Correspondence / American Journal of Emergency Medicine 37 (2019) 972–1004

Hyperkalemia in the emergency department: Consider the use of nebulized salbutamol

Sir:

We have read with great interest an article “Hypoglycemia as a complication of intravenous insulin to treat hyperkalemia in the emergency department” in which the authors described the frequency of hypoglycemia following the use of insulin to shift potassium intracellularly [1]. They reported that hypoglycemia is a frequent complication of treatment with IV insulin in the ED. They also recommend interventions, such as standardized protocols, to assist with the ED management of hyperkalemia. Hyperkalemia is a potentially life-threatening electrolyte disturbance that can be fatal [2]. Because of the potential cardiac effects of hyperkalemia, its management is an emergency intervention and patients require a rapid drop of serum potassium level [3]. In the emergency department, we can use intravenous insulin or beta2-agonists. Here, we want to highlight the interest of a nebulized beta2-agonist, an easy-to-use tool with reduced monitoring for the management of hyperkalemia in the emergency department.

Allon et al. reported, in 10 patients on hemodialysis, a significantly greater reduction in serum potassium with 10 mg and 20 mg nebulized salbutamol compared with placebo, with a peak effect of 10 mg nebulized salbutamol at 120 min and at 60 min for 20 mg nebulized salbutamol [4]. In 17 chronic renal failure patients, Mandelberg et al. reported a significant decrease in serum potassium with 1200 μg of salbutamol in a metered-dose inhaler with a spacer device compared to placebo in a cross-over trial, with a peak effect at 60 min [5]. Importantly, Balanzario et al. reported no significant difference in serum potassium between 0.5 mg IV salbutamol and 10 mg nebulized salbutamol [6]. In a randomized cross-over trial including 12 hemodialysis patients, Allon et al. reported that IV insulin-dextrose (regular insulin 10 units with glucose 50 mL) significantly reduced serum potassium compared to nebulized salbutamol (nebulized treatment of albumin 20 mg) at 15 min but not at 30, 45 or 60 min. The maximal decrease was 0.65 ± 0.09 and 0.66 ± 0.12 mmol/L after insulin with glucose and albuterol, respectively. In this study, insulin-dextrose therapy caused significant hypoglycemia (mean plasma glucose concentration 2.8 ± 0.3 mmol/L) at 60 min, whereas albuterol was associated by a non-significant increased heart rate [7]. Ngugi et al. included 20 patients with acute and chronic renal failure and reported no significant differences in serum potassium reduction between intravenous salbutamol and intravenous insulin-dextrose at 60 and 120 min. In detail, at 2 h the decrease in serum potassium caused by insulin with glucose was 0.90 ± 0.45 mmol/L which was comparable to that caused by salbutamol 0.90 ± 0.56 mmol/L [8].

Therefore, we propose that beta2-agonists should be used preferentially by the emergency physicians for the management of hyperkalemia in the emergency department. Insulin is associated with increased monitoring with repeated measurement of blood glucose, and hypoglycemia is associated with longer stay in the emergency room. The authors propose that “emergency departments developing standard practices for checking glucose at frequent and regular intervals following the administration of intravenous insulin”. This may be complicated in an overcrowded emergency department, and beta2-agonists will not require such intensive monitoring.

We also note that robust evidence for the emergency treatment of hyperkalemia is missing. Thus, a rigorous evaluation of the first-line treatments of hyperkalemia in emergency departments is needed and a large scale randomized clinical trial is warranted.

Source of support

No sources of financial and material support to be declared.

Emmanuel Montassier
MHIAR lab, Université de Nantes, 44000 Nantes, France
Department of Emergency Medicine, CHU Nantes, Nantes, France
F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
Corresponding author at: Nantes University Hospital, Nantes University hospital 1 place A Ricordeau, 44093 Nantes, France.
E-mail address: emmanuel.montassier@chu-nantes.fr.

Mathieu Legrand
Department of Anesthesiology, Critical Care and Burn Unit, St. Louis Hospital, University Paris 7 Denis Diderot, UMR-S942, Inserm, France, and GREAT Network, Paris, France
F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France

Patrick Rossignol
Inserm, Centre d’Investigations Cliniques- 1433, and Inserm U1116, CHU Nancy, Université de Lorraine, Association Lorraine pour le Traitement de l’Insuffisance Rénale, Nancy, France
F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France

Gilles Potel
MHIAR lab, Université de Nantes, 44000 Nantes, France
Department of Emergency Medicine, CHU Nantes, Nantes, France

https://doi.org/10.1016/j.ajem.2018.10.024

References