Case Report
Scan the lung: Point-of-care ultrasound of a pulmonary consolidation with loculated pleural effusion

Jeffrey Gardecki, DO *, Kishan Patel, DO, Omid Rowshan, MD

Department of Emergency Medicine, Rowan University SOM/Jefferson Health, Stratford, NJ, USA

1. Case presentation

A 69-year-old male with a history of prior cerebrovascular accident (CVA) status post tracheostomy presented to the ED in respiratory distress. He was diaphoretic and ill-appearing on arrival. His initial vital signs were significant for a heart rate of 111 bpm, blood pressure of 141/95 mm Hg, respiratory rate of 24 breaths per minute, and a rectal temperature of 99.2 °F. Physical examination revealed an awake, cachiectic male with a midline trachea and 6.0 cuffed tracheostomy tube in place. His heart was noted to be regular with a tachycardic rate. He had diffuse rhonchi auscultated in bilateral lung fields. His abdomen was soft, nonreader, and nondistended with a PEG tube in place without surrounding inflammatory skin changes.

The emergency physician ordered a complete blood count, basic metabolic panel, cardiac biomarkers, electrocardiograph, chest X-ray, blood cultures and a lactate. The patient was administered a bolus of normal saline and switched from pressure support to volume control mode on the ventilator. A portable chest X-ray demonstrated near complete opacification of the right hemithorax. A pulmonary POCUS examination was performed utilizing a phased array transducer which demonstrated a dense consolidation of the right anterior lung with dynamic air bronchograms and an associated loculated pleural effusion [Figs. 1 & 2]. A computed tomography (CT) scan of the chest, abdomen and pelvis without contrast was performed to better delineate this sonographic finding and to investigate for associated pathology. CT findings [Figs. 3 & 4] confirmed the appearance of a complex pleural effusion with associated consolidation of the right hemithorax. The patient was diagnosed with pneumonia with a loculated parapneumonic effusion. He was initiated on broad spectrum antibiotics and admitted to the intensive care unit for further management.

2. Discussion

Thoracic point-of-care ultrasound is an established diagnostic tool for the evaluation of suspected pneumonia, pulmonary edema, pneumothorax and pleural effusion [1-4]. The rapid identification of pneumonia in the ED is of high clinical concern as it is a condition associated with high hospitalization rate and high mortality with over 900,000 deaths in individuals 65 years of age or older in the U.S. each year [1,6]. The diagnosis is confirmed when imaging modalities elucidate a pulmonary infiltrate in an individual with suggestive clinical features [6]. The most commonly used and recommended imaging modality of chest radiograph has poor sensitivity for the diagnosis of pneumonia [1,3]. In an ED based study, Cortellaro and colleagues identified a sensitivity and specificity of 99% and 95% respectively for the diagnosis of infiltrate on pulmonary ultrasound. These values far exceed the sensitivity and specificity of chest X-ray found in their study at 67% and 85% respectively and is similar to the gold standard of chest computed tomography (CT) [3,4]. The sonographic appearance of a consolidation on pulmonary ultrasound can be varied from an echotexture appearing similar to that of tissue, such as the liver, to that of a subpleural echo-poor region. Lung ultrasound is also an ideal modality for the evaluation of the mechanically ventilated patient. The International Consensus Conference on Lung Ultrasound (ICC-LUS) offered a
level A recommendation to the use of lung ultrasound over portable chest X-ray due to its improved accuracy in the detection of a consolidation [7].

Pleural effusion is another important pulmonary pathology that can be rapidly and accurately identified with ultrasound [4]. Multiple disease processes can produce pleural effusions ranging from volume overload and congestive heart failure to pleuroparenchymal infections [2]. Effusions are best identified in the gravity dependent portion of the lung based on patient positioning. They are best visualized directly above the diaphragm posteriorly and laterally in the supine or seated patient [4]. Chest X-ray is once more the most commonly used initial imaging study, yet its sensitivity remains limited and again pulmonary ultrasound is a superior study. The ICC-LUS has recognized the accuracy of thoracic ultrasound for the diagnosis of pleural effusions and consider it as accurate as the gold standard of chest CT in the diagnosis of pleural effusion [2,7]. Pulmonary ultrasound has the added benefit over chest X-ray in that it can assist in the differentiation of transudates, exudates, or hemothorax. Transudates are anechoic in appearance and can be commonly found in bilateral lungs. Exudates typically have internal echogenicity, can contain fibrin strands forming septations, are associated with thickened pleura and parenchymal lung changes. A hemothorax on pulmonary ultrasound typically appears an effusion with a homogenous echogenic appearance [2].

![Fig. 1. Thoracic POCUS image of right anterior hemithorax at the 4th intercostal space, arrows demonstrating loculations of parapneumonic effusion.](image)

![Fig. 2. Thoracic POCUS image of right anterior hemithorax at the 4th intercostal space.](image)

![Fig. 3. Axial CT image, arrow demonstrating anterior margin of loculation.](image)

![Fig. 4. Coronal CT image of parapneumonic effusion in right hemithorax.](image)
Our case is unique in that it is a rare presentation of a loculated pleural effusion with an associated pneumonia with echogenic features which mimic the appearance of the heart on echocardiography. The septations noted within the parapneumonic effusion have an appearance similar to the atria or ventricles on ultrasound. Although it is easy to discern these structures from the true appearance of the heart, it is important to recognize that pleural effusions while easily visualized with ultrasound can have a varied presentation dependent on the etiology of the effusion. This finding represents a novel presentation of a common condition visualized on a fast emerging first line imaging modality in patients with suspected pneumonia.

3. Conclusions

Point-of-care ultrasound is a core diagnostic study in the armamentarium of the emergency physician evaluating a patient with a cardio-pulmonary complaint. The increased use of POCUS to identify pulmonary consolidations and pleural effusions will have the additional benefit of identifying many interesting and novel pathologic states. A hypoechoic area noted in either hemithorax with associated adjacent atelectasis is highly suspicious for a pleural effusion. The addition of internal stranding suggests it is a complex pleural effusion and justifies the use of additional diagnostic tools.

References