As the authors state with regard to aortic dissection in ECPR, exclusion criteria for initiation and termination agreed upon by all parties.

Kevin J. hazen in his reply to ECPR in acute aortic dissection - Really a no-go? [1] asserts that the concept of using ECPR for aortic dissection is intriguing and may warrant further investigation. We overall agree that the concept of using ECPR for aortic dissection patients is intriguing and may warrant further investigation. We do, however, hesitate a change to established protocols for a perceived benefit without supporting data, especially given the resource and time expense.

We thank the authors for their reply and interest to our case report on using transverse thoracic echocardiography to identify an acute aortic dissection during ECMO initiation [1].

The creation of an emergency department ECMO program is a complex process that relies on buy-in and agreement from multiple specialties including emergency medicine, cardiothoracic surgery, cardiology, and anesthesiology. This process requires predefined inclusion and exclusion criteria for initiation and termination agreed upon by all parties. As the authors state with regard to aortic dissection in ECPR, “no studies on feasibility, safety and efficacy of ECPR in this condition exist”. While the authors report three previous case reports of aortic dissection in ECPR, with one favorable outcome, we do not think this constitutes a level of evidence that would merit change to protocols.

The authors acknowledge the risk of perfusing the false lumen, which they estimate to be low based on non-emergent femoral cannulation cases. We hesitate to extrapolate this limited data to patients that suffer cardiac arrests from an acute dissection and are actively undergoing CPR.

With regard to diagnosis accuracy of TEE for Type A aortic dissection, we refer to Alter et al., which is cited by the authors, which states that TEE has a “sensitivity of 90–98% that is equal to CT or magnetic resonance imaging (MRI)” [2]. We agree that there are potential artifacts that can mimic acute aortic dissection, however, we believe if using TEE, providers should have knowledge of these potential pitfalls and obtain views in multiple imaging planes to confirm diagnosis. We refer to our accompanying videos for multi-view confirmation.

We overall agree that the concept of using ECPR for aortic dissection patients is intriguing and may warrant further investigation. We do, however, hesitate a change to established protocols for a perceived benefit without supporting data, especially given the resource and time expense as well as risk of body fluid exposure and needle sticks to providers.

Christopher Kelly, MD*
Patrick Ockerse
University of Utah, Division of Surgery, Department of Emergency Medicine, United States of America
*Corresponding author.
E-mail address: christopher.kelly20@gmail.com (C. Kelly).

19 April 2019

https://doi.org/10.1016/j.ajem.2019.04.039

References


Pulmonary embolism in the differential diagnosis of right ventricular myocardial infarction

When right ventricular failure occurs as a result of right ventricular myocardial infarction (RVMI) [1], its manifestations can be closely simulated by right ventricular failure attributable to pulmonary embolism (PE) [2,3]. In the latter example of PE-related right ventricular failure a 35 year old previously healthy woman (a non-smoker) presented with severe abdominal pain and abdominal distension, but denied dyspnea or chest pain. Exploratory laparotomy revealed that she had a congested and very enlarged liver, and ascites as well. Further investigations included echocardiography, which disclosed a right ventricular systolic pressure of 77 mm Hg, and tricuspid regurgitation. These derangements were attributable to right ventricular failure resulting from massive PE [3]. According to Namana et al., RVMI most closely simulates PE when it presents with “chest pain, diaphoresis, nausea and vomiting with [the] hemodynamic triad: hypotension, jugular venous distension and clear lung fields” [2]. Dysrhythmias which occur in RVMI, such as atrial fibrillation and complete heart block [4], also occur in PE [5,6].

Hypoxemia is another manifestation of RVMI which can lead to a missed diagnosis of PE. The occurrence of RVMI-related hypoxemia was exemplified by a 70 year old man who presented with chest tightness and dyspnea. On examination his blood pressure was 100/60 mm Hg and jugular venous pressure was elevated. Oxygen saturation was 82% while he was breathing room air. The electrocardiogram disclosed ST segment elevation in leads V4-V6. Right sided precordial leads indicated 0.5 mm ST-segment elevation suggestive of RVMI. Transesophageal echocardiography showed infero-posterior wall akinesis. The right ventricle was dilated, with akinesis of the free and inferior wall. Furthermore, he had severely impaired right ventricular systolic function. Coronary angiography revealed total occlusion of the proximal segment of the right coronary artery. The persistence of hypoxemia (arterial partial pressure of oxygen amounting to 60 mm Hg), in spite of uptitration of inspired oxygen, prompted a search for coexistence of either PE or a right-to-left shunt. A computed pulmonary angiogram did not reveal PE. Transesophageal echocardiography (TEE) showed spontaneous constant flow from the right to the left atrium through a patent foramen ovale (PFO). This was a consequence of RVMI-related acute elevation in right atrial pressure. During his subsequent hospital stay hypoxemia gradually resolved. Repeat TEE, performed 6 weeks later, did not reveal any spontaneous right-to-left shunt through the PFO, presumably because right atrial pressure had reverted to normal levels [7]. In their account of the occurrence of a right-to-left shunt in a patient with inferior wall myocardial infarction, Albaghdadi et al. alluded to the occurrence of RVMI-related right-to-left shunting in eight cases reported in the literature [8]. They recommended that right-to-left shunting should be considered as the underlying cause of RVMI-related hypoxemia, after excluding more common causes such as pulmonary edema, underlying pulmonary disease, or pulmonary embolism [8].

Acknowledgement

I have no funding, and no conflict of interest.

Oscar M.P. Jolobe, MRCP (UK)
Medical Division, Manchester Medical Society, Simon Building, Brunswick Street, Manchester M13 9PL, United Kingdom of Great Britain and Northern Ireland
E-mail address: oscarjolobe@yahoo.co.uk.

17 May 2019

https://doi.org/10.1016/j.ajem.2019.05.059
References


Response: Pulmonary embolism and shunt in acute myocardial infarction

We thank the authors for these clinically important observations relating to the management of right ventricular (RV) failure in the ED and their discussion of several interesting cases. Pulmonary embolism (PE) should be considered in the differential diagnosis of a patient presenting to the ED with acute RV failure. Additional etiologies to consider include valvular heart disease, tamponade physiology, and cardiomyopathies [1]. Differentiation of PE and acute myocardial infarction (AMI) can be clinically challenging, as ST elevation in leads V1–V4 may be present in up to 5% of acute PE [2]. The time pressure to achieve early revascularization for AMI can lead to delays in recognizing PE [2]. Rarely, AMI and PE can present concomitantly due to paradoxical embolism from the PE across an atrial septal defect (ASD) or patent foramen ovale (PFO) causing AMI [3]. Early cardiology consultation for echocardiography and possible revascularization are critical for this patient population [4]. PE should remain on the differential diagnosis in patients with ECG changes suggestive of AMI, particularly for patients with severe hypoxemia without pulmonary edema or in those with clinical history suggestive of PE [3].

Hypoxemia should be addressed in acute RV failure to decrease RV afterload from hypoxic pulmonary vasoconstriction [1]. The authors point out that hypoxemia may be nonresponsive to supplemental oxygen due to shunt physiology from diastolic dysfunction secondary to RV infarction [5]. Increased pulmonary artery pressures and right atrial pressures may also result in the formation of a right-to-left shunt in the setting of an ASD with a baseline left-to-right shunt. Early revascularization for eligible patients is a priority in ED management [4]. Patients with refractory hypoxemia may require additional workup in the ICU setting to include transesophageal echocardiography with agitated saline contrast to evaluate for PFO [5].

Declaration of Competing Interest

None.

Acknowledgements

WTD, TM, BL, and AK contributed substantially to the writing and editing of this correspondence. This manuscript did not utilize any grants or funding, and it has not been presented in abstract form. This letter has not been published, it is not under consideration for publication elsewhere, its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. This review does not reflect the views or opinions of the U.S. government, Department of Defense, U.S. Army, U.S. Air Force, Brooke Army Medical Center, or SAUSHEC EM Residency Program.

William T. Davis, MD Brit Long, MD*
Brooke Army Medical Center, Department of Emergency Medicine, 3841 Roger Brooke Dr., Fort Sam Houston, TX 78234, United States
*Corresponding author at: 3841 Roger Brooke Dr., Fort Sam Houston, TX 78234, United States.
E-mail address: brit.long@yahoo.com.

Tim Montrief, MD
University of Miami, Jackson Memorial Hospital/Miller School of Medicine, Department of Emergency Medicine, 1611 N.W. 12th Avenue, Miami, FL 33136, United States

Alex Koyfman, MD
The University of Texas Southwestern Medical Center, Department of Emergency Medicine, 5323 Harry Hines Boulevard, Dallas, TX 75390, United States

28 May 2019

https://doi.org/10.1016/j.ajem.2019.05.060

References


Understanding the benefits of early high-flow nasal cannula therapy for adults with acute hypoxic respiratory failure in the ED

To the Editor:

We have read with great interest the recent study published by Macé et al. [1], which described the impact of early high-flow nasal cannula oxygen therapy in adults presenting with acute hypoxic respiratory failure in the ED; most notably observing faster recovery or regression of respiratory failure with HFNC.

However, we believe this observation necessitates a more precise analysis of the improvement in oxygenation, and the unique factors associated with regression, to better understand the faster recovery of respiratory failure described in this study.

The study population consisted mainly of patients with community-acquired pneumonia with similar PaCO2 values that did not differ in the