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TGF-b signaling in intervertebral disc health and disease

S. Chen, S. Liu, K. Ma, L. Zhao, H. Lin, Z. Shao*

Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
a r t i c l e i n f o

Article history:
Received 13 December 2018
Accepted 14 May 2019

Keywords:
Transforming growth factor-b
Intervertebral disc
Nucleus pulposus
Degeneration
* Address correspondence and reprint requests to
thopaedics, Union Hospital, Tongji Medical College, Hu
and Technology, Wuhan 430022, China. Tel.: 86-27-8
5503.

E-mail address: szwpro@163.com (Z. Shao).

https://doi.org/10.1016/j.joca.2019.05.005
1063-4584/© 2019 Osteoarthritis Research Society In
s u m m a r y

Objective: This paper aims to provide a comprehensive review of the changing role of transforming
growth factor-b (TGF-b) signaling in intervertebral disc (IVD) health and disease.
Methods: A comprehensive literature search was performed using PubMed terms ‘TGF-b’ and ‘IVD’.
Results: TGF-b signaling is necessary for the development and growth of IVD, and can play a protective
role in the restoration of IVD tissues by stimulating matrix synthesis, inhibiting matrix catabolism, in-
flammatory response and cell loss. However, excessive activation of TGF-b signaling is detrimental to the
IVD, and inhibition of the aberrant TGF-b signaling can delay IVD degeneration.
Conclusions: Activation of TGF-b signaling has a promising treatment prospect for IVD degeneration,
while excessive activation of TGF-b signaling may contribute to the progression of IVD degeneration.
Studies aimed at elucidating the changing role of TGF-b signaling in IVD at different pathophysiological
stages and its specific molecular mechanisms are needed, and these studies will contribute to safe and
effective TGF-b signaling-based treatments for IVD degeneration.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Low back pain (LBP) is a common and frequently recurring
health condition, and over 80% of adults will suffer LBP during their
lifetime1,2. Moreover, LBP is the leading cause of years lived with
disability and can cause huge economic losses each year both in
developed and developing countries3,4. Intervertebral disc (IVD)
degeneration is frequently associated with LBP and is generally
thought to be the major cause of LBP5.

The IVD is the largest avascular organ in the human body and
can be macroscopically divided into three parts, including nucleus
pulposus (NP), annulus fibrous (AF) and cartilaginous endplate
(CEP)6,7. The centrally situated gelatinous NP is constituted by type
II collagen (Col2), the glycosaminoglycans (GAGs) and NP cells
(NPCs), and the outer fibrocartilaginous AF is mainly composed of
type I collagen fibers and AF cells (AFCs). The upper and lower CEPs
are similar to hyaline cartilage and enclose the disc8. Current evi-
dences demonstrate that the IVD progressively degenerates with
IVD cell loss, inflammatory response, extracellular matrix (ECM)
degradation increase and synthesis reduction9. Growth factors,
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such as the multifunctional growth factor transforming growth
factor-b (TGF-b), are essential inmaintaining IVD homeostasis10. On
the basis of current literature, we highlight the TGF-b signaling
pathway and changes in TGF-b expression, multiple functions as
well as the treatment prospect of TGF-b signaling in IVD, and aim to
help understand the changing role of TGF-b signaling in IVD health
and disease.

TGF-b signaling

In mammals, the TGF-b family includes three TGF-b members,
TGF-b1, TGF-b2 and TGF-b311. Although these three members are
highly homologous in terms of molecule structure, each member
has different biological activity and distinct temporal and spatial
expression pattern12,13. All TGF-bs are expressed as inactive pre-
cursors, which consist of a latency-associated polypeptide (LAP)
and a mature polypeptide (Fig. 1). The latent TGF-b is commonly
bound to and deposited in ECM via a latent TGF-b binding protein
(LTBP), which is disulfide-linked to the LAP14. In the IVD, me-
chanical loading can promote the activation and liberation of TGF-
b by integrins10. It has been reported that matrix metal-
loproteinases (MMPs), reactive oxygen species (ROS), proteases
and other factors can also participate in the latent TGF-b
activation15,16.

In the process of latent TGF-b activation, the mature poly-
peptide will be converted into a 25 kD dimer that acts as a ligand
td. All rights reserved.
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Fig. 1. Simplified scheme of TGF-b signaling in intervertebral disc (IVD). The latent TGF-b, consisting of LAP and a mature polypeptide, is deposited in extracellular matrix (ECM)
via LTBP. With the participation of integrins, matrix metalloproteinases (MMPs) or reactive oxygen species (ROS), the mature polypeptide is converted into the activated TGF-b and
binds to TbRI and TbRII. TbRII transphosphorylases TbRI and can induce small mother against decapentaplegic (SMAD)2/3 pathway, SMAD1/5/8 pathway and non-SMAD-dependent
noncanonical signaling pathways, such as the MAPK pathway.
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binding to cell surface TGF-b receptor complex and activates TGF-
b signaling17. The TGF-b receptor complex is a tetramer composed
of two transmembrane TGF-b type I receptors (TbRIs) and two
transmembrane TGF-b type II receptors (TbRIIs), which are
endowed with serine/threonine kinase activity18. In the initial of
tetrameric complex formation, TGF-b ligands bind to TbRIIs,
which trans-phosphorylate the glycineeserine domains of TbRIs
in juxtamembrane regions at specific serine and threonine resi-
dues19. TbRIs are also termed as activin receptor-like kinases
(ALKs). In the canonical signaling pathway, the consequently
activated TbRI (ALK5) can phosphorylate small mother against
decapentaplegic (SMAD)2 and SMAD3 on C-terminal serines, and
activated R-SMADs then form trimeric complexes with the com-
mon mediator SMAD420. These trimeric complexes translocate
into the nucleus, where they stimulate or suppress target gene
expression21. When TbRIs comprise two distinct types, e.g., ALK5
and ALK1, the activated ALK1 can mediate the phosphorylation of
SMAD1/5/8, and phosphorylated SMAD1/5/8 and SMAD2/3 often
have opposing functions in many tissues22,23. In addition, TGF-b
can also activate non-SMAD-dependent noncanonical signaling
pathways, such as the mitogen-activated protein kinase (MAPK)
pathway24,25.
TGF-b signaling in the development and growth of IVD

The IVD develops from cells contained in both the sclerotome
and notochord26. The notochord derived from the axial mesoderm
forms the NP, and the sclerotome derived from somite gives rise to
the AF and CEP27,28. At embryonic stage during the IVD develop-
ment, TGF-b directs matrix development within the notochord and
promotes the differentiation of the sclerotome into AFCs29e31. It has
been reported that the IVDs are incomplete and even missing in
TbRII conditional knock-out embryos targeted by Col2a1-Cre
transgenic mice32,33. In SMAD3 gene knock-out mice, the spine
presents with kyphosis and malformation, and the IVDs degen-
erate, which is indicated by the pathological changes of the
declined height of CEP, decreased collagen and proteoglycan con-
tent34. Recently, Peck SH et al.35 have found a significant increase in
TGF-b1 expression at P0 relative to E12.5 in mouse, which un-
derscores the central role of TGF-b signaling in the embryonic
development of the IVD. Besides, TGF-b signaling also plays an
essential role in the growth of IVD at the postnatal stage. Jin H
et al.36 generated TbRIICol2ER mice using the Col2a1-CreERT2 trans-
genic mice to specifically inactivate the TGF-b signaling in inner
AFCs in the IVD and surrounding growth plate chondrocytes. In the
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early postnatal transgenic mice (P14), they observed a noticeable
reduction in the area and length of CEP tissue and a significant
increase in the expression of genes related to matrix degradation,
such as MMP13. These results suggest that TGF-b signaling is
required for the normal development and growth of the IVD.
The changes in the expression of TGF-b signaling in IVD

Research shows that the expression of TGF-bs and TGF-b re-
ceptors changes with the increasing age and the progression of the
IVD degeneration. Interestingly, the results from different research
groups exhibit different and even opposite changes in the expres-
sion of TGF-b signaling in IVD. In a senescence-accelerated mouse
model, immunohistochemical staining results showed that the
expressions of TGF-bs and TGF-b receptors decreased with age in
IVDs37,38. And it was also reported that the expression of pSMAD2/3
in the IVDs was significantly decreased in old mice (18 months)
relative to young mice (2 months)39. However, the results from
another study suggested that the mRNA levels of TGF-b1 in both NP
and AF tissues from old rabbits (3 years) were higher than that in
the young rabbits (6 months)40. And some other studies found that
NP and AF tissues had a different change in the expression of TGF-b
signaling with the increasing age in mice or rats41,42(Table I).

In human IVD tissues, the change in the expression of TGF-b
signaling has not reached consensus either. Nerlich AG et al.43

performed a study, which included 30 IVD specimens from ca-
davers (age range 0e86 years, without consuming illness or known
back problem) in the autopsy group and 12 IVD specimens from
patients (age range 31e76 years, underwent surgery for IVD
degeneration) in the surgical group, and they observed an evident
association between increased TGF-b1expression and IVD degen-
eration. Some other research groups also confirmed that TGF-bs
and TGF-b receptors were highly expressed in the human degen-
erative IVD tissues compared with the normal control IVD
tissues44e46. And further studies indicated that the expression level
of TGF-b1 was upregulated in the degenerative disc tissues and
significantly positively associated with the pathological grades of
degenerative IVDs47,48. However, Schroeder M et al.49 found a sig-
nificant decrease of the TGF-bs expression in degenerated NP tis-
sues and a significant increase of the TGF-bs expression in
degenerated AF tissues. Abbott RD et al.50 observed that TbRI was
downregulated in severely degenerated NPCs compared to
Table I
The changes in the expression of TGF-b signaling in the intervertebral disc (IVD) of diffe

Animal Age IVD area Measure method

Senescence-accelerated mice 8, 24, 50 weeks AF, NP Immunohistochemis

C57BL/6J mice 2, 18 months NP Immunohistochemis
Western blot

New Zealand white rabbits 6 months, 3 years AF, NP Quantitative real-tim
polymerase chain rea

SpragueeDawley rats 12, 32 weeks AF, NP Reverse transcription
polymerase chain rea

FVB mice 4 day, 2, 9, 12, 26,
48 weeks

AF, NP, CEP Immunofluorescence
moderately degenerated NPCs. And findings from the study of
Tsarouhas A et al.51 identified no significant differences in the
mRNA expressions of TGF-b1 between herniated and control IVD
tissues. From these contradictory results, we can conclude that the
changes in the expression of TGF-b signaling in IVD may differ
highly depending on species, age, tissue, cell type and detection
method. Of note, TGF-bs are highly present in the IVD in a latent
inactive form, and the expression of TGF-bs might not be the same
as the actual TGF-b signaling.

The mechanisms of TGF-b signaling in the degenerated IVD

The pathophysiological characteristics of IVD degeneration
mainly include the reduction of ECM content, cell loss and in-
flammatory response52e54. Encouragingly, TGF-b signaling can
repair the degenerated IVD by targeting these three aspects (Fig. 2).

Inhibition of ECM degradation and increase of ECM synthesis

Altered ECM homeostasis is one of the most important hall-
marks of the progression of IVD degeneration, which manifests as
an imbalance between catabolic and anabolic metabolism of
ECM55. Previous studies have shown that some proinflammatory
cytokines, such as tumor necrosis factor (TNF)-a and interleukin
(IL)-1b, can be released from immune cells and disc cells within the
IVD and promote the ECM degradation by upregulating catabolic
enzymes, including MMPs and disintegrins and metalloprotease
with thrombospondin motifs (ADAMTSs)56,57. Expectedly, TGF-b
can partially reverse the proinflammatory cytokines-induced ma-
trix-degrading enzymes upregulation by regulating the MAPK
pathway and NF-kB pathway25,58e60. Recent studies also indicate
that microRNAs participate in the ECM degradation of the IVD by
targeting TGF-b signaling, and the regulation of microRNAs through
TGF-b signaling may be a novel target for IVD degeneration61,62.

In addition to the inhibition of ECM degradation of the IVD, TGF-
b signaling can also promote the synthesis of ECM63e65. GAG,
collagen and aggrecan are important components of ECM in the
IVD. Aggrecan can bind to hyaluronan and form large aggregate,
and the negatively charged GAG, which is attached to the proteo-
glycan, can attract cations to create a high osmotic pressure in
NP6,66. Accumulating evidences suggest that TGF-b can stimulate
the GAG synthesis via SMAD2/3, Ras homolog gene family member
rent animals

The measured components
of TGF-b signaling

Expression changes Reference

try TGF-b1, TGF-b2, TGF-b3,
TbRI, TbRII

The immune-positive cell ratio
decreases with age

37,38

try, pSMAD2/3, pSMAD2 The pSMAD2/3-positive cell
ratio in NP decreases with age,
and the expression of pSMAD2
decreases with age

39

e
ction

TGF-b1 The mRNA levels of TGF-b1
increases with age

40

ction
TGF-b1, TGF-b2, TGF-b3,
SMAD1, 2, 3, 5, 8

The mRNA expression of TGF-
b2, TGF-b3, SMAD3 and SMAD5
decreases with age in NP, while
themRNA expression of SMAD3
increases with age in AF

41

pSMAD1/5/8, pSMAD2/3 The pSMAD1/5/8-positive cell
ratio decreases with age in all
parts of IVD. The pSMAD2/3-
positive staining persists in the
CEP and NP, but is
downregulated in the AF

42



Fig. 2. Illustration of the positive and deleterious effects of TGF-b signaling on degenerated IVD. Activation of TGF-b signaling can delay IVD degeneration by increasing ECM
content and inhibiting cell loss as well as inflammatory response via various signaling pathways, including MAPK25,58e60,67,86, NF-kB25,97, Ras homolog gene family member A
(RHOA)/ROCK67, CCN270,72, CCN371, Wnt/b-catenin83 and PI3K/AKT86 pathways. But excessive activation of TGF-b signaling can promote the progression of IVD degeneration. Further
studies to reveal the effects of TGF-b signaling on cellular senescence and necroptosis of IVD cells and the negative role of TGF-b signaling in IVD degeneration are warranted.
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A (RHOA)/Rho-associated protein kinase (ROCK) and MAPK
pathways67e69. And in NPCs, researches show that TGF-b can
induce the expression of aggrecan by increasing CCN family protein
2 (CCN2) expression and suppressing CCN3 expression70e72.
Furthermore, TGF-b signaling has been widely confirmed to in-
crease the expression of aggrecan, proteoglycan and Col2 in IVD
degeneration organ culture models and in IVD degeneration animal
models73e76. But it is noteworthy that the animals used in these
studies are young, and the function of TGF-b as matrix synthesis
stimulating growth factor in IVD may be vary with age. Thus,
further studies to investigate the function of TGF-b as matrix syn-
thesis stimulating growth factor in aged IVD model systems are
needed.
Promotion of cell proliferation and inhibition of cell death

In the degenerated IVD, IVD cells are exposed to a more adverse
microenvironment, consisting of hypoxia, mechanical loading, low
pH, nutrient deficiency and high osmotic pressure, which is harsh
to cell viability and can lead to increased cell death77e79. It has been
reported that TGF-b1 can upregulate the AFCs proliferation, and
have synergic effects with some growth factors on cell proliferation,
including insulin-like growth factor-I (IGF-I) and fibroblast growth
factor-2 (FGF-2)80,81. In rat NPCs, exogenous administration of TGF-
b1 can promote cell cycle progression and cell proliferation by
regulating c-Myc signaling and MAPK pathway82. The study of
Hiyama A et al.83 also revealed that SMAD signal could inhibit Wnt/
b-catenin signaling and maintain the cell proliferation of rat NPCs
treated with lithium chloride.
Apart from the promotion of cell proliferation, TGF-b signaling
can delay IVD degeneration by mitigating cell death in the IVD76,84.
Apoptosis and autophagy have been confirmed to play a key role in
the progression of IVD degeneration85. Ni BB et al.86 reported that
TGF-b could protect against apoptosis of AFCs under starvation
condition by inhibiting excessive autophagy, and PI3K/AKT/mTOR
and MAPK pathways might be involved in this process. Recently,
results from our research group have suggested that receptor-
interacting protein kinase (RIPK)1 mediated necroptosis might
play an essential role in NP cell death during IVD degeneration87,88.
Regrettably, there have been no additional studies to discuss the
effect of TGF-b on the necroptosis of IVD cells. Growing evidences
demonstrate that cellular senescence is one of the major contrib-
utors to IVD degeneration89, and TGF-b signaling can regulate
cellular senescence in many other cell types90,91. However, the ef-
fect of TGF-b signaling on the regulation of cellular senescence in
IVD is still unclear, and further studies are needed.
Alleviation of inflammatory response

Inflammatory response is also strongly associated with the
progression of IVD degeneration92. During IVD degeneration, the
degenerated IVD tissue is able to spontaneously produce some
chemokines, such as monocyte chemoattractant protein (MCP)-1,
CeC motif chemokine ligand 4 (CCL4), which can attract macro-
phages to the degenerated location54. The extensive macrophage
infiltration then leads to the production of inflammatory cytokines,
particularly IL-1b and TNF-a, and accelerates the progression of IVD
degeneration by upregulation of the matrix catabolic enzymes93.
Numerous studies indicate that TGF-b treatment can not only
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suppress the release of IL-1b and TNF-a, but also inhibit the
increased expression of inflammatory cytokines-induced
MMPs94,95. On the other hand, TGF-b signaling can alleviate in-
flammatory response in the IVD by inhibiting the expression of
chemokines. Thymic stromal lymphopoietin (TSLP) is an IL-7-like
cytokine, which plays a key role in the macrophage recruitment
into the herniated disc tissue and the initiation of inflammatory
response by stimulating MCP196. Evidences have proved that
endogenous TGF-b activity could limit the expression of TSLP in a
steady state by inhibiting NF-kB activation97. Moreover, Zhang J
et al.98 reported that TGF-b1 could downregulate the expression of
CCL4 by activating the MAPK pathway. Hence, activated TGF-b
signaling can alleviate inflammatory response in the IVD by
blocking both the initiation and maintenance of inflammation.

Excessive activation of TGF-b signaling may contribute to IVD
degeneration

TGF-b is recognized as a pleiotropic cytokine, which has both
deleterious and positive effects due to various tissues and disease
states99e101. For example, in lung and liver, activation of TGF-b
signaling is validated to be necessary for organogenesis during
embryogenesis and tumor suppression at early stage, while
excessive activation of TGF-b signaling could promote tissue
fibrosis and the later tumor progression14,19. This changing role of
TGF-b signaling is particularly evident in joints under different
pathophysiologic conditions102. In young and healthy joints, the
articular cartilage has a basic expression level of TGF-b signaling
and the activation of TGF-b signaling maintains the differentiated
chondrocyte phenotype and tissue homeostasis mainly through
SMAD2/3 pathway. However, in old or osteoarthritic joint, due to
the altered expression level of TGF-b and TGF-b receptor, activation
of TGF-b signaling promote the development of osteoarthritis
mainly through SMAD1/5/8 pathway12. Recently, it has been re-
ported that overactivation of TGF-b signaling may contribute to the
progression of IVD degeneration103,104. In spine instability mouse
models, Bian Q et al.10,103 observed that aberrant mechanical
loading could lead to the excessive activation of TGF-b signaling
and IVD degeneration, and administration of TbRI (ALK5) inhibitor
suppressed the R-SMAD signaling and attenuated the IVD degen-
eration. And in a rabbit annular puncturemodel, Hu Y et al.105 found
that halofuginone could delay the IVD degeneration and the inac-
tivation of TGF-b signaling might be involved. Furthermore, the
study of Kwon YJ et al.106 suggested that TGF-b1 was increased and
could activate both SMAD2/3 and SMAD1/5/8 pathways in bovine
NPCs under degenerative condition, and the activated SMAD1/5/8
pathway could negatively regulate the SMAD2/3 signaling, which
resulted in further IVD degeneration. In human chondrocytes, it has
been confirmed that that ALK1-dependent SMAD1/5/8 signaling
can inhibit TGF-b/ALK5-dependent SMAD3-driven transcriptional
activity, which may provide a mechanistic explanation for the R-
SMAD activation differences in IVD107. Although the results above
suggest that aberrant activation of TGF-b signaling may contribute
to IVD degeneration, there are a few points to note here. First, these
results have not been verified in human IVD tissues, so further
studies with human cells are needed. Second, the expression of the
TGF-b signaling pathway components and the R-SMAD activation
change with the increasing age and the progression of the IVD
degeneration, then it can be speculated that the changing role of
TGF-b signaling is probably related to age and the different IVD
degeneration stages. However, studies on TGF-b signaling in the
IVD have always focused on young animal tissues and cells, while
for the human tissues and cells there is a bias towards aged and
degenerated material. Therefore, the studies of the role of TGF-b
signaling in different age and degeneration stage model systems
are needed. Finally, the precise mechanism of the negative role of
TGF-b signaling in IVD degeneration is still not clear and needs
more investigations (Fig. 2).
The treatment prospect of TGF-b signaling in IVD
degeneration

Currently, TGF-b signaling-based treatments for IVD degenera-
tion can be roughly divided into two main categories: (1) activated
TGF-b signaling directly repairs the IVD degeneration by increasing
the content of ECM, inhibiting the cell loss and inflammatory
response. (2) TGF-b signaling repairs the IVD degeneration indi-
rectly by combining with tissue engineering technology. Because
the direct treatment effects of TGF-b signaling have been intro-
duced in detail above, the treatments of TGF-b combined with
tissue engineering technology for IVD degeneration will be mainly
discussed below. Mesenchymal stem cell (MSC)-based tissue en-
gineering treatment has beenwidely contemplated for the repair of
IVD degeneration and has shown promising perspectives108,109.
Studies show that TGF-b plays a vital role in it110,111. On one hand,
TGF-b can synergize with other growth factors to promote the
differentiation of MSCs towards NP-like cells, which supplies the
quantity of IVD cells for the repair of IVD degeneration112,113. But in
order to better understand the physiology and function of the NP-
like cells, the cells should be evaluated by specific NP phenotypic
markers, in accordance with the consensus stated by The Spine
Research Interest Group at the 2014 Annual ORS Meeting114. On the
other hand, TGF-bmediates the communication between NPCs and
MSCs, which can improve the quality of IVD cells and promote the
regeneration of degenerated IVD tissue115. Furthermore, with the
development of various biomaterials, such as injectable hydrogels
and self-assembling polypeptide scaffolds, the TGF-b can be
released slowly to stimulate the TGF-b-induced MSCs differentia-
tion and drive the MSCs-mediated IVD regeneration process116e118.
However, considering that excessive activation of TGF-b signaling is
detrimental to the IVD, the activation level of TGF-b signaling for
IVD degeneration treatment should be appropriate to ensure the
safety and effectiveness. Of course, from another point of view,
inhibition of the aberrant TGF-b signaling might have a therapeutic
potential for IVD degeneration. Local application of the TGF-b
signaling inhibitors might be a relatively good treatment strategy,
although there are many challenges needed to be solved, such as
the choice of administration dose, time and method.
Conclusion

As outlined in this review, TGF-b signaling plays a key role in the
development, growth and tissue homeostasis of the IVD. Activation
of TGF-b signaling has a promising treatment prospect for IVD
degeneration. However, excessive activation of TGF-b signalingmay
contribute to the progression of IVD degeneration. Thus, it is urgent
to elaborate the changing role of TGF-b signaling in IVD at different
pathophysiological stages and its specific molecular mechanisms in
further studies. Only when this key point is solved can TGF-b
signaling-based treatments for IVD degeneration be safe and
effective.
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