Utilization of thromboelastography and a low molecular weight heparin anti-Xa assay for guidance in apixaban reversal: A case report

Brian W. Gilbert, BCPS, BCCCP, Clinical Pharmacy Specialist a,⁎, Tori R. Adams, PGY-1 Pharmacy Practice Resident a, Tessa R. Reynolds, Clinical Pharmacy Specialist a, David A. Moran, BCCCP, Clinical Pharmacy Specialist a, George J. Philip, MPH b

a Wesley Medical Center, Department of Pharmacy, 550 N. Hillside Ave, Wichita, KS 67214, United States of America
b Wesley Medical Center, Department of Acute Care Trauma & Surgery, 550 N. Hillside Ave, Wichita, KS, 67214, United States of America

Abstract

Reversal of oral factor Xa (FXa) inhibitors, such as apixaban, remains a controversial topic. However, the controversy goes beyond what reversal agent to utilize. Often times these patients present with an acute major bleed and are difficult to assess whether reversal is warranted or not. Furthermore, it is difficult to assess whether reversal was successful in a timely manner. A paucity of literature exists regarding the utilization of low molecular weight heparin (LMWH) anti-Xa assays and thromboelastography for identifying coagulopathies associated with oral FXa inhibitors. We report a case of apixaban induced coagulopathy utilizing thromboelastography and a LMWH anti-Xa assay as a guide for reversal.

1. Background

Reversal of oral factor Xa (FXa) inhibitors, such as apixaban, remains a controversial topic. There is an indistinct direction on identifying those that need reversal, which agent to utilize, and how to measure successful reversal [1]. While specific anti-Xa assays exist for apixaban, rivaroxaban, and edoxaban they are expensive and not readily available at most institutions. There is data available evaluating the utility of low molecular weight heparin (LMWH) anti-Xa assays for identifying FXa inhibitor activity; however, it is not robust and has not been validated in a randomized fashion [2]. Alternatively, rapid thromboelastography (r-TEG) has been evaluated in healthy volunteers and could serve a role in identifying patients that need reversal without erroneous factor or blood product administration [3]. We report a case of an acute major bleed associated with the presence of apixaban, assessed with both r-TEG and a LMWH anti-Xa assay to help guide the need and success of reversal utilizing four factor prothrombin complex concentrate (PCC).

2. Case

A 92 year old male presented to the emergency department after a fall from standing position striking his head with a developing scalp hematoma and with initial complaint of headache. The patient was noted to be on apixaban for a history of atrial fibrillation, of which the time of last known ingestion was unknown. He was bradycardic with a heart rate in the 50’s and hypertensive with a systolic blood pressure in the 200’s. A non-contrast computed tomography (CT) of the head revealed a subdural hematoma of approximately 1.1 cm. Given the clinical presentation, image findings, and unknown time of last ingestion of apixaban, a LMWH anti-Xa assay and r-TEG were obtained to identify whether the patient warranted reversal. The LMWH anti-Xa assay was reported at 1.83 units/mL and the initial r-TEG (Fig. 1) had a prolonged ACT time (136 s). Given the image findings and prolonged anti-coagulation results the decision was made to reverse the anticoagulation effect of apixaban with PCC (25 units/kg; 100 kg). After reversal, a repeat r-TEG (Fig. 2) and LMWH anti-Xa assay were performed to assess the need for additional PCC doses. There was reduction in R and ACT times noted compared to the initial r-TEG and there was a reduction in LMWH anti-Xa activity to 1.36 units/mL. Table 1 shows the initial and post reversal anticoagulation parameters measured. A repeat head CT 2 h after PCC reversal showed no increase in hematoma volume and no subsequent doses of PCC were given.

3. Discussion

First, while lack of routine laboratory monitoring is a benefit for the FXa inhibitors in the ambulatory care setting, it can prove problematic in acute care situations. Given the increasing utilization of these agents, it is imperative in acute major bleeds to identify coagulopathy early.
There is a paucity of data on the ideal laboratory test for these agents. Based on previously reported data, we proposed the utilization of both r-TEG and LMWH to mitigate erroneous reversal. Additionally, given that agents such as andexanet alfa, have the potential to place a significant financial burden on many institutions, utilizing available laboratory tools may be imperative for optimal guidance of reversal [4].

Second, it will be important to assess the clinical meaning of reversal of these laboratory tests. Just as reversal of INR with warfarin associated bleeds is a surrogate marker for hemostasis, we must also correlate r-TEG and LMWH anti-Xa assay correction as it relates to hemostasis in FXa inhibitor associated bleeds. While no set values have been validated for identifying FXa associated bleeds with LMWH anti-Xa assays, a proposed cut off of <0.5 units/mL may indicate negligible FXa inhibitor serum concentrations [2]. In our case, we had reduction in anti-Xa activity by 0.47 units/mL but were still above the threshold of 0.5 units/mL. However, given the reduction in ACT values from the r-TEG, the decision was made to defer additional reversal and the follow up head CT confirmed our decision was appropriate. One of the largest trials evaluating oral FXa inhibitor reversal, the ANNEXA-4 trial, found that reduction in anti-Xa activity did not predict achievement of good or excellent hemostasis [5]. It is important to note that this trial was a single non-blinded study without a comparator group and must be interpreted with caution. Interestingly, while the follow up r-TEG after reversal was normal the anti-Xa level remained elevated, which did not have an obvious explanation.

Lastly, r-TEG may be beneficial at assessing other coagulopathies expressed in addition to FXa inhibitor associated bleeding. Patients commonly take concomitant anti-platelets in addition to FXa inhibitors.

Table 1
Initial and post reversal coagulation parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior to reversal</th>
<th>Post reversal</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrated R time (minutes)</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3–0.8</td>
</tr>
<tr>
<td>Citrated K time (minutes)</td>
<td>1.2</td>
<td>1.0</td>
<td>0.5–2.3</td>
</tr>
<tr>
<td>Citrated alpha angle (degrees)</td>
<td>75</td>
<td>77</td>
<td>64–80</td>
</tr>
<tr>
<td>Citrated maximum amplitude (mm)</td>
<td>64</td>
<td>62</td>
<td>52–71</td>
</tr>
<tr>
<td>Activated clotting time (seconds)</td>
<td>136</td>
<td>113</td>
<td>86–118</td>
</tr>
<tr>
<td>Low molecular weight heparin anti-Xa assay (units/mL)</td>
<td>1.83</td>
<td>1.36</td>
<td>Prophylaxis: 0.2–0.5 Treatment: 0.6–2.0</td>
</tr>
</tbody>
</table>

![Fig. 1. Initial rapid-thromboelastography values.](image1)

![Fig. 2. Post prothrombin complex concentrate rapid-thromboelastography values.](image2)
Ultimately, the presence of anti-platelet effects cannot be assessed by anti-Xa assays but possibly identified via r-TEG and help guide early re-suscitation [6]. Currently, there is limited evidence on resuscitation of oral FXa inhibitor or anti-platelet associated bleeds, but r-TEG could serve a vital role in the future. Here we report a case of r-TEG and LMWH anti-Xa assay utilization for reversal of apixaban associated acute major bleed.

Declaration of Competing Interest

None.

References

