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Abstract
Purpose To investigate the effect of 4-phenylbutyric acid (4-PBA) on intermittent hypoxia (IH)-induced liver cell injury and to
clarify the underlying mechanisms.
Methods L02 cells (normal human liver cells) were cultured in normoxic condition or subjected to intermittent hypoxia for 4, 8,
and 12 h. A part of hypoxia-treated L02 cells was applied with 4-PBA 1 h before exposure to hypoxia. The effect of 4-PBA on
liver injury, hepatocyte apoptosis, endoplasmic reticulum stress (ERS), and PERK-eIFa2-ATF4-CHOP apoptotic pathway was
investigated.
Results (1) IH caused apoptosis in hepatocyte; (2) IH caused ERS in hepatocyte; (3) IH caused hepatic injury; (4) 4-PBA
attenuated IH-induced liver cell injury; (5) 4-PBA protected liver cell from IH-induced apoptosis; (6) 4-PBA suppressed ERS-
related apoptotic pathway (PERK-eIFa2-ATF4-CHOP), but did not suppress IH-induced unfold protein reaction (UPR).
Conclusions 4-PBA could protect liver cells by suppressing IH-induced apoptosis mediated by ERS, but not by reducing the
UPR.
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Introduction

Obstructive sleep apnea (OSA) syndrome is a kind of sleep
breathing disorder which is characterized by repeated partial
or complete upper airway collapse leading to recurrent and
intermittent hypoxia during sleep [1], eventually leading to
chronic intermittent hypoxia (IH) [2]. Recent studies have
shown that the characteristic chronic IH of OSA may be an
independent risk factor for liver injury [3–7].

Accumulation studies have proved that chronic IH could
induce endoplasmic reticulum stress (ERS) [8–10]. As a way
of responding to the homeostasis of the internal environment
in eukaryotic cells, ERS has attracted more and more atten-
tion. Many factors can induce the occurrence of ERS, such as

hypoxia, ischemia-reperfusion, alcohol, drugs, poisoning, in-
fection (bacteria, virus, etc.), ultraviolet radiation, and lack of
nutrients [11]. ERS can cause unfolded protein reaction
(UPR), and UPR maintains the homeostasis of endoplasmic
reticulum by reducing the synthesis of new proteins, increas-
ing the synthesis of chaperones and the degradation of
misfolded or unfolded proteins [12]. Studies have shown that
hypoxia can induce ERS, and UPR may be a way for cells to
cope with hypoxic stimulation [13–15].

Liver cells are rich in endoplasmic reticulum, which can
synthesize and secrete many kinds of proteins. It has been
reported that ERS/UPR may play an important role in a vari-
ety of liver diseases [16], including alcohol-induced liver in-
jury, nonalcoholic fatty liver disease, hepatic insulin resis-
tance, ischemia-reperfusion injury, and other acute
hepatotoxins [17–21]. For cells, the UPR caused by ERS un-
der various stresses is a protective measure, but when the UPR
cannot maintain the homeostasis of endoplasmic reticulum,
persistent and excessive ERS can cause apoptosis [22–24].
4-phenylbutyric acid (4-PBA) is a molecular chaperone which
can stabilize protein conformation and improve protein-
folding function of endoplasmic reticulum. Recently, it has
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been found that 4-PBA can alleviate the apoptosis mediated
by ERS [25, 26].

Therefore, we hypothesized that 4-PBA could reduce IH-
induced liver injury by attenuating ERS-mediated apoptosis.
In the present study, L02 cells were pre-treated with 4-PBA
and exposed to IH; the activity of liver enzymes, hepatocyte
apoptosis, and ERS of liver cells was analyzed to evaluate the
effect of 4-PBA on IH-induced liver injury.

Materials and methods

Materials

RPMI 1640 and fetal bovine serum (FBS) were obtained from
Thermo-Fisher Scientific (Shanghai, China). 4-PBA was ob-
tained from Solarbio Life Science (Beijing, China).
Antibodies against caspase-12, glucose-regulated protein 78
(GRP78), and GADPH were purchased from Abcam
(Shanghai, China). Antibodies against caspase-3,
phosphorylated-PKR-like ER protein kinase (p-PERK),
phosphorylated-eukaryotic translation initiation factor 2 sub-
unit α (p-eIF2α), activating transcription factor 4 (ATF4), and
C/EBP homologous protein (CHOP) were purchased from
Cell Signaling Technology (Shanghai, China).

Cells

The human hepatic cell line L02 was obtained from China
Center for Type Culture Collection (Wuhan, China). L02 cells
were cultured in medium mixed with RPMI 1640, 10% (v/v)
FBS, and 100 units/ml penicillin (in 5% CO2, 37 °C) and
passaged every 3–5 days. Then cells were grown under
normoxic condition (control group, 21% O2) for 12 h or in-
termittent hypoxic (IH group, 1.5% O2 10 min then 21% O2

5 min) condition for 4, 8, and 12 h at 37 °C/5% CO2. IH
exposure was conducted using a custom-designed computer-
controlled incubator chamber. A part of IH group L02 cells
was applied with 4-PBA (10 mM) 1 h before exposure to
hypoxia to reduce the effect of ERS. The 4-PBA was added
into the culture medium.

Biochemical assays

Culture medium alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) concentration (U/L) were determined
by commercial kits (Nanjing Jiancheng Bioengineering
Institute, Jiangsu, China) following the user’s instructions.

Protein extraction

After hypoxic or normoxic incubation, the cells were washed
with ice-cold phosphate-buffered saline (PBS) for two times

then lysed in 1 ml of lysis buffer [33 mM Tris, 165 mMNaCl,
pH 7.5, 1% Triton X-100, 10% glycerol, 50 μl of 100 mM
phenylmethanesulphonylfluoride (PMSF), and 50 μl of pro-
tease inhibitor] on ice. Cell lysates were boiled for 5 min and
centrifuged at 12000g for 10 min at 4 °C, and the supernatants
were retained; the supernatants were subjected to western
blotting for caspase-3, caspase-12, GRP78, ATF4, CHOP,
phospho-PERK, and phospho-eIF2α.

Western blot analysis

For western blot, 4–20% polyacrylamide gradient gel (SDS-
PAGE) was used to analyze the supernatant containing 20 μg
protein. The separated proteins were subsequently transferred
to nitrocellulose membranes. These membranes were blotted
with the corresponding antibodies after blocking with Tris
saline buffer containing 5% dry milk and 0.1% Tween 20
for 1 h. The primary antibodies were as follows: rabbit anti-
human GRP78, rabbit anti-human caspase-3, caspase-12, rab-
bit anti-human ATF4, CHOP, phospho-PERK and phospho-
eIF2α, and rabbit anti-human GADPH. The secondary anti-
body was goat anti-rabbit IgG conjugated with horseradish
peroxidase. A chemiluminescence detection system was used
to detect the membranes. The band intensity was measured
densitometrically and was normalized to the level of GADPH.

Statistical analysis

Results are expressed as mean ± SD for n independent obser-
vations as indicated. Statistical analyses were performed using
Student’s t test by SPSS 24.0. P value less than 0.05 was
considered statistically significant difference.

Results

IH caused apoptosis in hepatocyte

The levels of caspase-3 and cleaved caspase-12 were deter-
mined to evaluate the effect of IH on hepatic apoptosis. As
shown in Fig. 1a and b, the levels of caspase-3 and cleaved
caspase-12 significantly elevated after 4 h, 8 h, and 12 h IH
(P < 0.05), and similarly, the caspase-3 and cleaved caspase-
12 level of IH 12-h group was significantly increased com-
pared with other three groups (P < 0.05).

IH caused ERS in hepatocyte

The level of molecular chaperone GRP78 was detected to
evaluate the role of IH on hepatic ERS. GRP78 was increased
after 4 h, 8 h, and 12 h IH compared with NC group (P < 0.05),
and GRP78 level of IH 12-h group was significantly increased
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compared with other three groups (P < 0.05) (Fig. 1c). This
result indicated that IH caused hepatic ERS.

IH caused hepatic injury

Culture medium ALT and AST were determined to evaluate
the effect of IH on hepatic injury. As shown in Fig. 2, the
levels of ALT and AST were significantly elevated after 12 h
IH (P < 0.05). These results showed that IH caused apoptosis
and hepatic injury.

4-PBA attenuated liver cell injury induced by IH

As shown in Fig. 2, the levels of ALTand AST in the IH group
were significantly elevated when compare to that in the NC
group (P < 0.05), but these were significantly decreased in IH
+ 4-PBA group when compared to the IH group (P < 0.05).
These findings demonstrated that 4-PBA attenuated liver in-
jury induced by IH.

4-PBA protected liver cell from IH-induced apoptosis

After 12-h exposure to IH, the expression of two important
biochemical markers of apoptosis, caspase-3 and cleaved

caspase-12, was evaluated using western blot (Fig. 3a, b).
Exposure to IH significantly upregulated the protein levels
of these two makers (P < 0.05), while these changes were
evidently restored by the treatment of 4-PBA (P < 0.05).
These results suggested that 4-PBA protected the liver from
IH-induced liver cell apoptosis.

4-PBA suppressed ERS-related apoptotic pathway

To delineate the role of 4-PBA on IH-induced ERS/UPR, west-
ern blot was used to evaluate the protein levels of GRP78. As
shown in Fig. 4a, IH increased the protein level of GRP78
(P < 0.05); however, this protein was not significantly reduced
in the IH + 4-PBA group when compared to that in the IH
group (P > 0.05). With the unchanged level of GRP78, we
further investigated the signal molecules of ERS-associated
apoptotic pathways (Fig. 4b–e). There was an evident increase
of the p-PERK, p-eIF2α, ATF4, and CHOP in IH group when
compared to the NC group (P < 0.05). However, these changes
of protein levels were all significantly reversed by the treat-
ment of 4-PBA (P < 0.05). Therefore, the present findings
demonstrated that 4-PBA did not suppress IH-induced UPR
but suppressed ERS-associated apoptosis of the liver cell by
inhibiting the PERK-eIF2α-ATF4-CHOP pathway.

Fig. 1 Hepatic apoptosis and ERS after IH (4 h, 8 h, and 12 h). The
protein levels of a cleaved caspase-3, b cleaved caspase-12, and c
GRP78 were detected by western blotting. *P < 0.05 vs. NC group,

**P < 0.05 vs. IH 4-h group, #P < 0.05 vs. IH 8-h group. NC, negative
control; GRP78, glucose-regulated protein 78

Fig. 2 Culture medium
biochemical indicator levels. The
biochemical indicators of liver
function a ALT and b ASTwere
detected by commercial kits.
*P < 0.05 vs. NC group, **P <
0.05 vs. IH group. NC, negative
control; IH, intermittent hypoxia;
4PBA, 4-phenylbutyric acid;
ALT, alanine aminotransferase;
AST, aspartate aminotransferase
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Discussion

In the present study, L02 cells were exposed to IH for 4, 8,
and 12 h and treatment with 4-PBA. It was observed that
GRP78, caspase-3, and caspase-12 elevated at most after

12-h IH with statistical significance compared to NC, 4-h
and 8-h groups; therefore, we chose 12-h IH exposure to
evaluated the effect of 4-PBA on IH-induced liver injury.
The concentration of 4-PBA is determined by previous
study [27].

Fig. 3 Apoptosis of hepatocytes.
The protein levels of a caspase-3
and b cleaved caspase-12 were
detected by western blotting.
*P < 0.05 vs. NC group,
**P < 0.05 vs. IH group. NC,
negative control; IH, intermittent
hypoxia; 4PBA, 4-phenylbutyric
acid

Fig. 4 ERS-related apoptotic pathway. The protein levels of a GRP78, b
p-PERK, c p-eIF2α, d ATF4, and e CHOP were detected by western
blotting. *P < 0.05 vs. NC group, **P < 0.05 vs. IH group. NC,
negative control; IH, intermittent hypoxia; 4PBA, 4-phenylbutyric acid;

GRP78, glucose-regulated protein 78; p-PERK, phosphorylated-PKR-
like ER protein kinase; p-eIF2α, phosphorylated-eukaryotic translation
initiation factor 2 subunit α; ATF4, activating transcription factor 4;
CHOP, C/EBP homologous protein
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It is widely recognized that OSA and its associated chronic
IH is related to the pathogenesis of various liver diseases
[28–30]. The result of animal experiment showed that the
serum ALT level of mice exposed to IH for 12 weeks was
two times that of the control group, and the swelling and
deformation of hepatocytes appeared [31]. Clinical studies
found that ALT and AST in OSA patients were higher than
those in control group [32–34], and the severity of liver injury
was related to the severity of OSA [35, 36]. A meta-analysis
showed that 13.3% of OSAHS patients were associated with
elevated ALT and 4.4% with elevated AST [37]. So there is a
view that OSA is an independent risk factor for liver injury
[38, 39]. 4-PBA can recover liver function from injuries in-
duced by drugs and lipid accumulation [40–42]; however,
whether 4-PBA has protective effects against IH-induced liver
injury remains unknown. The present results showed that 4-
PBA significantly protected liver from IH-induced injury, as
evidenced by reduced culture medium ALT and AST levels.

Animal models and clinical data suggested that apoptosis is
an important mechanism of IH-induced tissue or organ inju-
ries [43–45]. Apoptosis of hepatocyte could be observed in
the majority of types of human liver diseases, including he-
patic ischemia-reperfusion injury, fibrosis, nonalcoholic liver
diseases, alcoholic liver disease, and hepatocellular carcinoma
[46]. It was reported that exposure to IH significantly inhibited
the proliferation and accelerated apoptosis of human liver cells
[47]. In the present study, the protein level of caspase-3 and
cleaved caspase-12 was obviously increased after 12-h IH.
The expression of caspase-3 and cleaved caspase-12 is related
to apoptosis [48, 49]. Caspase-12 was a specific enzyme in the
process of ERS-mediated apoptosis and was activated to
cleaved caspase-12 during this process [50]. In contrast, the
upregulation of these two apoptosis markers was significantly
attenuated by 4-PBA treatment. These results are consistent
with previous data showing that 4-PBA could protect hepato-
cytes from chemical agents-induced apoptosis [40, 41, 51].

ERS may be activated by various disturbances, including
IH [10, 13, 52]. GRP78 is a molecular chaperone of the endo-
plasmic reticulum and is a sensitive marker of UPR response
during ERS [53]. In the state of ERS, GRP78was released and
the transmembrane proteins, PERK, ATF6, and IRE-1, were
activated to trigger three different UPR branches to protect
endoplasmic reticulum from severe damage [54]. When ERS
was excessive and prolonged, the downstream apoptotic pro-
teins were activated and turned to be executioners [55]. PERK-
eIF2α-ATF4-CHOP was an important pathway by which ex-
cessive ERS lead to cell apoptosis [56, 57]. The accumulation
and over expression of CHOP could upregulate the apoptotic
gene Bax and downregulate the anti-apoptotic gene Bcl-2; this
would lead to the release of cytochrome C from the mitochon-
drial membrane space to the cytoplasm and finally induce cell
apoptosis [58, 59]. In the present study, the PERK-eIF2α-
ATF4-CHOP apoptotic pathway was activated by IH and

was significantly reduced by 4-PBA treatment, but the IH-
induced increase of GRP78 was not significantly reduced by
4-PBA treatment. These results suggested that treatment of 4-
PBA could protect liver cells by suppressing IH-induced apo-
ptosis mediated by ERS, but not by reducing the UPR.
Although the previous results of 4-PBA to reduce the hepato-
cyte apoptosis are consistent, the results of 4-PBA on GRP78
are not consistent. Some study showed that 4-PBA could re-
duce GRP78 and inhibit ERS [27], but another study failed to
produce similar results [60]. This needs to be further studied.

Conclusion

Altogether, the present data demonstrated that 4-PBA
protected liver cell from IH-induced hepatocyte apoptosis by
suppressing the activation of PERK-eIF2α-ATF4-CHOP apo-
ptotic pathway initiated by ERS. This finding indicated a liver-
protective effect of 4-PBA in IH-induced liver injury, and it is
hypothesized that this effect is mediated at least partly by
inhibiting the ERS-induced apoptosis.
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Comment

This study shows that increasing exposure of hepatocytes to hypoxia
demonstrates hypoxia causes a dose-dependent injury which is partly
attenuated by 4-phenylbutyric acid. The role of intermittent hypoxia in
the pathophysiology of OSA-related liver dysfunction is clearly of inter-
est to scientists and clinicians alike; this study helps advance our under-
standing of this area and potential therapeutic pathways.

While this is an in vitro study, it does provide support for the notion
that currently accepted adequate notions of treatment efficacy may need
to be reconsidered. Perhaps with CPAP, some is helpful, more is better,
and most of the night is better still.

Ian Wilcox

NSW, Australia
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