

Associations between objectively assessed physical fitness levels and sleep quality in community-dwelling elderly people in South China

Xin Peng¹ · Nan Liu¹ · XiaoXia Zhang¹ · XinYu Bao¹ · YiXian Xie¹ · JunXuan Huang¹ · PeiXi Wang^{1,2} · QingFeng Du²

Received: 31 July 2018 / Revised: 28 October 2018 / Accepted: 31 October 2018 / Published online: 6 November 2018
© Springer Nature Switzerland AG 2018

Abstract

Purpose The aim of this study was to explore associations between objectively assessed physical fitness levels and sleep quality in community-dwelling elderly people in South China.

Methods One thousand one hundred thirty-six (504 males and 632 females) community-dwelling adults aged ≥ 50 years old in Dongguan City, South China, were included in the cross-sectional study. All the participants were asked to complete all prepared multi-instrument questionnaire, including the Pittsburgh Sleep Quality Index (Chinese version), for the assessment of the sleep quality and information regarding socio-demographic characteristics, lifestyle, and physical health data. Physical fitness was measured by grip strength, one-leg standing test (OLST) with eyes open, back scratch test, and the forced vital capacity (FVC).

Results The percentage of poor sleep quality among elderly people (≥ 50 years old) was up to 18.2%. Lower FVC was associated with the poorer sleep quality (adjusted OR = 0.74 per SD increase; $P = 0.009$), and participants with lower performance in back scratch test were more likely to suffer poor sleep quality (adjusted OR = 1.17 per SD increase; $P = 0.035$). The independent contribution of physical fitness tests results on the risk of poor sleep quality was 22.1%.

Conclusions Our results indicated that sleep quality was strongly associated with physical fitness among community-dwelling elderly people; the lower of the physical fitness predicted poorer sleep quality.

Keywords Sleep quality · Physical fitness · Pittsburgh Sleep Quality Index · Cross-sectional study

Introduction

Sleep is considered as the state of mind and body in a biological periodic cycle of a human, which is essential for maintaining physical and mental health. Sleep disorders are relatively common among elderly people, which are characterized as decreased efficiency of sleep and

shorter sleep times, as same as increased wake-up after sleep onset [1]. Emerging evidences reveal that poor sleep quality leads to significant negative effects on physical and mental health, such as poor sleep quality can be associated with an increased risk of falls, memory problems, chronic fatigue, frailty, mortality, and decreased physical performance [2–6]. However, sleep quality is relatively

✉ PeiXi Wang
peixi001@163.com

✉ QingFeng Du
nhyyqk@126.com

Xin Peng
609167985@qq.com

Nan Liu
13688869875@163.com

XiaoXia Zhang
zhangxiaoxia405@163.com

XinYu Bao
1027473041@qq.com

✉ YiXian Xie
yixian.xie@yahoo.com

✉ JunXuan Huang
circle_wong@yeah.net

¹ Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou 511436, People's Republic of China

² General Practice Center, Nanhai Hospital, Southern Medical University, Foshan 528244, People's Republic of China

difficult to be measured in community-based studies because of the challenge of using objective sleep instruments such as polysomnograms to assess the sleep complaints in a large population. Thus, self-reported questionnaires are employed to measure the sleep complaints in community-based studies [7]. Pittsburgh Sleep Quality Index (PSQI), always used as a self-report questionnaire, is regarded as one of the most validated and widely used questionnaire for evaluation of sleep quality and sleep disorders [8] over a time interval of 1 month. Here, it was used in our investigation during the last month as the validated scale. It is also considered as a recommended assessment implemented for the basic research on the mechanisms of sleep disorders and large-scaled epidemiological studies [9].

Physical fitness is the capability to achieve certain performance standards for physical activity and also an outcome of habitual physical activity or exercise [10]. The evaluation of the physical fitness among elderly people is of significance because the improvement in physical fitness seems to be one of the main reasons for decreasing the rates of cardiovascular disease to delay all-cause mortality [11]. Previous studies reported that regular physical activity and exercise can significantly improve sleep quality and decrease self-reported sleep disturbance [12–14].

However, to the best of our knowledge, there have not been any reports to date addressing the effect of the objectively measured physical fitness on sleep quality among southern Chinese community-dwelling elderly people (aged ≥ 50 years old). Thus, our main purpose was to explore the relationship between self-reported sleep quality and the physical fitness tests in these people. Based on the existing evidences, it was hypothesized that lower assessed physical fitness levels are associated with the poorer sleep quality in community-dwelling elderly people in South China.

Methods

Study sample

The present study was carried out in Dongguan, Guangdong province, China, which was based on a cross-sectional survey. Details of the sampling method in our study have been described elsewhere [15]. In the present study, 1225 subjects were ≥ 50 years of age. Participants were excluded from the study if they had physical dysfunctions that may potentially affect the measurements and those who had not completed the questionnaires or had not completed the physical fitness tests. Finally, completed data were available for 1136 individuals; all of which was included in the data analysis.

Assessment of the sleep quality

The PSQI consists of 19 items that generate seven dimensions: sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance, sleeping medication usage, and daytime dysfunction [9]. Each subscale ranged 0–3, and one global score of the subjective sleep quality was yielded from 0 to 21 with the sum of all these abovementioned component scores. Score level is negatively related to sleep quality. The Chinese version of the PSQI also has an overall sleep quality evaluation ($r=0.82$ –0.83) in test-retest reliability ($r=0.77$ –0.85) [16]. A total PSQI score > 5 means poor sleep quality; on the contrary, good sleep quality was defined as the score ≤ 5 of PSQI.

Measurements of physical fitness

Participants were also required to complete four health-related physical fitness tests in our study including grip strength, one-leg standing test (OLST) with eyes open, back scratch test, and forced vital capacity (FVC), which were considered to be standard indicators of physical fitness. The reasons were first, handgrip strength is a simple, convenient, and noninvasive assessment method for muscle strength and function measurement and also a good indicator to reflect an individual's overall health and nutritional status [17]. Participants were required to use a handheld dynamometer and then asked to perform a maximum-force trial for one hand. Grip strength is determined in kilograms (kg) and obtained from the commonly used hand [18]. Second, OLST is an indicator of the ability to stand on one leg [19] which is measured by a stopwatch. Standing time was recorded when the participants were standing by one leg and lifted the opposite foot off the ground. Time interval was recorded until the raised leg was put down, with maximum 60 s allowed [20]. Third, the back scratch test is a widely used test to assess the upper body flexibility. The participants should put back one of their hand to reach as far as possible down the middle of the back, and the other hand behind the back and fingers reach up as far as possible attempting to touch the middle fingers of both hands. The distance between the tips of the middle fingers was measured [21]. Fourth, FVC is a measurement of the amount of air that can be forcibly expelled out of the lungs after taking a breath to fill the lungs as much as possible. A value in liters of air is typically used to express FVC. This measurement is an important indicator of lung health and used to help determine both the presence and severity of lung diseases. Measurements were taken as participants breathe in and then breathe out (exhale) as forcefully as possible into vital lung capacity instrument.

General questionnaire

The general study questionnaire consists of information of social demographic characteristics such as age, gender, educational levels, and marital status and also including the health-related factors, such as smoking, drinking, exercise, illness within 2 weeks, annual hospitalization, and body mass index (BMI). Smoking was considered as the participant who has smoked at least 100 cigarettes as well. Drinking status was supposed to at least 30 mL of alcohol consumption per week. Exercise was defined as taking exercise at least 1 day in a week for no less than 30 min per time. BMI was calculated as weight in kg/height in m^2 . Illness within 2 weeks and annual hospitalization were defined as being sick in the past 2 weeks and being hospitalized in the last year.

Statistical analysis

All analyses were conducted by employing SPSS version 19.0 (SPSS Inc., Chicago, IL, USA). Demographic characteristics were analyzed using descriptive statistics. One-way analysis of variance (ANOVA) test was used for comparison of the PSQI score between different groups. The unpaired *t* test was used to compare means in physical fitness tests between the good and poor sleep group. A logistic regression model was employed to estimate the association between sleep quality and physical fitness measurements. Clustered logistic regression [22] was facilitated for the exploration of the impact of three clusters on sleep quality including the social demographic characteristics, health-related factors, and physical fitness. Details of the clustered logistic regression have been described elsewhere [15].

Results

Descriptive statistics of the study population

The PSQI total mean score was 3.6 ± 2.6 , and the percentage of poor sleep quality among elderly people was 18.2%. To sum up, 1136 elderly people (65.3 ± 9.7 years) were included in this study and the complete data on all variables were available. Characteristics of the participants were presented in Table 1.

Associations between physical fitness and sleep quality

Table 2 displays a lower FVC and a longer distance in back scratch test were significantly associated with poorer sleep quality. The risk of poor sleep quality was significantly increased with the decreasing FVC (crude OR = 0.69 per SD increase; 95%CI = 0.56–0.85; $P < 0.001$) and the distance in

Table 1 General characteristics of participants

Variable	Mean \pm SD/N (%)	PSQI score (mean \pm SD)	P
Socio-demographic			
Age	65.3 ± 9.7		
Gender			< 0.001
Male	504 (44.4)	3.3 ± 2.3	
Female	632 (55.6)	3.9 ± 2.7	
Marital status			0.023
Married	957 (84.2)	3.6 ± 2.5	
Single	179 (15.8)	4.0 ± 2.7	
Education			< 0.001
Senior middle school or higher	62 (5.5)	2.6 ± 2.2	
Junior middle school	288 (25.3)	3.3 ± 2.3	
Elementary school or lower	786 (69.2)	3.9 ± 2.6	
Health-related			
Smoking			0.002
No	862 (75.9)	3.8 ± 2.6	
Yes	274 (24.1)	3.2 ± 2.3	
Drinking			0.080
No	1028 (90.5)	3.7 ± 2.6	
Yes	108 (9.5)	3.3 ± 2.2	
Exercise			0.010
No	537 (47.3)	3.8 ± 2.5	
Yes	599 (52.7)	3.5 ± 2.6	
Illness within 2 weeks			< 0.001
No	685 (60.3)	3.3 ± 2.4	
Yes	451 (39.7)	4.1 ± 2.7	
Annual hospitalization			< 0.001
No	1054 (92.8)	3.6 ± 2.5	
Yes	82 (7.2)	4.7 ± 3.6	
BMI	23.9 ± 4.1		
Physical fitness			
FVC (mL)	1602.3 ± 770.8		
Back scratch test (cm)	4.9 ± 8.0		
Grip strength (kg)	23.8 ± 18.8		
OLST (s)	6.9 ± 6.7		
Dependent: sleep quality			
Good (score 0–5)	929 (81.8)		
Poor (score > 5)	207 (18.2)		

BMI, body mass index; OLST, one-leg standing test with eyes open; FVC, forced vital capacity

back scratch test conversely (crude OR = 1.19 per SD increase; 95%CI = 1.03–1.37; $P = 0.016$). The unpaired *t* test also showed a significant difference ($P < 0.001$) in the FVC and back scratch test between the good sleep quality and poor sleep quality groups (Fig. 1). On average, FVC and back scratch test in the two groups of sleep quality resulted in the

Table 2 Associations between physical fitness and sleep quality

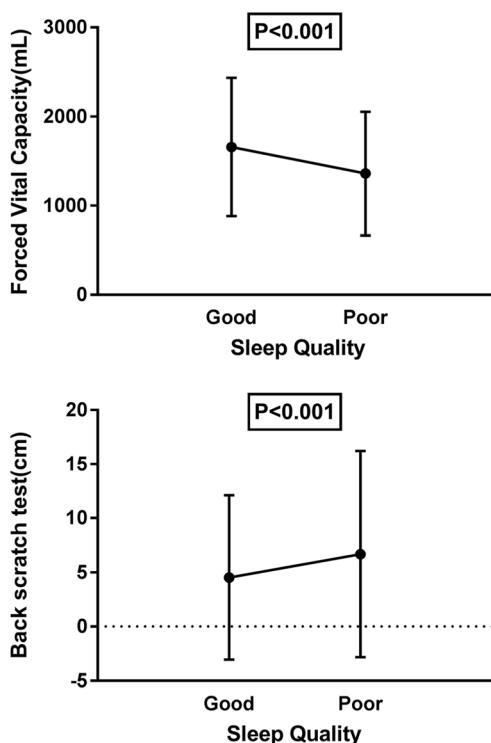
	Sleep quality		
	OR	95% CI	P
FVC	0.69	(0.56–0.85)	<0.001*
Back scratch test	1.19	(1.03–1.37)	0.016*
Grip strength	0.97	(0.79–1.18)	0.752
OLST	0.97	(0.81–1.15)	0.691

* $P < 0.05$

OR, odds ratio per SD increase in a predictor variable; CI, confidence intervals; FVC, forced vital capacity; OLST, one-leg standing test with eyes open

following: FVC in good sleep quality group ($n = 929$) was 1656.2 ± 776.8 mL and in poor sleep quality group ($n = 207$) was 1360.5 ± 695.3 mL; and the back scratch test in good sleep quality group was 4.5 ± 7.8 cm and that in poor sleep quality group was 6.7 ± 9.5 cm.

Determinants of sleep quality


The cluster logistic regression was illustrated in Table 3 to explain the sleep quality and adjusted for all the other variables. We found that only age was related to poor sleep quality in the first cluster. The independent contribution of social demographic variables was 42.9%. In those indicated health-

related variables, illness within 2 weeks and lower BMI were risk factors of sleep quality. The independent contribution of the second cluster was 35.1%. In the third cluster, FVC was negatively associated with the poor sleep quality (adjusted OR = 0.74 per SD increase; 95%CI = 0.58–0.93; $P = 0.009$), and longer distance in the back scratch test was more likely to suffer poor sleep quality (adjusted OR = 1.17 per SD increase; 95%CI = 1.07–1.36; $P = 0.035$). The independent contribution of physical fitness test results on the risk of poor sleep quality was 22.1%.

Discussion

This study was to examine associations between objectively assessed physical fitness levels and sleep quality in community-dwelling elderly people in South China. Most subjects (81.8%) thought themselves to have good sleep quality. However, the prevalence rate of poor sleep quality among elderly people in rural China was reported to be 49.7% [23]. The difference might be caused by the choice of different population, regional variations, and economic status. It was the first time to research the association between sleep quality and the objectively measured physical fitness in Chinese community-dwelling elderly people. The results of this study supported our hypothesis that there was a positive relationship between decreased physical fitness and poor sleep quality. Particularly, lower FVC and the lower performance in back scratch test proved to be associated with poorer sleep quality, even after adjusting social demographic characteristics and health-related factors as potential confounders. Similar to previous studies, age was a risk factor [24] and the most influential independent contribution to poor sleep quality. At the same time, we also proved that higher illness within 2 weeks and lower BMI are health-related factors associated to poor sleep quality. The independent influence of the health-related factors was greater than that of physical fitness but less than that of socio-demographic variables. The association between sleep quality and the three clusters suggested that age might be the main factor in poor sleep quality among Chinese community-dwelling elderly people.

We found that illness within recent 2 weeks and BMI as health-related variables were related to sleep quality in cluster logistic regression analysis. There was little evidence that the condition of illness within 2 weeks or lower BMI can predict the poor sleep quality. Illness within 2 weeks was considered as one of the risk factors of poor sleep quality in our study and showed poor health status accompanied by poor sleep quality in another study [25]. Our research also demonstrated that decreasing BMI tended to poor sleep quality. In particular, older adults with low BMI suffer a much poorer diet quality and a significantly lower health-related quality of life [26]. These suggest that some sleep problem might be related to BMI.

Fig. 1 Forced vital capacity and back scratch test in two groups of sleep quality

Table 3 Cluster logistic regression models associated with sleep quality

Predictor variable	OR ^a (95% CI)	P*	Nagelkerke R ²	Independent contribution (%)
Cluster 1				
Age	1.02 (1.00, 1.04)	0.023		
Total			0.033	42.9%
Cluster 2				
Illness within 2 weeks	1.56 (1.13, 2.15)	0.008		
BMI	0.95 (0.91, 0.99)	0.027		
Total			0.060	35.0%
Cluster 3				
FVC	0.74 (0.58, 0.93)	0.009		
Back scratch test	1.17 (1.01, 1.36)	0.035		
Total			0.077	22.1%

* Variables enter the final model if $P < 0.05$

^a Adjusted for all other variables included in the table

OR, odds ratio; CI, confidence intervals; BMI, body mass index; FVC, forced vital capacity.

Our findings showed that physical fitness was a critical independent determinant of sleep quality. A lower FVC and a longer distance in back scratch test were significantly associated with poorer sleep quality. Associations between sleep disorders and physical function also have been reported in other cross-sectional studies [27] that use different methods and tests to measure the sleep quality and to assess the physical fitness [5, 6]. Our speculation that poor physical fitness is probably an important risk factor related to sleep disorders is in agreement with previous studies that had been discussed [20, 28]. In our study, the association between sleep quality and grip strength was not shown; however, the association between sleep quality and grip strength was strong among Japanese community-dwelling older adults [20]. It might be due to the association between sleep quality and other physical fitness which was stronger than grip strength in Chinese elderly people. Disturbed sleep and poor quality of sleep are common in these patients suffering from lung disease [29, 30]. As an important indicator of lung health, lower FVC was associated with poor sleep quality in our results. The shoulder range of motion can be assessed by the back scratch test, and the upper body flexibility allows everyday tasks to be completed (e.g., combing hair and putting on clothes) [21]; and therefore, better performance in the back scratch test suggested better health status of the participants. Our results reported that the association between poor sleep quality and the lower performance in the back scratch test was statistically significant ($P = 0.016$). Although studies have found a positive correlation between sleep quality and physical fitness, there has not been any research investigating the underlying reasons of the physiology behind this association, so further research to evaluate mechanisms is needed to reveal the basic principles.

This study had several strengths and limitations. One advantage was that the most comprehensive and extensive questionnaire (PSQI) was used to assess the sleep quality and ensure the reliability of the results to the utmost extent. Another advantage was the use of objective measurement of physical fitness tests, representing the basic physical performance aspects. Furthermore, different from other studies, cluster logistic regression was used for the classification of the related factors into three clusters and explored the independent contribution possibility of each cluster in the present study. Several limitations also should be considered in our study. Firstly, the data were collected in the self-report questionnaire forms; there was a possibility that participants completed it at times exaggerating the score or understating the actual situation. Secondly, we adjusted several confounding factors in the analysis, but there are still other possible confounding factors that have not been assessed, such as chronic diseases. Finally, this was a cross-sectional study that we can find the correlation between variables, but it is difficult to determine their causal relationship; we could not draw the conclusion whether poor sleep quality precedes the decline of physical strength or vice versa.

In conclusion, our study provides an initial evidence for an association between sleep quality and physical fitness among southern Chinese community-dwelling elderly people. Future research is expected to control the limitations and elucidate the interventions for enhancing physical performance to improve sleep quality in the elderly, and further determination of the temporality of the associations is required.

Acknowledgments The authors wish to thank the study participants for their contribution to the study. We gratefully acknowledged Nan Liu, Xiao-Xia Zhang, Yi-Xian Xie, Xin-Yu Bao, and Jun-Xuan Huang for their excellent work in study coordination and data collection. Dr. Pei-

Xi Wang, Dr. Qing-Feng Du, and Ms. Xin Peng are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Authors' contributions Xin Peng designed the study, analyzed the data, and wrote the draft manuscript. Nan Liu managed the study, organized cross-sectional investigation, and wrote the draft manuscript. Xiao-Xia Zhang performed data analysis and wrote the draft manuscript. Xin-Yu Bao, Yi-Xian Xie, and Jun-Xuan Huang collected the data, performed data analysis, and edited the manuscript. Pei-Xi Wang and Qing-Feng Du designed and supervised the study, performed data analysis, and critically reviewed and edited the manuscript. All authors contributed to the interpretation of the data and approved the version for submission.

Funding This study was supported by Science and Technology Program of Guangzhou (201607010136), the Key Projects of Guangzhou Science and Technology Program (201704020056), Guangzhou 121 Talents Program (GZRS-2014-2048), and the National Natural Science Foundation of China (81872584).

Compliance with ethical standards

Ethics approval and consent to participate The study was approved by the Research Ethics Committee of the Guangzhou Medical University. The written informed consent was obtained from all study participants prior to study entry.

Consent for publication All authors gave their consent to the publication.

Competing interests The authors declare that they have no conflict of interest.

References

1. Kim M (2015) Association between objectively measured sleep quality and obesity in community-dwelling adults aged 80 years or older: a cross-sectional study. *J Korean Med Sci* 30:199–206
2. Ancoli-Israel S (2009) Sleep and its disorders in aging populations. *Sleep Med* 10(Suppl 1):S7–S11
3. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. *Sleep* 33:585–592
4. Ensrud KE, Blackwell TL, Redline S, Ancoli-Israel S, Paudel ML, Cawthon PM, Dam TT, Barrett-Connor E, Leung PC, Stone KL (2009) Sleep disturbances and frailty status in older community-dwelling men. *J Am Geriatr Soc* 57:2085–2093
5. Goldman SE, Stone KL, Ancoli-Israel S, Blackwell T, Ewing SK, Boudreau R, Cauley JA, Hall M, Matthews KA, Newman AB (2007) Poor sleep is associated with poorer physical performance and greater functional limitations in older women. *Sleep* 30:1317–1324
6. Dam TT, Ewing S, Ancoli-Israel S, Ensrud K, Redline S, Stone K (2008) Association between sleep and physical function in older men: the osteoporotic fractures in men sleep study. *J Am Geriatr Soc* 56:1665–1673
7. Pedraza S, Al SS, Ottenbacher KJ, Markides KS, Raji MA (2012) Sleep quality and sleep problems in Mexican Americans aged 75 and older. *Aging Clin Exp Res* 24:391–397
8. Buysse DJ, Reynolds CR, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. *Psychiatry Res* 28:193–213
9. Hita-Contreras F, Martinez-Lopez E, Latorre-Roman PA, Garrido F, Santos MA, Martinez-Amat A (2014) Reliability and validity of the Spanish version of the Pittsburgh Sleep Quality Index (PSQI) in patients with fibromyalgia. *Rheumatol Int* 34:929–936
10. Tuero C, De Paz JA, Marquez S (2001) Relationship of measures of leisure time physical activity to physical fitness indicators in Spanish adults. *J Sports Med Phys Fitness* 41:62–67
11. Farrell SW, Kampert JB, Kohl HR, Barlow CE, Macera CA, Paffenbarger RJ, Gibbons LW, Blain SN (1998) Influences of cardiorespiratory fitness levels and other predictors on cardiovascular disease mortality in men. *Med Sci Sports Exerc* 30:899–905
12. Hong S, Dimsdale JE (2003) Physical activity and perception of energy and fatigue in obstructive sleep apnea. *Med Sci Sports Exerc* 35:1088–1092
13. O'Connor PJ, Youngstedt SD (1995) Influence of exercise on human sleep. *Exerc Sport Sci Rev* 23:105–134
14. Sherrill DL, Kotchou K, Quan SF (1998) Association of physical activity and human sleep disorders. *Arch Intern Med* 158:1894–1898
15. Zhang HS, Li Y, Mo HY, Qiu DX, Zhao J, Luo JL, Lin WQ, Wang JJ, Wang PX (2017) A community-based cross-sectional study of sleep quality in middle-aged and older adults. *Qual Life Res* 26:923–933
16. Tsai PS, Wang SY, Wang MY, Su CT, Yang TT, Huang CJ, Fang SC (2005) Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. *Qual Life Res* 14:1943–1952
17. Norman K, Stobaus N, Gonzalez MC, Schulzke JD, Pirlich M (2011) Hand grip strength: outcome predictor and marker of nutritional status. *Clin Nutr* 30:135–142
18. Carney C, Benzeval M (2018) Social patterning in grip strength and in its association with age; a cross sectional analysis using the UK Household Longitudinal Study (UKHLS). *BMC Public Health* 18:385
19. Villas BJ, Rubenstein LZ, Ousset PJ, Faisant C, Kostek V, Nourhashemi F, Allard M, Albareda JL (1997) One-leg standing balance and functional status in a population of 512 community-living elderly persons. *Aging (Milano)* 9:95–98
20. Malinowska KB, Ikezoe T, Ichihashi N, Arai H, Murase K, Chin K, Kawaguchi T, Tabara Y, Nakayama T, Matsuda F, Tsuboyama T (2017) Self-reported quality of sleep is associated with physical strength among community-dwelling young-old adults. *Geriatr Gerontol Int* 17:1808–1813
21. Dewhurst S, Bampouras TM (2014) Intraday reliability and sensitivity of four functional ability tests in older women. *Am J Phys Med Rehabil* 93:703–707
22. Cohen YC, Rubin HR, Freedman L, Mozes B (1999) Use of a clustered model to identify factors affecting hospital length of stay. *J Clin Epidemiol* 52:1031–1036
23. Dong SN, Yao YP, Li JQ, Song YJ, Liu YK, Li XG (2013) Room temperature multiferroicity in Bi(4.2)K(0.8)Fe(2)O(9+delta). *Sci Rep* 3:1245
24. Zeitlhofer J, Schmeiser-Rieder A, Tribl G, Rosenberger A, Bolitschek J, Kapfhammer G, Saletu B, Katschnig H, Holzinger B, Popovic R, Kunze M (2000) Sleep and quality of life in the Austrian population. *Acta Neurol Scand* 102:249–257
25. Zhang HS, Mai YB, Li WD, Xi WT, Wang JM, Lei YX, Wang PX (2016) Sleep quality and health service utilization in Chinese general population: a cross-sectional study in Dongguan, China. *Sleep Med* 27:28:9–14
26. Ford DW, Jensen GL, Still C, Wood C, Mitchell DC, Erickson P, Bailey R, Smiciklas-Wright H, Coffman DL, Hartman TJ (2014) The associations between diet quality, body mass index (BMI) and

health and activity limitation index (HALex) in the Geisinger Rural Aging Study (GRAS). *J Nutr Health Aging* 18:167–170

27. Malinowska KB, Okura M, Ogita M, Yamamoto M, Nakai T, Numata T, Tsuboyama T, Arai H (2016) Effect of self-reported quality of sleep on mobility in older adults. *Geriatr Gerontol Int* 16:266–271

28. Kim M, Yoshida H, Sasai H, Kojima N, Kim H (2015) Association between objectively measured sleep quality and physical function among community-dwelling oldest old Japanese: a cross-sectional study. *Geriatr Gerontol Int* 15:1040–1048

29. Won CH, Kryger M (2014) Sleep in patients with restrictive lung disease. *Clin Chest Med* 35:505–512

30. Dreher M, Kruger S, Schulze-Olden S, Keszei A, Storre JH, Woehrle H, Arzt M, Muller T (2018) Sleep-disordered breathing in patients with newly diagnosed lung cancer. *BMC Pulm Med* 18: 72