Management of lamotrigine overdose using hemodialysis

Abhinav Agrawal, MD,⁎, Joshua N. Nogar, MD, Seth Koenig, MD

⁎ Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, New York, USA

Abstract

Lamotrigine [LTG] is primarily an anti-epileptic drug used to treat seizure disorders, depression, and bipolar disease. It is generally well tolerated with limited side effects reported during routine use. Adverse events after overdose include neurotoxicity in the form of sedation and seizure activity, as well as cardiopulmonary toxicity in the form of sodium-channel blockade and cardiovascular collapse. There is no consensus regarding the role of hemodialysis (HD) in management of lamotrigine toxicity. Based on pharmacological properties, LTG is a candidate for extracorporeal removal, however, the successful use of HD for the treatment of this poisoning is not well described. We report the case of a 44-year-old female after a LTG overdose that experienced prolonged sedation that was ultimately treated with HD with an excellent response.

Keywords:
Lamotrigine
Hemodialysis
Seizure
Respiratory depression
Overdose

1. Introduction

Lamotrigine [LTG] is primarily an anti-epileptic drug used to treat seizure disorders, depression, and bipolar disease. It is generally well tolerated with limited side effects reported during routine use. Adverse events after overdose include neurotoxicity in the form of sedation and seizure activity, as well as cardiopulmonary toxicity in the form of sodium-channel blockade and cardiovascular collapse. There is no consensus regarding the role of hemodialysis (HD) in management of lamotrigine toxicity.

2. Case report

A 44-year-old female with a history of depression and bipolar disorder was brought to the emergency department (ED) after being found unresponsive at home next to empty bottles of LTG. Upon ED presentation, the patient was obtunded with no response to verbal commands. There was no seizure activity or myoclonus. Vital signs were HR of 119 bpm, BP of 151/84 mm Hg, RR of 24 bpm, O2 saturation of 98% on 2 L supplemental oxygen. The patient underwent endotracheal intubation for airway protection and was admitted to the intensive care unit. CT head was negative for acute intracranial pathology. Her CBC showed a slightly elevated WBC count with a slight left shift. A complete metabolic panel showed elevated serum creatinine of 1.32 mg/dl. The rest of her electrolyte panel was normal. Her serum creatinine kinase (CK) was elevated at 881 U/L. Her serum LTG level was 41.7 mg/L (ref: 2.5–15 mg/L). Her serum and urine toxicology screen was positive for phencyclidine. Electrocardiogram showed sinus tachycardia with a QRS duration of 90 ms, and QTc of 440 ms. On post-intubation day 2, no purposeful neurological activity was noted and thus an electroencephalogram was performed which demonstrated moderate diffuse slowing without any epileptiform activity. A repeat head CT did not show any intracranial pathology to explain the lack of neurological recovery. This lack of neurological recovery was attributed to the CNS-depressing effects of LTG. A multi-disciplinary meeting was held with Toxicology and Nephrology and the decision was made to initiate HD in an attempt to promote neurologic recovery. The patient underwent one 4-hour session of HD. Shortly after hemodialysis the patient began following simple commands. The patient underwent another 4-hour session of HD the next day after which marked neurological improvement was observed. The patient was subsequently extubated. The patient was noted to be following complex commands and answering questions appropriately. The hemodialysis catheter was removed and the patient was transferred to a regular medical floor. The remainder of her clinical course was unremarkable.

3. Discussion

Lamotrigine, an anti-epileptic agent, is a phenyltriazine derivative which works by inhibiting the high-voltage activated calcium channels and voltage-sensitive sodium channels as well as by reducing neuronal glutamate release [1,2]. It also has an effect on the serotonin pathway with reuptake inhibition, which accounts for the majority of its use as an anti-depressant [3]. Indications for LTG use include partial, primary generalized tonic-clonic seizures, as well as generalized seizures of Lennox–
Gestalt syndrome [4]. It is also used in the treatment of bipolar depression as well as the prophylaxis of rapid-cycling bipolar disorder [5].

While most anti-epileptic medications have side-effects, lamotrigine is considered one of the safest in its class. With therapeutic dosing, central nervous system toxicity is rare, but includes anxiety, confusion, headache, insomnia, irritability, confusion and diminished cognitive function [6]. The most common adverse events from LTG use are dermatologic hypersensitivity reactions which can range from a mild rash to Stevens-Johnson syndrome [6].

In the overdose setting, patients have demonstrated ataxia, CNS depression, seizures, and QRS prolongation [7,8]. False-positive urine drug screens for PCP are commonly described.

The recommended treatment of LTG toxicity is typically supportive. Early management involves GI decontamination, if appropriate. Cardiotoxicity due to sodium channel blockade should be treated with sodium bicarbonate in a rationale similar to that of tricyclic antidepressant toxicity [9,10]. Seizures can be treated with benzodiazepines or propofol. Finally, given the lipophilic characteristics of LTG, intravenous lipid emulsion has been suggested as a possible treatment strategy in cases of severe toxicity [9].

There is no consensus regarding the role for extracorporeal removal of LTG. In a study by Fillastre et al., the elimination half life of LTG was reduced from 59 ± 28.1 h to 12.2 ± 6.4 h through the use of dialysis [11]. The LTG extraction factor associated with hemodialysis is reported reduced from 59 ± 28.1 h to 12.2 ± 6.4 h through the use of dialysis of LTG. In a study by Fillastre et al., the elimination half life of LTG was edited with HD. While found CNS depression due to a LTG whose recovery was successfully ex-

respiratory rate and wakefulness.

With a rapid positive clinical response that manifested as an improved ICU course of neurologic inactivity our patient underwent 2 cycles of HD

Financial disclosures

None.

Declaration of Competing Interest

The authors report no conflict of interest.

Acknowledgement

Department of Emergency Medicine & Division of Pulmonary, Critical Care & Sleep Medicine at Hofstra Northwell School of Medicine, Long Island Jewish Medical Center.

References