

The prevalence of cam hip morphology in a general population sample

E.J. Dickenson †‡, P.D.H. Wall †‡, C.E. Hutchinson †‡, D.R. Griffin †‡*

† University of Warwick, Coventry, CV4 7AL, UK

‡ University Hospitals of Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK

ARTICLE INFO

Article history:

Received 23 March 2018

Accepted 14 September 2018

Keywords:

Femoroacetabular impingement
Osteoarthritis
Cam morphology
Prevalence

SUMMARY

Objective: Cam hip morphology is associated with femoroacetabular impingement (FAI) syndrome and causes hip osteoarthritis (OA). We aimed to assess the prevalence of cam hip morphology in a sample representative of the general population, using a measure with a predefined diagnostic accuracy.

Design: Patients aged 16–65, who were admitted to a major trauma centre and received a computed tomography (CT) pelvis were retrospectively screened for eligibility. Subjects with proximal femoral, acetabular or pelvic fractures and those who were deceased were excluded. Eligible subjects were divided into 10 groups based on gender and age. 20 subjects from each group were included. Subjects' index of multiple deprivation (IMD) and ethnicity were recorded. CT imaging was assessed and alpha angles (a measure of cam morphology) measured in the anterosuperior aspect of the femoral head neck junction. An alpha angle greater than 60° was considered to represent cam morphology. This measure and technique has a predefined sensitivity of 80% and specificity of 73% to detect cam morphology associated with FAI syndrome. The prevalence of cam morphology was reported as a proportion of subjects affected with 95% confidence intervals.

Results: 200 subjects were included. The sample was broadly representative of the UK general population in terms of IMD. 155 subjects (86%) identified as white. Cam morphology was present in 47% (95% CI 42,51) of subjects.

Conclusions: In this sample, broadly representative of the UK general population 47% of subjects had cam hip morphology; a hip shape associated with FAI syndrome and OA.

© 2018 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.

Introduction

Femoroacetabular impingement (FAI) syndrome is a motion related disorder of the hip that is characterised by the symptomatic premature contact between the proximal femur and the acetabulum¹. This premature contact occurs as a result of certain hip shapes such as cam and pincer morphology². Cam morphology describes a flattening or convexity to the femoral head neck junction, which during motion impinges against the acetabular rim². Pincer morphology describes a focal or global over coverage of the femoral head by the acetabular rim, causing the rim to impinge on the femoral neck during motion².

The presence of cam morphology has been associated with the development of hip osteoarthritis (OA) since the 1960s. Murray and later Stulberg noted the high prevalence of cam hip shapes in

patient undergoing hip arthroplasty^{3,4}. In 2003 Ganz *et al.* described FAI as cause of hip OA, and in 2005 Beck *et al.* hypothesised a mechanism by which FAI syndrome causes hip OA^{2,5}. Since this description a number of cohort studies have shown an increased risk of developing OA in subjects with cam morphology^{6–8}. The same association with OA has not been demonstrated with the presence of pincer morphology⁹.

Despite the increase in the recognition of cam morphology as a cause of hip OA the epidemiology is poorly defined. A systematic review attempted to define the point prevalence in the general population and reported a estimates from 5 to 75% of the population affected¹⁰. This systematic review was unable to identify any truly general population based studies. Meta-analysis was not possible due to the heterogeneity in study populations and the variety of measures used to define cam morphology¹⁰. A recent consensus meeting stated that hip morphology is best characterised with cross sectional imaging¹. Only one study, Sutter *et al.*, has reported the diagnostic accuracy of measuring cam morphology. Sutter *et al.* defined the diagnostic accuracy of the most frequently used measure of cam morphology; the alpha (α)

* Address correspondence and reprint requests to: D.R. Griffin, University of Warwick, Coventry, CV4 7AL, UK.

E-mail addresses: E.J.L.Dickenson@warwick.ac.uk (E.J. Dickenson), P.D.H.Wall@warwick.ac.uk (P.D.H. Wall), C.E.Hutchinson@warwick.ac.uk (C.E. Hutchinson), Damian.Griffin@warwick.ac.uk (D.R. Griffin).

angle¹¹. They described that an α angles measured in the antero-superior (1:30 o'clock) aspect of the femoral head neck junction had the best receiver operator characteristics¹¹. Sutter *et al.* reported that a threshold value of 60° provided a sensitivity of 80% and specificity of 73%, for the detection of cam morphology associated with FAI syndrome¹¹. No existing studies of the prevalence of cam morphology have exclusively used this diagnostic criterion.

We aim to define the prevalence of cam morphology in the general population, using cross sectional imaging and a measure with a pre defined diagnostic accuracy.

Methods

Institutional and NHS research ethics committee approval was given on 27th August 2014 (14/NI/1078). This manuscript is reported in accordance with the STROBE guidelines¹².

Population

All patients who presented to University Hospitals of Coventry and Warwickshire (UHCW) in 2015 and received a computed tomography (CT) scan following major trauma were screened. Major trauma is defined as an injury severity score of greater than 15¹³. All subjects between 16 and 65 years were deemed eligible. Subjects were excluded if they had sustained a pelvic, acetabular or femoral fracture or were deceased.

Eligible participants were divided into male and female groups and different age groups, of 10 years: 16–25, 26–35, 36–45, 46–55 and 56–65. A sample of 20 eligible participants within each group was randomly selected, using random number generation.

Included participants' date of birth, ethnicity (as coded on hospital records), postcode, and digital communication in medicine (DICOM) files were recorded.

Outcomes

Each subjects postcode was used to calculate their index of multiple deprivation (IMD) from the UK 2011 census data¹⁴. The IMD is the official measure of relative deprivation for neighbourhoods in England¹⁵. The IMD is based on seven domains: income, employment, education, health, crime, barriers to housing and services, living environment. Areas are ranked in deciles according to these measures.

DICOM files were imported into OsiriX viewer (Geneva, Switzerland) version 8.0.1¹⁶. Multiplanar reconstruction of each hip were generated and α angles, as defined by Notzli *et al.*, were measured in the antero-superior (1:30 o'clock) aspect of the femoral head neck junction relative to the long axis of the femur¹⁷. α angles are a widely used and easily reproducible method for objectively detecting cam morphology^{17,18}. When measuring α angles a high value, such as 70° indicates cam morphology, where hips with smaller value e.g., 45° are regarded as normal. In this study hips where the α angle was greater than 60°, in the antero-superior aspect of the femoral head neck junction, were defined as having cam morphology¹¹. The presence of hip osteophytes at the femoral head neck junction was recorded¹⁹.

α angles were measured by ED, with repeat measures made 1 month later on a sample of 20 subjects to assess intra-observer reliability. PW made repeat measures on a sample of 20 subjects to assess inter-observer reliability.

Statistical analysis

The inter- and intra-observer reliability of α angles was calculated by assessing the inter class correlation coefficient for absolute

agreement. Summary statistics were generated to report the prevalence of cam morphology as a proportion of participants and hips affected, with 95% confidence intervals²⁰. A secondary analysis excluding hips and subjects with head neck osteophytes was also performed.

Sample size

A sample size calculation was performed in order to establish the number of participants that would be required to estimate the point prevalence with a power (β) of 0.8 and a confidence (α) of 0.05. The study by Hack *et al.* was used to estimate the constant proportion (the anticipated prevalence of cam morphology- 34%) for the sample size calculation²¹. Including 200 participants provided 80% power, for a confidence interval width of 0.1, anticipating a prevalence of 0.35²². This sample size allowed 20 males and females in the five different age groups to be included.

Results

The 2015 UHCW major trauma database was screened over consecutive months. After 9 months, a sufficient number of subjects had been identified to allow random sampling of each age and sex group. Fig. 1 shows how the sample was identified.

Participant characteristics

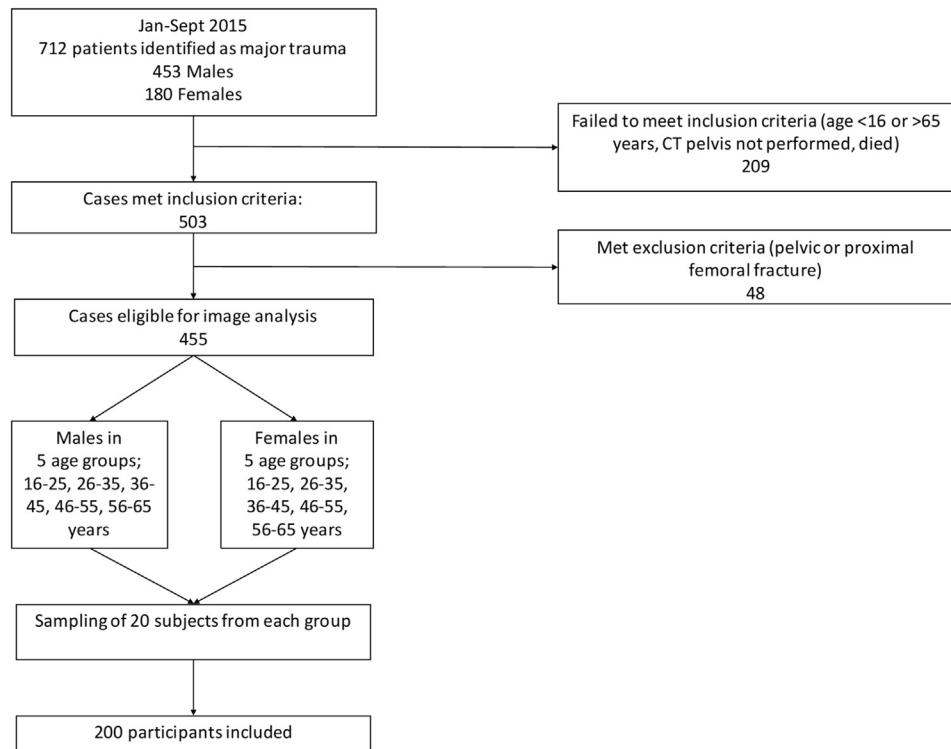
Ethnicity

Of the 200 participants included 181 had their ethnicity recorded. The majority of patients (85.6%) were white. The ethnicity of the included subjects is compared to the UK general population (2011 census data) in Table I¹⁴.

IMD

There was a broad representation in the sample from the most to the least deprived areas based on the IMD; see Table II.

Prevalence of cam morphology


The inter- and intra-observer reliability of measuring α angles was 0.873 (95% CI 0.85–0.90) and 0.903 (95% CI 0.87–0.93) respectively. The prevalence of cam morphology in the population sampled was 47% (95% CI 42–51), with 56% of men and 37% of women affected (see Table III). The prevalence estimate of cam morphology at different ages and in men and women is displayed in Table III. The prevalence of cam morphology, excluding subjects with osteophytes, was 45% (95% CI 37–52) (males 54% females 36%).

Discussion

In this study 47% of subjects' aged 16–65 (males 56% and females 37%) had cam morphology. The sample was broadly representative of the UK general population including similar proportions in terms of age, sex, ethnicity and social deprivation distribution. Cam morphology was measured using cross sectional imaging, in keeping with recent recommendations¹. The measure of cam morphology used a measure with a pre-determined diagnostic accuracy¹¹.

A recent systematic review attempted to define the prevalence of cam morphology in the general population¹⁰. This review reported that there were no general population based studies, studies used a wide range of diagnostic criteria and were of a high risk of bias¹⁰. Therefore the true prevalence could not be established.

Studies included in this systematic review that estimated the prevalence of cam morphology using cross sectional imaging include Omoumi *et al.*, Hack *et al.* and Kang *et al.*¹⁰ Omoumi *et al.* ($n = 77$) report a prevalence of 61% when assessing α angles greater

Fig. 1. Participant flow diagram.**Table I**
Ethnicity of included subjects

Ethnicity	Number of subjects (%)	% of UK general population (2011 census data) ¹⁴
White including:	155 (85.6)	86
1. English/Welsh/Scottish/Northern Irish/British		
2. Irish		
3. Gypsy or Irish Traveller		
4. Any other White background		
Mixed/Multiple ethnic groups including:	2 (1.1)	2.2
5. White and Black Caribbean		
6. White and Black African		
7. White and Asian		
8. Any other Mixed/Multiple ethnic background		
Asian/Asian including:	10 (5.5)	7.5
9. Indian		
10. Pakistani		
11. Bangladeshi		
12. Chinese		
13. Any other Asian		
Black/African/Caribbean/Black British including:	1 (0.6)	3.3
14. African		
15. Caribbean		
16. Any other Black/African/Caribbean background		
Other ethnic group including:	13 (7.2)	1
17. Arab		
18. Any other ethnic group		
Not stated	19 (n/a)	n/a

n/a = not applicable.

than 55° at 1:30 o'clock²³. Hack *et al.* ($n = 200$) reported a prevalence of cam morphology of 34% using the same criteria²¹. While Kang *et al.* ($n = 50$) report a prevalence of cam morphology of just 12% when measuring α angles greater than 55° at 3 o'clock²⁴. Each

Table II
Index of multiple deprivation

IMD decile	% of participants
Most deprived – 1	11
2	10
3	11
4	9
5	10
6	10
7	8
8	9
9	8
Least deprived – 10	9
No data	7

of these studies were rated as a high risk of bias due to the way in which their samples were derived and as a result they lack external validity. These studies also failed to use a measure of cam morphology with a pre-defined diagnostic utility¹⁰.

Our study sampled equal numbers of men and women of different ages and by reporting the ethnicity and the IMD this sample was shown to be broadly representative of the general population. The sampling frame was a clinical population which may have introduced bias in the prevalence estimate²⁵. The hospital where the sample was obtained is the second busiest major trauma centre in the UK and receives patients from across the midlands region²⁶. Despite the perception that the occurrence of major trauma is random in nature, it is recognised that young males are more frequently affected²⁷. In our sampling of equal numbers of males and female, of different ages we attempted to correct for this. This ensured the sample reflected the general populations demographics and not the population who sustain major trauma.

Strengths of this study are that the sampling frame included equal numbers of men and women of different ages and that the definition of cam morphology had an established diagnostic

Table III

Prevalence of cam morphology

5 Population and age group, years	Number of hips affected (%)	Number of participants affected (%)
Males and females aged 16–65 years	150 (38)	93 (47)
Males		
16–25	16 (40)	10 (50)
26–35	12 (30)	7 (35)
36–45	20 (50)	13 (65)
46–55	17 (43)	13 (65)
56–65	18 (45)	13 (65)
16–65	83 (42)	56 (56)
Females		
16–25	10 (25)	7 (35)
26–35	10 (25)	6 (30)
36–45	20 (50)	5 (25)
46–55	22 (55)	14 (70)
56–65	5 (13)	5 (25)
16–65	67 (34)	37 (37)
Excluding cases of OA		
Males and females aged 16–65	125 (75)	74 (45)
Males aged 16–65	66 (41)	43 (54)
Female aged 16–65	59 (34)	31 (36)

accuracy. The use of CT scanning also strengthens this study as it offers an improved sensitivity compared to plain radiographs.

A potential source of bias from sampling major trauma patients could depend on the activity level of patients. Increased levels of activity in adolescence are associated with the development of cam morphology²⁸. If those who have increased levels of activity are more likely to suffer major trauma this could result in an over estimate of the prevalence of cam morphology. The incidence of acetabular fractures (a group excluded in our study) and posterior instability is reported to be higher amongst those with cam morphology; this is a further potential source of bias, which may result in an under estimate of the true prevalence^{29,30}. Any effect of this bias on the overall prevalence estimate is likely to very small given the low incidence of these injuries³¹.

Due to the retrospective nature of the study design the authors were unable to collect data on the presence of hip symptoms or examination signs. The presence of cam morphology alone does not constitute a diagnosis of FAI syndrome. In order to be diagnosed with FAI syndrome patients' must have hip symptoms, positive examination features and associated radiographic signs (such as cam morphology)¹. Therefore we must be cautious when interpreting this studies prevalence estimate in the context of FAI syndrome.

The number of patients assessed in this study is modest compared to other studies of cam morphology^{6,32,33}. The number of subjects assessed by Agricola *et al.*, Gosvig *et al.* and Laborie *et al.* was much greater, but these studies were limited by only assessing plain radiographs. Sutter *et al.* found that measuring in the anterosuperior aspect (1:30 o'clock) of the head neck junction offered the best receiver operator characteristics¹¹. Rakhrana *et al.* also reported that measuring cam morphology on plain radiographs lacks sensitivity³⁴. This view was supported in a recent consensus meeting¹. Despite the modest size of this study, the sample size calculation showed that assessing 200 subjects could estimate the prevalence to a confidence interval width of 0.1. Indeed the 95% confidence intervals for the prevalence estimate in this study were 42–51%.

Given the relatively high prevalence reported in this study we should question whether the specificity of the chosen measure (73%) was high enough¹¹. Using a measure with a greater specificity, and therefore higher α angle threshold, will have resulted in a lower prevalence estimate. However this would reduce the

sensitivity of the measure to detect cam morphology associated with FAI syndrome. In their study determining the diagnostic utility of measuring α angles on cross sectional imaging Sutter *et al.*, gave equal emphasis to sensitivity and specificity¹¹. This is not unreasonable in a measure of this type, compared to, for example, a cancer-screening tool where greater emphasis on sensitivity might be desirable³⁵.

Different criteria for the presence of cam morphology were used in this study and those that associate cam morphology and hip OA^{6,7}. Agricola *et al.* and Nelson *et al.* measured α angles on antero-posterior radiographs (measuring 12 o'clock-superior aspect of head neck junction) to determine the association between cam morphology and OA^{6,7}. In the study by Agricola *et al.* they found α angles greater than 83°, at 12 o'clock, had the greatest risk of developing OA. It is plausible that different sizes of cam morphology (e.g., larger) may be required to cause OA, while smaller cam morphology, and therefore lower α angles, may not cause OA but are associated with FAI syndrome.

In this study different age groups up to 65 years were sampled. It was expected that some subjects, particularly in the older age groups, would have evidence of hip OA³⁶. In osteoarthritic hips, osteophytes form at the femoral head neck junction³⁷. The presence of osteophytes in participants would increase their α angles, potentially creating a false positive result for the presence of cam morphology. A sub group prevalence estimate was provided that excluded cases with radiographic OA. This reduced the prevalence estimate of cam morphology to 45% of subjects (males 54% females 36%). In order to improve our understanding of the epidemiology of FAI syndrome prospective studies that assess the association between hip pain, clinical findings and hip morphology are required; this would establish the prevalence of FAI syndrome in the population. Longitudinal studies are required to determine the factors that associate cam morphology and the development of FAI syndrome and hip OA.

Conclusion

In a sample broadly representative of the UK general population, using criteria with a known diagnostic accuracy, cam morphology was identified in 47% of the participants aged between 16 and 65 (males 56% and females 37%). When excluding subjects with hip OA this estimate reduced to 45% of subjects (males 54% females 36%).

Contributions

ED, PW, CH and DG all helped design the study, interpreted the data, drafted the manuscript and approved the final version. ED collected and analysed the data.

Competing interests statement

The authors declare they have no conflicts of interest.

Role of the funding source

This work is supported by the Health Technology Assessment Programme of the National Institute of Health Research (Grant number 13/103/02).

Disclaimer

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Acknowledgments

Dr Helen Parsons (University of Warwick) supported ED in conducting the sample size calculation.

References

- Griffin DR, Dickenson EJ, Agricola R, Awan T, Beck M, Dijkstra P, et al. The 2016 Warwick agreement on femoroacetabular impingement. *Br J Sports Med* 2016;50:1169–76.
- Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. *Clin Orthop Relat Res* 2003;417:112–20.
- Murray R. The aetiology of primary osteoarthritis of the hip. *Br J Radiol* 1965;38:810–24.
- Stulberg SD, Cordell LD, Harris W, Ramsey P, MacEwen G. Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: The Hip: Proceedings of the Third Open Scientific Meeting of the Hip Society. St Louis, MO: CV Mosby; 1975:212–28.
- Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. *J Bone Jt Surg Br Vol* 2005;87:1012–8.
- Agricola R, Heijboer MP, Bierma-Zeinstra SM, Verhaar JA, Weinans H, Waarsing JH. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). *Ann Rheumat Dis* 2012;72:918–23.
- Nelson AE, Stiller JL, Shi XA, Leyland KM, Renner JB, Schwartz TA, et al. Measures of hip morphology are related to development of worsening radiographic hip osteoarthritis over 6 to 13 year follow-up: the Johnston County Osteoarthritis Project. *Osteoarthritis Cartilage* 2016;24:443–50.
- Thomas G, Palmer A, Batra R, Kiran A, Hart D, Spector T, et al. Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study. *Osteoarthritis Cartilage* 2014;22:1504–10.
- Agricola R, Heijboer MP, Roze RH, Reijman M, Bierma-Zeinstra SM, Verhaar JA, et al. Pincer deformity does not lead to osteoarthritis of the hip whereas acetabular dysplasia does: acetabular coverage and development of osteoarthritis in a nationwide prospective cohort study (CHECK). *Osteoarthritis Cartilage* 2013;21:1514–21.
- Dickenson E, Wall PD, Robinson B, Fernandez M, Parsons H, Buchbinder R, et al. Prevalence of cam hip shape morphology: a systematic review. *Osteoarthritis Cartilage* 2016;24:949–61.
- Sutter R, Dietrich TJ, Zingg PO, Pfirrmann CW. How useful is the alpha angle for discriminating between symptomatic patients with cam-type femoroacetabular impingement and asymptomatic volunteers? *Radiology* 2012;264:514–21.
- Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandebroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *PLoS Med* 2007;4:e296.
- Baker SP, o'Neill B, Haddon Jr W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. *J Trauma Inj Infect Crit Care* 1974;14:187–96.
- Statistics OfN. Ethnicity and National Identity in England and Wales: 2011. Office for National Statistics; 2012.
- Statistics OfN. In: 2011 Census aggregate data June 2016; vol. 2017. ed2011.
- Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. *J Digit Imag* 2004;17:205–16.
- Nötzli H, Wyss T, Stoecklin C, Schmid M, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. *Bone Jt J* 2002;84:556–60.
- Mast NH, Impellizzeri F, Keller S, Leunig M. Reliability and agreement of measures used in radiographic evaluation of the adult hip. *Clin Orthop Relat Res* 2011;469:188–99.
- Kellgren J, Lawrence J. Radiological assessment of osteoarthritis. *Ann Rheumat Dis* 1957;16:494.
- Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. *Stat Med* 1998;17: 857–72.
- Hack K, Di Primio G, Rakha K, Beaule PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. *J Bone Jt Surg Am Vol* 2010;92:2436–44.
- Machin D, Campbell MJ, Tan S-B, Tan S-H. Sample size tables for clinical studies. John Wiley & Sons; 2011.
- Omoumi P, Thiery C, Michoux N, Malghem J, Lecouvet FE, Vande Berg BC. Anatomic features associated with femoroacetabular impingement are equally common in hips of old and young asymptomatic individuals without CT signs of osteoarthritis. *Am J Roentgenol* 2014;202:1078–86.
- Kang AC, Gooding AJ, Coates MH, Goh TD, Armour P, Rietveld J. Computed tomography assessment of hip joints in asymptomatic individuals in relation to femoroacetabular impingement. *Am J Sports Med* 2010;38:1160–5.
- Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. *J Clin Epidemiol* 2012;65:934–9.
- Network TAaR. In: TARN, vol. 2017. University Hospital of Coventry and Warwickshire; 2017.
- Lecky F, Woodford M, Bouamra O, Yates D. Lack of change in trauma care in England and Wales since 1994. *Emerg Med J* 2002;19:520–3.
- Agricola R, Heijboer MP, Ginai AZ, Roels P, Zadpoor AA, Verhaar JA, et al. A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. *Am J Sports Med* 2014;42:798–806.
- Krych AJ, Thompson M, Larson CM, Byrd JT, Kelly BT. Is posterior hip instability associated with cam and pincer deformity? *Clin Orthop Relat Res* 2012;470:3390–7.
- Clegg TE, Roberts CS, Greene JW, Prather BA. Hip dislocations—epidemiology, treatment, and outcomes. *Injury* 2010;41: 329–34.
- Thompson VP, Epstein HC. Traumatic dislocation of the hip. *J Bone Jt Surg Am* 1951;33:746–92.
- Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. *J Bone Jt Surg Am Vol* 2010;92:1162–9.
- Laborie LB, Lehmann TG, Engesaeter IO, Eastwood DM, Engesaeter LB, Rosendahl K. Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. *Radiology* 2011;260:494–502.
- Rakha KS, Sheikh AM, Allen D, Beaulé PE. Comparison of MRI alpha angle measurement planes in femoroacetabular impingement. *Clin Orthop Relat Res* 2009;467:660–5.
- Usher-Smith JA, Sharp SJ, Griffin SJ. The spectrum effect in tests for risk prediction, screening, and diagnosis. *BMJ* 2016;353:i3139.
- Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. *Arthritis Rheumatol* 1998;41:1343–55.
- Harrison M, Schajowicz F, Trueta J. Osteoarthritis of the hip: a study of the nature and evolution of the disease. *Bone Jt J* 1953;35:598–626.