unscrupulous place and paying to delete information another shouldn't have in the first place is extortion and criminal in my mind. All the worse if the data gathered were to be used to commit crimes against my family or me.

While I believe in transparency, I draw the line at my right for privacy and my personal safety. Thoughtful about my profession, I have always opted out of advertisements. I'm on the “do not call,” I haven't joined social media. I believe that my right to privacy should take priority over anyone else's desire to have my information. I am not interested in having my identity stolen again (at least should take priority over anyone else's desire to have my information) I immediately reported my full name, home address, relatives of mine and multiple previous addresses. After a few more search pages, I found properties I had owned, my cell phone number, date of birth and DEA number.

Kevin M. Takakuwa MD, MA
PO Box 27574, San Francisco, CA 94127, United States of America
E-mail address: kmtakakuwa@yahoo.com

16 February 2019

https://doi.org/10.1016/j.ajem.2019.03.043

References


Electronic health record triggered hepatitis C screening in the ED

With an estimated prevalence of nearly 2.4 million in the United States (US) and over 185 million worldwide, infection with hepatitis C virus (HCV) carries a significant burden on the healthcare system [1,2]. In the US, upwards of 50% of affected patients are unaware of their diagnosis, putting them at an increased risk for progression to liver cirrhosis and subsequent organ failure [3]. With advancements in well-tolerated oral therapeutics, an increasing emphasis has been placed on early detection and routine screening practices. The Centers for Disease Control and Prevention (CDC) and the United States Preventive Services Task Force (USPSTF) recommend a one-time “birth cohort” screening for patients born between 1945 and 1965[4,5].

The Emergency Department (ED) plays an important role in the surveillance and detection of HCV infection. Existing literature supports the notion that HCV infected individuals are more likely to utilize the ED for care more than any other healthcare venue with an estimated ED prevalence rate of 4% to 18% [6–8]. Given this, the ED serves as a front-line resource in the early detection of HCV virus, particularly in the medically underserved population. Utilization of the electronic health record (EHR) to establish screening interventions has demonstrated effectiveness in cancer and viral screening in at risk patients in the ambulatory setting [9].

We conducted an IRB approved retrospective chart review to examine the utilization our EHR to initiate opt-out testing of eligible patients for HCV screening in the ED. Descriptive statistics were used to analyze data.

Our tertiary care hospital is located in an urban setting with an annual ED census of roughly 93,000 visits per year. A build was introduced into our EHR that prompted the triage nurse to ask eligible patients if he or she had ever been screened for HCV in the past. Patients were deemed eligible for inclusion based on the registered date of birth in the EHR. Those born between January 1, 1945 and December 31, 1965 were included in the screening process. If the patient had not been previously screened, or was unsure, the EHR would prompt the nurse to place an order for a screening HCV antibody test. Positive antibody screening results would be automatically be forwarded to dedicated patient navigators who would attempt to arrange for confirmatory RNA testing and outpatient follow up with the Hepatology clinic (Fig. 1). These linkages to care efforts were supported by grant funding unrelated to this study.

During the six-month timeframe from June 1, 2018 to December 31, 2018, a total of 3023 patients visited our ED and met the
inclusion criteria. Of these, 1007 (33.3%) were subsequently screened for HCV through antibody testing. Positive screens were identified in 112 (11.1%) of the cases.

Of the 112 patients that were screened, 38 (33.9%) had a confirmatory RNA test performed. Patients either had the test performed as part of their inpatient workup or after being linked to care by a patient navigator. Of the 38 that had confirmatory testing, 28 (73.7%) had a positive confirmatory test, with 10 (26.3%) having a negative result. Of the confirmed positives, 14 were newly diagnosed. The rest of the patients had been previously diagnosed, although some had been lost to follow up.

Our results demonstrate the importance of screening for HCV from the ED. Newly diagnosed cases from the ED are now provided with an opportunity to obtain treatment and potentially halt progression of disease. With appropriate oral antiviral medical therapy, curative rates for HCV approach 97% - 100% in as little as twelve weeks [10].

Linkage to care after positive screening poses a significant challenge, particularly for medically underserved patients with limited resources. Fragmented healthcare systems as well as costly diagnostics and therapeutics serve as significant barriers to healthcare access outside of the ED. Administrative efforts through the use of EHR-based screening protocols can augment detection rates and enhance surveillance efforts.

The use of electronically driven best practice advisories and triggers from the ED can strengthen efforts towards improving public health. While linkage to care remains a significant hurdle to overcome, the ED serves as an important starting point in the curative journey. Future efforts should be aimed at improving access to outpatient care through a multidisciplinary approach. Additional research is needed to identify specific barriers to successful linkage of care in an effort to enhance the role of the ED in the healthcare system.

Disclosures

MU has no disclosures to report.
GS - Gilead Sciences, research grant co-investigator.
Gilead Sciences had no role in the execution of this study or data interpretation.

Presentations: Preliminary data accepted for presentation at Society for Academic Emergency Medicine (SAEM) Annual Meeting (May 2019), however the authors are unable to present due to scheduling conflicts.

Acknowledgments

The authors would like to acknowledge Dr. Shobha Swaminathan, Associate Professor of Medicine at Rutgers New Jersey Medical School, for her work as principal investigator on grant procurement to aid in linkage of care efforts and laboratory testing.

Michael Ullo MD*Gregory Sugalski MD
Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States of America
* Corresponding author at: Department of Emergency Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, MSB E-605, United States of America.
E-mail address: michael.w.ullo@gmail.com (M. Ullo)

https://doi.org/10.1016/j.ajem.2019.03.043

20 March 2019

References

Emergency physicians routinely employ leukocyte counts as a risk stratification tool in a variety of clinical presentations. While a leukocyte count within the normal reference range is widely acknowledged as unreliable, it is nonetheless commonly interpreted as reassuring in a patient not otherwise suspected of harboring severe and acute illness. However, recent data has drawn renewed attention to immature neutrophils (“bands”) as a reliable predictor of acuity, even in the presence of a normal leukocyte count.

Peduzzi et al. reported no correlation between leukocyte counts and bacteremia in nearly 500 patients with sepsis in 1992 [1]. In 2012, Seigel et al. found that, among more than 300 patients with culture-confirmed bacteremia, 52% had normal leukocyte counts, and 17.4% had neither leukocytosis nor fever [2]. Several authors have previously reported a correlation between elevated immature neutrophil counts (“bandemia”) and bacteremia, sepsis and death [2-4]. In a study of over 2000 admitted patients with normal leukocyte counts, Drees et al. found moderate to high band counts in 16% of cases, and reported a correlation between elevated band counts and both bacteremia and death [4]. More recently, Shi et al. found steadily increasing risk for death with increasing bandemia, irrespective of leukocyte count [5]. The authors further reported bandemia with normal leukocyte count and normal heart rate in some patients requiring readmission following discharge from the ED (Table 1). Some authors have questioned the clinical utility of this research project.

Table 1

<table>
<thead>
<tr>
<th>WBC</th>
<th>Fever</th>
<th>“Bandemia”</th>
<th>Heart rate</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 k</td>
<td>No</td>
<td>11</td>
<td>106–113</td>
<td>3.7%</td>
</tr>
<tr>
<td>5.6 k</td>
<td>No</td>
<td>13</td>
<td>102–126</td>
<td></td>
</tr>
<tr>
<td>11.4 k</td>
<td>No</td>
<td>17</td>
<td>66–95</td>
<td></td>
</tr>
<tr>
<td>3.6 k</td>
<td>Yes</td>
<td>18</td>
<td>101–108</td>
<td></td>
</tr>
<tr>
<td>8.9 k</td>
<td>Yes</td>
<td>18</td>
<td>63–99</td>
<td></td>
</tr>
<tr>
<td>8.4 k</td>
<td>No</td>
<td>29</td>
<td>58–67</td>
<td>3.9%</td>
</tr>
<tr>
<td>4.0 k</td>
<td>Yes</td>
<td>33</td>
<td>107–108</td>
<td>4.9%</td>
</tr>
<tr>
<td>4.3 k</td>
<td>No</td>
<td>33</td>
<td>95–102</td>
<td></td>
</tr>
<tr>
<td>8.6 k</td>
<td>No</td>
<td>41</td>
<td>136–137</td>
<td></td>
</tr>
<tr>
<td>7.9 k</td>
<td>No</td>
<td>45</td>
<td>98–126</td>
<td></td>
</tr>
</tbody>
</table>


Emergency physicians face increasing external forces to improve both efficiency and accuracy while operating in an inherently high-stakes clinical setting. Throughput is a necessary surrogate for quality, though health outcomes remain the primary operational driver. While emergency physicians may feel compelled to find reassurance in a normal leukocyte count, the balance of evidence strongly suggests a more prudent approach would be to wait for the bands.

Conflict of interest

The authors do NOT have a financial interest or relationship to dis-close regarding this research project.

Financial support

This is a non-funded study, with no compensation or honoraria for conducting the study.

S. Davis MD
R. Shesser MD, MPH
K. Authelet BS
A. Pourmand MD, MPH

Emergency Medicine Department, George Washington University School of Medicine and Health Sciences, Washington, DC, United States

Corresponding author at: Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, 2120 L St., Washington, DC 20037, United States.
E-mail address: pourmand@gwu.edu (A. Pourmand)

28 March 2019

https://doi.org/10.1016/j.ajem.2019.03.050

References