract infections,
which can lead to bronchiolitis and pneumonia. According to data
surveillance obtained for children under the age of five, RSV infections
account for > 57,000 hospitalizations and over 2 million outpatient
visits per year in the US (Hall et al., 2009). For the same pediatric
population, HMPV associated infections are responsible for an esti-
mated 1 in 1000 hospitalizations, similar to those associated with in-
fluenza (Edwards et al., 2013). However, no FDA approved vaccines are
available against RSV or HMPV. A humanized monoclonal antibody
that targets the RSV fusion protein (F), palivizumab, is available for use
in premature or immunocompromised high-risk infant populations. No
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effective antivirals have been reported against HMPV, and the use in
vitro of ribavirin, heparin, and the sulfated sialyl lipid NMSO3 have had
only limited success (Wyde et al., 2003, 2004).

As with other enveloped viruses, the process of budding and release
of pneumovirus virions involves the coalescence of viral components at
specific locations on cellular membranes, followed by membrane de-
formation and pinching-off of a viral particle (El Najjar et al., 2014).
Critical roles for the viral matrix protein (M) and the glycoproteins have
been described in these processes, which implicate a high energetic
cost. Though the release of particles into the extracellular environment
is required for host-to-host viral spread, as a mechanism of spread
within the host it does present several disadvantages. Examples of these
disadvantages are the low stability of the particles in the extracellular
environment and the susceptibility of virions to be targeted by immune
cells. While the model of target cell infection resulting from primarily
single particle entry is prevalent, this concept has been challenged by
novel reports suggesting that infection of target cells may often be the
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Fig. 1. Schematic representation of the pneumovirus genome and its replication. A) The HMPV genome (red) contains different elements including the 3’ leader
(le) and 5’ trailer (tr) regions, and gene start (dark green) and gene end (maroon) signals within each of the individual genes. RSV possess a larger genome that
includes two additional proteins, NS1 and NS2 (not depicted). B) Inclusion bodies (IB, light blue) are the central replication station for pneumoviruses, and they result
from the coalescence of nucleocapsids and smaller IBs, a process dependent on actin polymerization. From IBs, nucleocapsids are transported to assembly sites were
they will be incorporated into nascent virions. Smaller IBs can also be transported long distances from the cell body.

result of infection by multiple particles. In this context, pneumoviruses
have developed alternative mechanisms of spread that potentially allow
the virus to directly deposit multiple copies of the viral genome into
target cells simultaneously. This review discusses some of the me-
chanisms for transport of multiple genome copies and their implications
for virus spread.

2. Pneumovirus genome organization and replication
2.1. Pneumovirus nucleocapsids

Pneumoviruses possess a non-segmented, negative-sense single-
stranded RNA genome that encodes between 9-11 proteins. Respiratory
syncytial virus genomic RNA (vRNA) is about 15.2 Kb in size, while for
HMPV a slightly smaller RNA molecule of about 13.2 Kb serves as the
genome (Fig. la). Pneumovirus vRNA is entirely coated by the nu-
cleoprotein (N), giving rise to long, flexible, left-handed helical nu-
cleocapsids (Bakker et al., 2013; Ruigrok et al., 2011). Each nucleo-
protein subunit binds to seven bases of the RNA (Renner et al., 2016;
Tawar et al., 2009), in contrast to the paramyxovirus nucleoprotein
subunits which bind to six RNA bases (Ruigrok et al., 2011). Pneumo-
viral nucleocapsids are additionally decorated by copies of the viral
phosphoprotein (P), which interacts with N and serves as a polymerase
cofactor (Garcia-Barreno et al., 1996). The viral phosphoprotein also
recruits the large RNA-dependent RNA-polymerase (L) and the M2-1
protein onto the nucleocapsids. It is widely accepted that viral nu-
cleocapsids not only protect the vRNA from degradation, but also serve
as the template for viral replication and transcription (Fields et al.,
2013). Sequences located at the 3’ (leader, le) and 5’ (trailer, tr) ends of
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the VRNA contain promoter signals that are important for viral genome
replication and transcription (Noton and Fearns, 2015). Replication of
the VRNA starts after the viral polymerase is recruited to the +1 site at
the 3’ le region (Cressey et al., 2018) and occurs through synthesis of a
full-length positive-sense copy of the genome, also known as anti-
genome (Fig. 1a). The antigenome and genome are simultaneously
coated by the nucleoprotein (Fields et al., 2013). Transcription of the
genome starts at the + 3 site in the promoter of the 3’ le region (Cressey
et al., 2018) and proceeds through a sequential termination-reinitiation
mechanism (Noton and Fearns, 2015). This mechanism is controlled by
the presence of gene start (GS) and gene end (GE) signals for each in-
dividual gene, which ultimately results in the synthesis of sub-genomic,
capped and poly-adenylated viral mRNAs (Fig. 1a) (Fields et al., 2013).
Unlike the vRNA or the antigenome, viral mRNAs are not coated by N,
but a recent study suggested they might contain copies of the M2-1
protein (Rincheval et al., 2017).

2.2. Inclusion bodies: the viral genome factories

Reference to inclusion body (IB) formation upon infection of Vero
cells by RSV was reported early in 1970 by using electron microscopy
(Norrby et al., 1970). Inclusion bodies induced by RSV are described as
cytosolic, compact, membraneless organelles that incorporate re-
plicative viral proteins such as N, P, and L, while excluding others such
as M or the glycoproteins G and F (Norrby et al., 1970; Garcia et al.,
1993; Carromeu et al., 2007). The minimal components necessary for
formation of RSV IBs were defined to be the RSV N and P proteins
(Garcia et al., 1993). More recently, the HMPV N and P proteins were
also shown to be the minimal components required for assembly of
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inclusion bodies (Derdowski et al., 2008). Though initially IBs were
believed to represent a station for accumulation of misfolded proteins,
several recent reports have highlighted their role as the sites of active
viral genome replication (Fig. 1b). Combining metabolic labelling with
fluorescence in situ hybridization (FISH) and high resolution micro-
scopy, viral genome replication was shown to occur within RSV IBs
(Rincheval et al., 2017). Different compartments within IBs, denomi-
nated IB-associated granules (IBAGs) were shown to contain newly
synthesized RNA, most likely viral mRNAs (Rincheval et al., 2017).
HMPV IBs were also shown to contain vRNA as well as viral mRNAs,
plus the N and P replicative proteins, while excluding assembly proteins
such as M or F (Cifuentes-Munoz et al., 2017). Interestingly, HMPV IBs
were shown to result from the coalescence of multiple smaller re-
plicative spots during the early steps of HMPV infection, revealing an
intrinsic plasticity for pneumovirus IBs (Fig. 1b) (Cifuentes-Munoz
et al., 2017). Remarkably, formation of IBs represents a replication
strategy used beyond the Pneumoviridae. Although quite different in
their host range and symptoms, the role of IBs in replication of the viral
genome has been recently reported for rhabdoviruses (Heinrich et al.,
2010; Lahaye et al., 2009), filoviruses (Becker et al., 1998; Kolesnikova
et al., 2000; Hoenen et al., 2012) and for some paramyxoviruses (Carlos
et al., 2009; Zhang et al., 2017).

2.3. Transport of viral nucleocapsids inside the cells

Inclusion bodies are a station from where newly synthesized nu-
cleocapsids must be transported to viral assembly sites at the plasma
membrane. Though the exact mechanism of how this occurs has re-
mained elusive for pneumoviruses, several reports point out an im-
portant role of the actin cytoskeleton in this process (Fig. 1b). In early
times post-infection, when large inclusion bodies have not formed, in-
coming -as well as newly synthesized- HMPV nucleocapsids coalesce in
a process that is dependent on actin polymerization (Cifuentes-Munoz
et al., 2017). Coalescence of nucleocapsids into larger IBs was shown to
be important for efficient replication and transcription of the HMPV
genome, likely due to the concentration of replicative components
within these organelles. At later times post infection, coalescence of
large IBs still occurs (Fig. 1b) (Cifuentes-Munoz et al., 2017). Coales-
cence of IBs has been additionally observed for other nsNSVs including
rabies virus (Nikolic et al., 2017), Zaire Ebola virus (ZEBOV) (Hoenen
et al., 2012), and the paramyxovirus parainfluenza virus type 3 (PIV3)
(Zhang et al., 2017). Interestingly, coalescence of PIV3 IBs was shown
to be dependent on acetylated a-tubulin, through a direct interaction
with the N-P complex (Zhang et al., 2017). Interaction of the RSV N-P
complex was not found with acetylated a-tubulin (Zhang et al., 2017),
most likely because the RSV N-P complex interacts mainly with com-
ponents of the actin cytoskeleton (Santangelo and Bao, 2007). Purified
RSV particles contain actin, but exclude other cytoskeletal components
such as vimentin, cytokeratin and tubulin (Burke et al., 1998; Ulloa
et al., 1998). Human metapneumovirus purified particles also contain
actin (El Najjar et al., 2016), and a major role of the actin cytoskeleton,
but not microtubules, in the replication and assembly of both HMPV
and RSV has been well documented (Cifuentes-Munoz et al., 2017;
Santangelo and Bao, 2007; Burke et al., 1998; Ulloa et al., 1998; El
Najjar et al., 2016; Barik, 1992; Huang et al., 1993). In this context,
pneumovirus nucleocapsid transport may operate in a similar way to
filovirus nucleocapsid transport. Marburg virus (MARV) and EBOV
nucleocapsid cytoplasmic transport was shown to be dependent on
actin polymerization and the actin nucleating complex Arp2/3, but
independent of microtubules (Schudt et al., 2015, 2013). Transport of
nucleocapsids over long distances from IBs to the tip of filopodia, the
budding sites for filoviruses, was detected (Schudt et al., 2015, 2013).
Interestingly, HMPV IBs have been observed far from their usual peri-
nuclear localization, which suggests their movement as an independent
organelle over long distances (El Najjar et al., 2016). The mechanisms
and cellular components involved in their movement remain to be
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addressed.
3. En bloc transmission of pneumoviruses

Recent evidence suggests that novel mechanisms of direct cell-to-
cell spread might be an important avenue for pneumovirus transmission
(Cifuentes-Munoz et al., 2017; Mehedi et al., 2016). These mechanisms,
and others described previously, would allow pneumovirus spread to
operate at least partially en bloc, defined here as spread of multiple
genomes occurring at the same time. This notion challenges the more
accepted concept of one infectious particle infecting one cell at the
time. Based on evidence primarily obtained for pneumoviruses but also
for other related viruses, we discuss several mechanisms for how en
bloc viral transmission could occur.

3.1. Cell-to-cell fusion

Cell to cell fusion results in the appearance of large multinucleated
cells, named syncytia. Syncytia formation has been reported for HMPV
and RSV in vitro (Hamelin et al., 2004), but their presence in vivo is less
clear (Zhang et al., 2002). However, lung autopsy specimens have re-
vealed the presence of large syncytia from both HMPV and RSV pa-
tients, which strongly argues for their formation in vivo (Neilson and
Yunis, 1990; Vargas et al., 2004). Mechanistically, syncytia formation is
facilitated by the accumulation of the viral fusion protein (F) in the
plasma membrane of infected cells. F binds to the membranes of ad-
jacent cells, and through the aperture of a fusion pore that enlarges it
completely fuses both membranes. As a result, cytosolic content mixing
occurs, and consequently infection is spread directly from cell-to-cell
(Sattentau, 2008). Once an infected cell has completely merged with an
uninfected cell, a massive transmission of nucleocapsids and IBs would
have occurred, therefore rapidly spreading infection (Fig. 2a). Inter-
estingly, an RSV F with a hyperfusogenic phenotype has been asso-
ciated with increased pathogenesis in mice (Hotard et al., 2015). Future
studies will elucidate other essential aspects of this mechanism of en
bloc viral transmission for pneumoviruses and how they impact viral
pathogenesis.

3.2. Intercellular extensions

Recent reports have described a novel route of direct cell-to-cell
spread by pneumoviruses that involves the formation of filamentous
structures that extend towards distant cells. Respiratory syncytial virus
induces formation of filopodia in lung epithelial A549 cells, which fa-
cilitate viral spread (Mehedi et al., 2016). Induction of filopodia was
shown to be dependent on the RSV F protein and the cellular actin-
related protein 2 (Arp2), an important actin-nucleation factor. At the
surface of filopodia, clusters of filamentous structures most likely cor-
responding to RSV virions were shown to contact neighboring unin-
fected cells. This phenotype suggests a mechanism of spread through
which multiple virions can be shuttled from one cell to another without
the need for release. Additionally, formation of filopodia conferred
increased motility to RSV infected A549 cells, which was shown to also
facilitate cell-to-cell spread (Mehedi et al., 2016). Formation of filo-
podia was not as prominent in HMPV-infected A549 cells, but human
bronchial epithelial BEAS2B cells infected with HMPV have been shown
to result in conspicuous formation of intercellular extensions (El Najjar
et al., 2016). Cellular factors including F-actin and the Rho GTPases
Cdc42 and Racl were shown to be important for the induction of HMPV
intercellular extensions. Similar to RSV-induced filopodia, the surface
of HMPV-induced extensions is covered by clusters of branching fila-
ments that contain viral proteins and RNA, which we hypothesize
correspond to filamentous virions. Hence, the potential massive shuttle
of HMPV virions directly from cell-to-cell arises as an efficient me-
chanism of spread (El Najjar et al., 2016). Interestingly, HMPV cell-to-
cell spread was shown to be at least partially independent of the
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Fig. 2. En bloc mechanisms of spread proposed for pneumoviruses. A) Cell-to-cell fusion is mediated by the viral fusion protein and results in formation of
syncytia. The cytosolic contents of the infected cell, including IBs and viral mRNAs, are then transferred to the newly formed giant cell. B) Direct cell-to-cell spread
mediated by actin-based intercellular extensions results in mass transport of genomes between cells. We propose this could happen either by sequential transport of
individual nucleocapsids, or by transport of IBs, which would result in a fast avenue to establish infection in the target cell. C) Newly assembled virions can contain
one or multiple copies of the viral genome. The advantage of carrying multiple genomes is that after entry, these will act in a complementary way to establish rapidly
infection by formation of IBs. Red arrowheads represent efficiency for establishment of large IBs.

appropriate attachment factors and of the presence of neutralizing an-
tibodies. This suggests that cell-to-cell spread might occur through a
direct connection between the cytoplasms of an HMPV infected cell and
a target cell. In support of this, VRNA as well as IB-like structures were
shown to be present in the HMPV-induced intercellular extensions,
potentially being transported towards neighboring cells (Fig. 2b) (El
Najjar et al., 2016). Transmission of nucleocapsids through long in-
tercellular structures has been reported for influenza virus in lung
epithelial cells (Roberts et al., 2015; Kumar et al., 2017). Though the
open-ended nature of pneumovirus intercellular extensions remains to
be addressed, this mechanism of en bloc viral transmission represents
an advantageous way to rapidly spread infection.

3.3. Polyploid virions

Pneumovirus purified particles display a wide size variability, ran-
ging from 100 nm up to 1000 nm, and from 150 nm up to 600 nm, for
RSV and HMPV, respectively. Not only is the pneumovirus particle size
quite heterogeneous, but also their shape, and usually two major forms,
pleomorphic and filamentous, can be observed (Liljeroos et al., 2013;
van den Hoogen et al., 2001; Bachi and Howe, 1973; Peret et al., 2002).
Some of the filamentous RSV particles have been observed to grow up
to 10 um in length (Bachi and Howe, 1973). In the case of HMPV, which
grows predominantly cell-associated in vitro, filaments budding from
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infected cells, potentially corresponding to viral particles, are usually
above 2 um in length (El Najjar et al., 2016; Loo et al., 2013). Though
the number of pneumovirus nucleocapsids packaged within filamentous
virions could not be determined from the above mentioned studies, it is
possible, based on the size of the particles as well as their heterogeneity,
that polyploid virions are present. Polyploid virions have been de-
scribed for paramyxoviruses including Newcastle disease virus (NDV),
measles virus and Sendai virus (SeV) (Rager et al., 2002; Loney et al.,
2009; Dahlberg and Simon, 1969). More important, the presence of
multiple genomes -up to 6 nucleocapsids in the case of SeV- within one
viral particle has been shown not to be detrimental for viral infection
(Rager et al., 2002). In the context of mass transport of genomes, the
presence of multiple nucleocapsids within particles fits with the pro-
posal that infection is more successfully initiated by multiple particles
rather than by single particles (Fig. 2c).

3.4. En bloc transmission of pneumoviruses: A double edged sword

An important feature during replication of different RNA viruses in
vitro is the synthesis of truncated forms of the vRNA denominated de-
fective viral genomes (DVGs), initially named defective viral particles,
as they can interfere with viral replication (Huang and Baltimore,
1970). Defective viral genomes exist in different conformations and, as
they are truncated forms of the genome, in order to propagate they need
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a helper virus (reviewed in (Lazzarini et al., 1981)). Early studies with
measles virus DVGs demonstrated that their presence correlated with
the establishment of persistent infections in cell lines (Rima et al.,
1977). Moreover, other nsNSV DVGs have been described as strong
inducers of the type-I IFN response (Lopez, 2014). When passaged at
high titers in cell lines, RSV as well as HMPV infections generate de-
fective interfering genomes (Treuhaft and Beem, 1982; van den Hoogen
et al., 2014). Similar to measles, the presence of RSV DVGs has been
associated with the establishment of viral persistence in cell lines
(Valdovinos and Gomez, 2003). More recently, it was shown that RSV
DVGs can stimulate the expression of antiviral genes in mice, leading to
decreased viral titers and symptoms (Sun et al., 2015). A direct corre-
lation was found in human lung tissues between the amount of DVGs
and the quality of the antiviral response mounted, which suggests DVGs
have a role in vivo (Sun et al., 2015). Considering the previous me-
chanisms described for en bloc pneumoviral transmission, and the large
presence of DVGs upon infection, a valid question that arises is whether
these mechanisms exist as a viral strategy for rapid spread or as a cel-
lular antiviral strategy to counteract the infection. Future work will
elucidate how both possibilities might operate simultaneously.

4. En bloc transmission of Pneumoviruses: Implications for viral
dynamics

The mechanisms of en bloc viral transmission described here permit
the potential transfer of many viral genomes into a target cell at the
same time. In the context of pneumoviruses, this might represent a
crucial mechanism for successful infection. Pneumoviruses are within
the group of nsRNA viruses, and estimations indicate that mutation
frequencies for these viruses can range from 10> to 10 per nucleotide
per infectious cycle (Sanjuan et al., 2010). In the absence of proof-
reading mechanisms, the high mutation frequency for these viruses
results in multiple variations of VRNA populations, which are usually
referred to as quasispecies (Borderia et al., 2011). The infection of a cell
with viral quasispecies could result in a complementation of a defect in
one genome by the presence of additional genomes. This cooperativity
would be less likely in the context of an individual viral particle car-
rying an attenuated genome. Additionally, the massive transfer of
genomes into a target cell ensures a higher initial concentration of viral
proteins and RNA, which we have previously shown to rapidly coalesce
to form large IBs (Cifuentes-Munoz et al., 2017). A higher concentration
of these replicative components would facilitate infection and would
allow the virus to bypass the critical first hours of infection, potentially
allowing high levels of viral replication before antiviral responses are in
place. Though some of these hypotheses remain merely speculative for
pneumoviruses, a deeper understanding of the virus spread mechanisms
will help us improve the way we approach the design of antiviral
strategies.
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