Response: Pulmonary embolism and shunt in acute myocardial infarction

We thank the authors for these clinically important observations relating to the management of right ventricular (RV) failure in the ED and their discussion of several interesting cases. Pulmonary embolism (PE) should be considered in the differential diagnosis of a patient presenting to the ED with acute RV failure. Additional etiologies to consider include valvular heart disease, tamponade physiology, and cardiomyopathies [1]. Differentiation of PE and acute myocardial infarction (AMI) can be clinically challenging, as ST elevation in leads V1–V4 may be present in up to 5% of acute PE [2]. The time pressure to achieve early revascularization for AMI can lead to delays in recognizing PE [2]. Rarely, AMI and PE can present concomitantly due to paradoxical embolism from the PE across an atrial septal defect (ASD) or patent foramen ovale (PFO) causing AMI [3]. Early cardiology consultation for echocardiography and possible revascularization are critical for this patient population [4]. PE should remain on the differential diagnosis in patients with ECG changes suggestive of AMI, particularly for patients with severe hypoxemia without pulmonary edema or in those with clinical history suggestive of PE [3].

Hypoxemia should be addressed in acute RV failure to decrease RV afterload from hypoxic pulmonary vasoconstriction [1]. The authors point out that hypoxemia may be nonresponsive to supplemental oxygen due to shunt physiology from diastolic dysfunction secondary to RV infarction [5]. Increased pulmonary artery pressures and right atrial pressures may also result in the formation of a right-to-left shunt in the setting of an ASD with a baseline left-to-right shunt. Early revascularization for eligible patients is a priority in ED management [4]. Patients with refractory hypoxemia may require additional workup in the ICU setting to include transesophageal echocardiography with agitated saline contrast to evaluate for PFO [5].

Declaration of Competing Interest
None.

Acknowledgements
WTD, TM, BL, and AK contributed substantially to the writing and editing of this correspondence. This manuscript did not utilize any grants or funding, and it has not been presented in abstract form. This letter has not been published, it is not under consideration for publication elsewhere, its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. This review does not reflect the views or opinions of the U.S. government, Department of Defense, U.S. Army, U.S. Air Force, Brooke Army Medical Center, or SAUSHEC EM Residency Program.

William T. Davis, MD
Brit Long, MD

Brooke Army Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr, Fort Sam Houston, TX 78234, United States

*Corresponding author at: 3841 Roger Brooke Dr., Fort Sam Houston, TX 78234, United States.

E-mail address: brit.long@yahoo.com.

Tim Montrief, MD

University of Miami, Jackson Memorial Hospital/Miller School of Medicine, Department of Emergency Medicine, 1611 N.W. 12th Avenue, Miami, FL 33136, United States

Alex Koyfman, MD

The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States

https://doi.org/10.1016/j.ajem.2019.05.060

References

Understanding the benefits of early high-flow nasal cannula therapy for adults with acute hypoxemic respiratory failure in the ED

To the Editor:

We have read with great interest the recent study published by Macé et al. [1], which described the impact of early high-flow nasal cannula oxygen therapy in adults presenting with acute hypoxemic respiratory failure in the ED; most notably observing faster recovery or regression of respiratory failure with HFNC. However, we believe this observation necessitates a more precise analysis of the improvement in oxygenation, and the unique factors associated with regression, to better understand the faster recovery of respiratory failure described in this study.

The study population consisted mainly of patients with community-acquired pneumonia with similar PaCO2 values that did not differ in the