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Abstract

Rapid eye movement (REM) sleep was discovered nearly 60 years ago. This stage of sleep accounts for approximately a quarter
of total sleep time in healthy adults, and it is mostly concentrated in the second half of the sleep period. The majority of research
on REM sleep has focused on neurocognition. More recently, however, there has been a growing interest in understanding
whether obstructive sleep apnea (OSA) during the two main stages of sleep (REM and non-REM sleep) leads to different
cardiometabolic and neurocognitive risk. In this review, we discuss the growing evidence indicating that OSA during REM
sleep is a prevalent disorder that is independently associated with adverse cardiovascular, metabolic, and neurocognitive out-
comes. From a therapeutic standpoint, we discuss limitations of continuous positive airway pressure (CPAP) therapy given that 3
or 4 h of CPAP use from the beginning of the sleep period would leave 75% or 60% of obstructive events during REM sleep
untreated. We also review potential pharmacologic approaches to treating OSA during REM sleep. Undoubtedly, further research
is needed to establish best treatment strategies in order to effectively treat REM OSA. Moreover, it is critical to understand
whether treatment of REM OSA will translate into better patient outcomes.
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Abbreviations

AHI Apnea-hypopnea index
AHI4% Apnea-hypopnea index using 4%
oxygen desaturation criteria
AHI3%a  Apnea-hypopnea index using 3%
oxygen desaturation criteria and/or arousal
BMI Body mass index
CPAP Continuous positive airway pressure
DREADD  Designer receptor exclusively activated by de-
signer drugs
EDS Excessive daytime sleepiness
EPAP Expiratory positive airway pressure

< Andrew W. Varga
andrew.varga@mssm.edu

Mount Sinai Integrative Sleep Center, Icahn School of Medicine at
Mount Sinai, Annenberg 21-44, One Gustave L. Levy Place, New
York, NY 10029, USA

Section of Pulmonary and Critical Care Medicine, Sleep Disorders
Center, University of Chicago, Chicago, IL, USA

GIRK G protein coupled inward rectifying
potassium channels

MSLT Multiple sleep latency test

Non- Non-rapid eye movement sleep

REM

PSG Polysomnography

REM Rapid eye movement

Introduction

Obstructive sleep apnea (OSA) occurs when the muscles and
tissues surrounding the upper airway collapse partially or
completely during sleep, resulting in a period where breathing
stops or is significantly attenuated before the airway opens
again. This phenomenon occurs repeatedly during sleep; in
individuals with severe OSA, it can occur nearly every minute
or more. In many people, several factors converge making
OSA more severe during rapid eye movement (REM) sleep.
The body naturally loses muscle tone during REM sleep, per-
haps most significantly at the level of the genioglossus due to
cholinergic mediated inhibition, and it becomes easier for
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muscles surrounding the upper airway to collapse [1]. There is
also a reduction in the hypoxic and hypercapnic ventilatory
drive [2, 3]. The worsening of OSA during REM can be man-
ifested in a number of ways, including more frequent events,
longer duration events, and greater oxygen desaturation asso-
ciated with events [4—6]. Figure 1 highlights the mechanisms
linking REM sleep to adverse health outcomes. Exactly how
these transient events during sleep lead to persistent daytime
consequences remains to be fully determined. In one of the
first experimental demonstrations that OSA is causally linked
to persistent daytime hypertension, it was determined that
chronic sleep fragmentation alone was insufficient to elicit
the same increases in daytime blood pressure as chronic ex-
perimentally induced OSA [7]. Additionally, in this canine
model of OSA, the maximal daytime hypertension response
took 4-5 weeks to develop, and when the experimentally in-
duced OSA was discontinued, nocturnal blood pressure im-
mediately returned to baseline levels; however, the daytime
blood pressure took about 3 weeks to normalize. This dichot-
omy in the timing of return to baseline blood pressure levels
between sleep and wake argues for a mechanism related to
hypertension that is tied to state and therefore likely mediated
by plastic neural input to vessel walls.

OSA has been clearly linked to a number of adverse car-
diovascular, endocrine, and neurocognitive outcomes, but
whether the risks associated with these adverse outcomes de-
pend on the stage of sleep in which the events occur has
remained a matter of debate. The concept that REM OSA
can be associated with increased risks is based on at least
two possibilities that are not mutually exclusive. The first idea
is that REM OSA induces intermittently severe disease, and
that severe disease, even in limited doses, is sufficient to in-
crease risks associated with adverse outcomes. This argument
would suggest that a person who spends 25% of total sleep
time in REM sleep, with a non-REM apnea hypopnea index
(AHI) using 4% oxygen desaturation criteria (AHI4%) of 4/h
and REM AHI4% of 24/h with an overall AHI4% of 9/h,
would experience increased risk in comparison to an individ-
ual with an overall AHI4% of 9/h composed of REM and non-
REM AHI4% that are each 9/h. Of note, this conceptual
framework that intermittently severe disease carries increased
risks would be true for positional OSA as well, where severity
of OSA in the supine position is often greater than severity in
the non-supine position. The other idea is that REM sleep
constitutes some state in which the brain and other end organs
are particularly vulnerable, due to its physiological features
including the precise brain neurochemical milieu, degree of
neuronal synchrony, frequency of cortical local field potential
oscillations, and autonomic tone, which summate to influence
heart rate and rhythm and control blood flow to end organs.

In this review, we discuss attempts to capture the epidemi-
ology of REM OSA before evaluating the specific adverse
outcomes of REM OSA on the cardiovascular, endocrine,
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and neurocognitive systems and how these determinations
were derived within the context of assumed comorbid risks
associated with non-REM OSA. Finally, we discuss some of
the particular cellular and molecular mechanisms associated
with REM inhibition of muscle tone, which may lead to novel
drug targets for REM OSA.

Epidemiology of REM OSA

Determining how frequently REM OSA occurs in a popula-
tion depends in part on having a definition of what constitutes
REM OSA. This is somewhat problematic as there is no stan-
dard consensus for what constitutes REM OSA by any AHI
cutoff, and using the AHI3% and/or arousal (AHI3%a) criteria
instead of the AHI4% can lower the prevalence of REM OSA
[8]. Additionally, how much REM sleep needs to be captured
on any given sleep study in order to feel confident that the
REM AHI is likely to generalize across nights is a matter of
some debate [9]. In the research setting, 30 min of REM sleep
has been largely accepted as the minimum required to make
meaningful statements about REM OSA by the REM AHI [9],
although in some studies, a duration as low as 10 min is used.
Similarly, many research studies employ a ratio of REM AHI/
non-REM AHI > 2 as a working definition of REM OSA. It is
important to point out that there are several inherent limita-
tions in just using a ratio of rates (i.e., events/h in REM sleep
divided by events/h in non-REM sleep) when classifying
REM OSA. First, classifying patients with OSA based on
the REM AHI/non-REM AHI ratio by itself is problematic
because it will undoubtedly designate some patients as having
REM-related OSA when, in fact, there is also substantial dis-
ease during non-REM sleep. For example, a patient with a
REM AHI of 80 events/h and a non-REM AHI of 35 events/
h would be classified as having REM OSA when, in fact,
severe OSA is also present during non-REM sleep. The
REM AHI/non-REM AHI ratio does not accurately depict
the occurrence of OSA predominantly during REM sleep be-
cause it can be high due to (1) a high REM AHI, (2) a low non-
REM AHI or (3) a combination of both [9]. To overcome this
limitation, some studies add additional criteria of a total AHI
minimum (usually 5/h) and non-REM AHI maximum (typi-
cally between 8 and 15/h).

One of the earliest studies to examine REM OSA preva-
lence included patients with a total AHI between 5/h and 25/h,
a non-REM AHI < 15/h, and REM AHI/non-REM AHI > 2.
This occurred in 24% of 632 men and 62% of 206 women
with polysomnography (PSG)-identified OSA [10]. A similar
pattern in which increased prevalence of REM OSA was ob-
served in women was recapitulated in subsequent studies in
which 21.0% of men and 40.8% of women expressed REM
OSA in 2486 OSA patients [11] or 4% of men and 35% of
women among 45 severely obese patients [12]. In studies that
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Fig. 1 Multiple mechanisms by
which REM sleep can lead to
increased frequency and severity
of obstructive respiratory events
and disproportionately toxic
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did not segregate by sex, REM OSA was observed in 36.4% of
415 OSA patients using a sole criterion of REM AHI/non-
REM AHI >2 [13] and in 14.4% of 1540 OSA patients when
stricter criteria were added [14]. Indeed, the precise effect of
altering the definition of REM OSA was assessed in 931 pa-
tients with a minimum total AHI3%a of 5/h [15]. REM OSA
was observed in 36.7% when only REM AHI/non-REM
AHI >2 was used, 24.4% when the criterion of non-REM
AHI3%a < 15/h was added, and 13.5% when the criterion of
non-REM AHI3%a < 8/h was added.

While these prevalence estimates are from patients referred
to a sleep center for evaluation, REM OSA prevalence esti-
mates have also been derived from large community-based ep-
idemiological studies, although different criteria for REM OSA
were typically employed. In the Wisconsin Sleep Cohort,
among 2953 sleep studies with 30 min of REM and a non-
REM AHI4% <5 events/h, 12% demonstrated a REM AHI >
15 events/h [16]. Furthermore, among studies where the total
AHI4% was less than 15 events/h, 22% demonstrated a REM
AHI4% > 15 events/h. In the Sleep Heart Health Study, among
3265 subjects with at least 30 min of REM sleep and a non-
REM AHI4% < 5 events/h, 27.7% had a REM AHI4% of 5.0—
14.9 events/h, 13.0% had a REM AHI4% of 15.0-29.9 events/
h, and 5.5% had a REM AHI > 30 events/h [17]. Furthermore,
among 4648 subjects with 30 min of REM sleep and all levels
of OSA severity, 464 (10%) had a non-REM AHI4% <
5 events/h and REM AHI4% > 15 events/h [18]. In 2044 older
men > 65 years of age in the Osteoporotic Fractures in Men
(MrOS) study with a total AHI4% < 15 events/h, 20% had a
REM AHI4% of 15-30 events/h and 6.5% had a REM
AHI4% > 30 events/h [19]. In the HypnoLaus study, among
2074 subjects with at least 30 min of REM sleep, 40.8% had
a REM AHI3a>20/h [20]. In sum, although REM OSA defi-
nitions may vary, REM OSA is prevalent in both community-
based and clinic population samples.

Cardiovascular outcomes and REM OSA

OSA has been shown to be associated with several adverse
cardiovascular outcomes including hypertension [15, 21],
myocardial infarction [22, 23], and stroke [24, 25] in both
community-based and clinic-based studies. In longitudinal
studies of incident hypertension in the Wisconsin Sleep
Cohort, OSA severity at baseline predicted the presence of
hypertension 4 years later in a dose-dependent manner after
controlling for several potential confounding factors [26]. In
the Vitoria study, a large community-based study of middle-
aged adults in Spain, OSA severity was not associated with
incident hypertension over a 7-year follow-up [27]; however,
a subsequent reanalysis demonstrated that moderate to severe
OSA was associated with the incidence of more severe forms
of hypertension in men, but not women [28]. In the Sleep
Heart Health Study, OSA severity was associated with inci-
dent hypertension, but this association appeared to be signif-
icantly driven by obesity, as the strength of the association was
significantly weakened when BMI was included as a covariate
[29]. Given this heterogeneity, it seems plausible that not all
apnea influences hypertension equally, and because REM
sleep is associated with greater sympathetic activity, lower
vagal tone, and more cardiovascular instability compared to
non-REM sleep [30], obstructive events during REM sleep
could disproportionately lead to hypertension and other ad-
verse cardiovascular outcomes. It is theoretically possible that
the increased sympathetic tone during REM sleep creates a
ceiling effect, whereby obstructive events during this stage
do not add much additional sympathetic tone. However, this
is not well supported by studies examining sympathetic tone
quantified by both sympathetic burst frequency and amplitude
in subjects with and without OSA. In subjects without OSA,
burst frequency during wake was 24 bursts/min and increased
to 34 bursts/min during REM sleep. Burst amplitude during
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REM sleep was 215% of the average value obtained during
wake [31]. In individuals with OSA, wake burst frequency
was already significantly elevated in comparison to subjects
without OSA at 59 bursts/min. While burst frequency was not
significantly different during REM sleep in individuals with
OSA, burst amplitude increased nonetheless to 141% on av-
erage during REM sleep [30].

Indeed, analyses of REM OSA in the Wisconsin Sleep
Cohort [16], the Men Androgens Inflammation Lifestyle
Environment and Stress (MAILES) study [32], and the
HypnoLaus study [20] suggest it is significantly associated
with hypertension, independent of non-REM OSA. In the
analysis of the Wisconsin Sleep Cohort comprising 1451 in-
dividuals completing 4385 sleep studies, REM AHI4% con-
sidered as a categorical variable (AHI4% 1-4.9/h, 5-14.9/h,
and > 15/h versus reference AHI4% < 1/h) was associated
with significantly increased risk of prevalent hypertension,
after controlling for age, sex, race, body mass index, waist-
to-hip ratio, smoking alcohol, and non-REM AHI4%
expressed as a continuous variable. Additionally, in a subset
of individuals with ambulatory blood pressure monitoring da-
ta and a non-REM AHI4% < 5 events/h, REM AHI4% con-
sidered either categorically or continuously was significantly
associated with increasing hypertension prevalence. Notably,
non-REM AHI4% did not significantly predict prevalent hy-
pertension in any models. Finally, longitudinal assessment of
hypertension in 428 individuals whose hypertension status
changed from absent to present (or vice versa) revealed a
significant association of REM OSA severity by REM
AHI4% categories and development of incident hypertension
over time after controlling for non-REM AHI4% [16].

In a separate follow-up study, 269 adults enrolled in the
Wisconsin Sleep Cohort Study who completed two or more
24 h ambulatory blood pressure studies over an average of
6.6 years were evaluated for non-dipping blood pressure
[33]. Blood pressure ordinarily dips 10-20% across sleep,
and when this does not occur, there is increased risk for the
future development of hypertension in normotensive adults, as
well as increased risk for cardiac damage, including left ven-
tricular hypertrophy, angina, myocardial infarction, and car-
diovascular death [34, 35]. In subjects with at least 30 min of
REM sleep, REM AHI4% by category was significantly as-
sociated with increased risk for incident non-dipping of both
systolic and diastolic blood pressure when controlling for non-
REM AHI4% and other covariates.

In the MAILES study, a community-based study of adult
men in Australia, 739 men with at least 30 min of REM sleep
on polysomnography had completed prior clinical assess-
ments for hypertension between the years 2002 and 2010.
REM OSA severity by REM AHI3%a evaluated categorically
was significantly associated with both prevalent and recent-
onset hypertension, particularly in those with a REM AHI3%a
>20 events/h, when controlling for a variety of potential
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confounders, including non-REM AHI3%a. In the subset of
men with non-REM AHI3%a < 10 events/h, hypertension was
also significantly associated with REM AHI3%a by category,
similar to the observations in the Wisconsin Sleep Cohort. Also
similarly, hypertension was not associated with non-REM
AHI3%a. In the MAILES study, mean REM oxygen
desaturation (i.e., mean of the drop in oxygen saturation per
obstructive event) was significantly associated with prevalent
hypertension independent of mean non-REM oxygen
desaturation, and non-REM mean oxygen desaturation showed
no significant associations with prevalent hypertension.

In assessing multiple polysomnographic variables that pre-
dict hypertension in the Multi-Ethnic Study of Atherosclerosis
(MESA), REM OSA variables exhibited the largest absolute
differences between groups when subjects were dichotomized
by median systolic and diastolic blood pressures. This possi-
bly suggests that to detect a difference between median BPs, a
larger change in REM AHI versus NREM AHI is needed [21].
That said, REM AHI4% indices did not remain associated
with BP in the final multivariate regression models in this
analysis, whereas overall, AHI4% and arousals associated
with periodic limb movement of sleep were.

HypnoLaus is a community-based study of men and wom-
en in Switzerland who are middle aged (median age 56 years)
and largely white and non-obese. In 2074, individuals with at
least 30 min of REM sleep, REM AHI3a, considered categor-
ically in those with REM AHI3a > 20/h, were associated with
increased risk for hypertension after controlling for age, sex,
BMI, waist-to-hip ratio, total sleep time, smoking, alcohol
consumption, and non-REM AHI3a [20].

Given the strong association of hypertension with other
adverse cardiovascular outcomes, a logical extension of the
established relationship between REM OSA and hypertension
would include a potential role for REM OSA in outcomes
such as angina, myocardial infarction, stroke, and heart fail-
ure. Additionally, OSA-driven sympathetic surges associated
with paroxysmal arrhythmias may occur most frequently in
REM sleep, due to significantly higher sympathetic tone, heart
rate, and heart rate variability in REM versus non-REM sleep
[36, 37]. Atrial arrhythmias in particular could lead to atrial
embolus generation and stroke. The possibility of REM OSA
being tied to such cardiovascular outcomes was evaluated in a
study of subjects from the Sleep Heart Health Study [17]. In
this study, 3265 participants were evaluated who had at least
30 min of REM sleep and no significant OSA during non-
REM sleep (non-REM AHI4% < 5/h). The participants were
mostly older adults (mean age 62 + 11 years) who were slight-
ly overweight (BMI 28 + 5 kg/m?), and mostly women (63%
female). Subjects were followed for 9.5 years on average, and
a composite adverse cardiovascular outcome, including myo-
cardial infarction, coronary artery revascularization, conges-
tive heart failure, or stroke, was evaluated for prevalence and
incidence. In participants with prevalent cardiovascular
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disease at baseline (n =452), the hazard ratio for the compos-
ite cardiovascular endpoint was 2.56 (95% CI, 1.46—4.47) for
severe REM OSA (REM AHI4% > 30 events/h) compared to
no OSA during REM sleep (REM AHI <5 events/h) after
adjusting for age, sex, race, body mass index, smoking status,
prevalent hypertension, and diabetes. The association was
much weaker in participants without prevalent cardiovascular
disease. As noted by the authors, the overall number of indi-
viduals with prevalent cardiovascular disease at baseline and
REM AHI4% > 30/h was relatively small (n = 33), and a sep-
arate study evaluating “REM OSA” as a phenotype from
cluster analysis of a largely male veteran population did not
observe increased cardiovascular risk in this cluster [38], so
caution is warranted in interpretation of this finding.
Nonetheless, these findings potentially offer an explanation
for the divergent observations that OSA is significantly asso-
ciated with adverse cardiovascular outcomes and yet that con-
tinuous positive airway pressure (CPAP) treatment of OSA in
randomized clinical trials has yielded ambiguous or negative
results [39, 40]. In such trials, the average duration of CPAP
use is typically much lower than the expected total sleep du-
ration. Because REM sleep is significantly weighted toward
the second half of sleep, and especially in the minutes just
prior to waking, it is likely that subjects assigned to CPAP
treatment still had significant periods of untreated REM
OSA. Such a hypothesis is supported by a subanalysis of the
SAVE trial, where 561 patients with nightly CPAP adherence
>4 h/night had significantly lower risk for cerebrovascular
events compared to propensity-score-matched subjects with
usual care alone. Additional work appears to be needed to
evaluate the specific effect of treatment of REM OSA on
hypertension and cardiovascular outcomes.

Endocrine outcomes and REM OSA

Sleep and endocrine function are neuroanatomically linked
through the hypothalamus, and lateral hypothalamic neuro-
transmitters orexin and melanin concentrating hormone
(MCH) have strong and reciprocal effects on both feeding
behaviors [41-43] and promotion of REM sleep [44].
Disruptions to sleep, such as short sleep duration [45] and
OSA [46-48], have been associated with insulin resistance,
glucose intolerance, and development of diabetes (for a com-
prehensive review see Reutrakul and Mokhlesi [49]). A role
for OSA in diabetes is confounded by the mutual strong asso-
ciations of OSA and diabetes with obesity. Nonetheless, OSA
has been found to be associated with diabetes development
even in non-obese populations [50, 51].

A specific role for REM sleep in this process has been
observed in human subjects and animal models. In non-
diabetic human subjects, continuous glucose monitoring com-
bined with polysomnography revealed steep drops in the

interstitial glucose concentration across periods of REM sleep
[52], and rodents experiencing acute REM sleep disruption
showed reduced activity of enzymes that typically break down
glucose, including hexokinase and glucose-6-phosphatase
[53]. Additionally, intermittent hypoxia has been demonstrat-
ed to impair pancreatic beta cell function [54, 55], and severity
of hypoxemia correlated with HbAlc levels in subjects with
OSA and no previously recognized diabetes [56]. Taken to-
gether, these observations suggest that REM OSA may play a
substantial role in the development of insulin resistance and
diabetes, given that obstructive events during REM sleep sig-
nificantly fragment REM sleep quality and are often associat-
ed with the greatest oxygen desaturations during sleep [4, 6].

Several studies lend credence to this specific hypothesis.
First, continuous glucose monitoring across sleep in subjects
with untreated OSA demonstrated that the occurrence of OSA
in REM sleep abrogated the expected decline in interstitial
glucose concentration across REM sleep, whereas OSA in
non-REM sleep had no effect on interstitial glucose concen-
tration [57]. In obese type 2 diabetics with and without OSA
undergoing continuous glucose monitoring during sleep, the
mean glucose level was 38% higher during REM sleep in
those with OSA versus those without OSA. These smaller
studies were bolstered by the observations from larger
population-based studies. In the Sleep Heart Health Study
consisting of middle-aged and older subjects, REM AHI4%
treated as a continuous variable was significantly associated
with increasing levels of insulin resistance by homeostatic
model of insulin resistance (HOMA-IR), after controlling for
age, sex, race, body mass index, waist circumference, sleep
duration, and enrollment site [58]. In contrast, non-REM
AHI4% was significantly associated with both fasting and
post-prandial glucose levels. In a prospective study of obese
subjects with type 2 diabetes, increasing quartiles of REM
AHI3%a were significantly associated with increasing levels
of HbAlc after adjustment for age, sex, BMI, race, years of
type 2 diabetes, insulin use, and non-REM AHI3%a [59]. The
mean adjusted HbA 1c increased from 6.3% in subjects with
REM AHI < 12.3 events/h (lowest quartile) to 7.3% in sub-
jects with REM AHI > 47 events/h (highest quartile), suggest-
ing a clinically significant effect. Importantly, increasing
levels of non-REM AHI3%a quartiles were not associated
with HbAlc. Overall, the development and maintenance of
diabetes are likely multifactorial with potentially differential
effects of OSA in individual sleep stages, but nonetheless,
OSA during REM sleep appears to confer specific risks to-
ward this end point.

Neurocognitive outcomes and REM OSA

One of the most obvious, immediate, and mostly reversible
[60] adverse neurocognitive outcomes associated with OSA is
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excessive daytime sleepiness (EDS). EDS can be measured
subjectively with questionnaires such as the Epworth sleepi-
ness scale and Stanford sleepiness scale and objectively with
measurements such as the sleep latency of a multiple sleep
latency test (MSLT) or mean reaction time and number of
lapses on a psychomotor vigilance test. While sleepiness tends
to correlate with overall OSA severity, most studies examining
a specific role of REM OSA have found little evidence for
association with EDS. In a clinic-based study of 1146 patients
undergoing both PSG and MSLT, OSA severity was found to
explain 11% of the MLST result variance, with non-REM
OSA severity explaining 10.8% and REM OSA severity
explaining just 6% [61]. In another clinic-based study of
1821 subjects with both PSG and MSLT, REM OSA severity
was not associated with daytime sleep propensity by sleep
latency on the MSLT after controlling for age, gender, body
mass index, and the duration of non-REM and REM sleep
[62]. In contrast, non-REM OSA severity was associated with
daytime sleep propensity. In the community-based Sleep
Heart Health Study of 5649 subjects, REM AHI4% was not
associated with daytime sleepiness by the Epworth sleepiness
score after controlling for demographics, BMI, and non-
REMAHI4%, whereas non-REM AHI4% did associate with
Epworth sleepiness scores after controlling for demographics,
BMI, and REM AHI4% [63]. Finally, in 18 subjects with
severe OSA treated chronically with therapeutic CPAP, with-
drawal of CPAP exclusively during REM sleep recapitulated
severe REM OSA while maintaining normal sleep breathing
innon-REM sleep [64]. Following induction of severe OSA in
REM sleep, there was no change in mean reaction time or
number lapses on morning psychomotor vigilance testing
compared to ordinarily consolidated sleep, suggesting no sig-
nificant increase in sleepiness or alertness.

Studies linking REM OSA to changes in mood have been
more mixed. While one recent large clinic-based study of
1281 individuals with OSA demonstrated an association of
REM OSA severity with worsened mood by Beck
Depression Inventory scores in men but not women [65], as-
sessment of older men in the MrOS cohort demonstrated no
association of REM OSA severity with depression scores on
the Geriatric Depression Scale-15 [19]. Similarly, in 142 pre-
dominantly male clinic patients, having REM AHI > non-
REM AHI was not associated with increased Beck
Depression Inventory depression scores [66]. Of note, al-
though REM OSA does not generally appear to be associated
with sleepiness, the comorbid presence of depressive symp-
toms predicted sleepiness assessed by the Epworth sleepiness
scale in subjects with REM OSA [67].

Memory processing has long been suspected to be a signif-
icant function of sleep, and evidence is building that sleep may
impart not only consolidation but also more complex and
nuanced cognitive functions such as rule learning, pattern sep-
aration, gist extraction, and even forms of creativity [68, 69].
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Because REM sleep differs from non-REM sleep in several
crucial features that are important for neural processing, in-
cluding the neurochemical milieu, the prominent frequencies
of cortical field potentials, and the degree of synchrony among
cortical regions, the precise mnemonic functions subserved by
REM sleep, and their vulnerability to REM OSA, may be
unique from those supported by non-REM sleep. While
REM sleep has been implicated in the processing of percep-
tual [70], procedural [71, 72], probabilistic [73], and emotion-
al memory [74-76], effects of REM OSA on these functions
have not been investigated.

A role for REM sleep in spatial navigational memory in
rodents dates back to at least 1972 [77], and more recently,
optogenetic suppression of hippocampal theta rhythm during
REM (but not non-REM) impaired spatial object placement
learning [78]. These observations raise the possibility that
REM OSA in human subjects could impair the processing of
spatial navigational information that ordinarily occurs during
sleep. In subjects with severe OSA well treated with therapeu-
tic CPAP, performance on a 3D virtual navigation task im-
proved by an average of 30% across normally consolidated
sleep. When REM OSA was induced in these same subjects
via CPAP withdrawal exclusively during REM sleep, this ben-
efit of sleep was abolished, and in fact subjects’ performance
worsened by an average of 5% overnight [64]. Importantly, as
noted above, there were no changes in psychomotor vigilance
associated with apnea-induced REM sleep disruption, sug-
gesting that any spatial navigation performance deficits were
unlikely to be due to any sleepiness or inattention that may
have resulted from the intervention.

Finally, it bears noting that sleep disturbances may not only
impair cognitive function acutely, but also increase risk in the
long term for cognitive dysfunction through neurodegenera-
tive processes including Alzheimer’s disease [79, 80]. A re-
cent intriguing report investigating older subjects from the
Sleep Hearth Health Study (average age 67 years), followed
longitudinally for an average of 12 years, demonstrated that
lower REM sleep percentage and longer REM sleep latency
were both associated with a higher risk of incident dementia
after controlling for age and sex [81]. Notably, the effect be-
tween REM sleep percentage and dementia was reduced after
excluding subjects with a high number of arousals from REM
sleep due to hypopneas, suggesting a possible contributing
role of REM OSA. Additional work will be needed to help
clarify the potential role of REM OSA in both memory and
risk for neurodegenerative disease.

Nonpharmacological and pharmacological
intervention for REM OSA

Treatment options for OSA are varied and include variants of
positive airway pressure (PAP), oral appliances providing
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Table 1 Cumulative minutes of REM and non-REM sleep over 8 h of bedtime

Time after lights Cumulative minutes of non-REM  Cumulative percentage of Cumulative minutes of REM ~ Cumulative percentage of
turned off (h) sleep (mean + SD) non-REM sleep (%) sleep (mean + SD) REM sleep (%)
1 38+ 14 13 2+6 2

2 81 + 18 27 11 +11 13

3 123 £ 23 41 20+ 16 25

4 161 + 27 54 33 +£20 40

5 201 £ 31 67 44 +£23 53

6 236 + 36 79 58 +£29 71

7 272 £ 37 91 72 +32 87

8 298 + 39 100 82 + 34 100

Data are summarized as mean + SD of cumulative REM and non-REM sleep minutes from lights off to lights on in 115 subjects with type 2 diabetes who
underwent in-laboratory polysomnography with 8 h of total recording time. The mean duration of REM and non-REM sleep in this cohort was 82 and
298 min, respectively. Using CPAP for 3 h or 4 h from the time lights are turned off will cover only 25% or 40% of REM sleep, respectively, and will
leave most obstructive events during REM sleep untreated. In contrast, 7 h of CPAP use would treat 87% of REM sleep. Data extracted from Grimaldi et

al. [59]

mandibular advancement, positional therapy, hypoglossal
nerve stimulator, nasal expiratory positive airway pressure
(EPAP), and a variety of upper airway surgeries. PAP is gen-
erally viewed as the gold standard treatment and appears to
have the greatest efficacy, particularly in severe REM OSA;
however, long-term adherence to PAP is often poor [82]. In
clinical practice, 4 h of nightly CPAP use for 70% of the nights
is considered adequate adherence to therapy. This translates
into an average CPAP use of 2.8 h every night. Indeed, it is
plausible that reduced CPAP adherence and the predominantly
untreated OSA during REM sleep (which prevails during the
latter hours of normal nocturnal sleep) may explain the nega-
tive or modest effects of CPAP therapy on blood pressure
control in randomized clinical trials. Indeed, using CPAP for
3 or 4 h from the time lights are turned off will cover only 25%
or 40% of REM sleep, respectively, and will leave most ob-
structive events during REM sleep untreated [59] (Table 1).
As such, in order to effectively treat REM OSA, patients need
to use CPAP during most of their sleep period. Given that
many patients cannot achieve such high levels of CPAP ad-
herence, it is imperative to explore alternative treatment strat-
egies or even combine less effective therapeutic approaches
(e.g., oral appliance plus nasal EPAP) in order to achieve
clinical efficacy in lowering REM AHI.

Although there are no prospective clinical trials designed to
explore treatment strategies in patients with REM OSA, a few
studies have reported changes in both REM and non-REM
AHI. In a placebo-controlled randomized clinical trial of pa-
tients with mostly mild to moderate OSA, 1 week of nasal
EPAP significantly decreased REM AHI from a median of
26.5 to 8.7 events/h (p <0.05) in 97 patients. At 3 months,
there was data on 66 participants and the REM AHI with nasal
EPAP device off and on was 25.3 events/h and 11.7 events/h
(p <0.01) [83]. In an observational long-term follow-up study
of nasal EPAP, after 1 year of therapy, the REM AHI

decreased from 16.8 to 3.7 events/h (p <0.001) in 30 partic-
ipants [84].

Two randomized controlled trials for oral appliances have
explored OSA improvement in both REM and non-REM
sleep [85, 86]. The first one used a cross-over randomized trial
design of 37 patients and found that therapeutic oral appliance
decreased the non-REM AHI by an average of 58%, whereas
REM AHI decreased by 43% (from 34.2+19.4 to 19.3+
15.5 events/h; p =0.01) [85]. The second study randomized
patients to either CPAP (n = 18), therapeutic oral appliance
(n =20), or a sham oral appliance (n =19). CPAP reduced
both supine and non-supine REM AHI by approximately
86% whereas therapeutic oral appliance decreased supine
REM AHI by 51% (reduction in supine REM AHI of 12.5
+34.8 events/h from a baseline of 24.6 +31.5 events/h). The
non-supine REM AHI was reduced by 49% (reduction in non-
supine REM AHI of 7.5+ 13.0 events/h from a baseline of
24.6 +31.5 events/h) [86]. The limited data from these two
studies suggests that oral appliance therapy may be less effec-
tive in treating REM OSA than OSA during non-REM sleep.

The hypoglossal nerve stimulator was assessed in 126 care-
fully selected participants in the STAR randomized clinical
trial [87]. After 1 year of therapy, both REM and non-REM
AHI decreased to the same degree. The REM AHI decreased
from 28.9+£17.4 to 14.7+16.1 events/h (p <0.0001). In con-
trast, the non-REM AHI decreased from 32.2+12.6to 15.3 +
16.8 events/h (p <0.0001).

Pharmacotherapy for OSA has consequently been a long
sought-after goal, but most attempts at drug treatment of OSA
have been ineffective [88]. It has been recently argued that
greater success with pharmacotherapy might stem from appro-
priate OSA phenotyping where distinct physiological drivers of
OSA and its repetitive, self-maintaining quality might be iden-
tified [89, 90]. In broad strokes, the two main approaches en-
dorsed involve identifying targets that improve the pharyngeal

@ Springer



420

Sleep Breath (2019) 23:413-423

dilator muscle activation and/or upper airway anatomy in gen-
eral and identifying targets that reduce the sensitivity of venti-
latory control (or raise the arousal threshold). REM OSA is
arguably a distinct phenotype of OSA [38] and, given the atonia
in REM, might be particularly suitable to the former approach.
While the natural history of REM OSA is not well studied,
approaches that target reducing the number of events in REM
sleep would be useful even if an individual eventually converts
from having REM OSA to non-specific OSA.

Early studies suggested histamine increased tonic
genioglossus muscle activity across vigilance states [91], but
given its role in wake promotion, drugs targeting the histamine
system might suffer from off-target wake-promoting effects.
A major step forward in the understanding of the molecular
mechanisms driving REM atonia of pharyngeal motoneurons
was the identification of the requirement for muscarinic
receptor-driven activation of G protein coupled inward recti-
fying potassium channels (GIRKs) [1]. Although there are
numerous families of neuronal potassium channels [92],
GIRKSs have particular biophysical properties, making drug
targets that block these channels a feasible possibility.
Furthermore, one member of the GIRK family, Kir2.4, is
expressed almost exclusively in cranial motor nuclei [93,
94], and thus, drug targets of Kir2.4 would offer some level
of anatomical specificity. Although specific inhibitors of
Kir2.4 remain under development, proof of concept of selec-
tively pharmacologically manipulating cholinergic hypoglos-
sal motoneurons was achieved with a chemogenetic approach
using a virally transduced designer receptor exclusively acti-
vated by designer drugs (DREADD) [95, 96]. Systemic ad-
ministration of clozapine-N-oxide, an otherwise biologically
inert ligand for DREADD, resulted in sustained increases in
tongue muscle activity and marked dilation of the pharynx
without effect on sleep architecture or diaphragm and postural
muscle activity in rodents.

Based on the expression of inhibitory cannabinoid recep-
tors in the vagal nodose ganglion [97] and the theory that
dampening vagal input to the medulla might stabilize respira-
tory pattern generation and raise activation of upper airway
dilating muscles during sleep [98], interest in dronabinol, a
nonselective agonist of cannabinoid type 1 and 2 receptors,
as a potential treatment for OSA has risen. After some initial
encouraging results in both rodents [99, 100] and human sub-
jects [101], a fully blinded, parallel groups, placebo-con-
trolled, randomized trial of dronabinol in people with moder-
ate or severe OSA was completed [102]. Dronabinol was
found to dose-dependently reduce the AHI3%a by 11—
13 events/h and reduce subjective scores on the Epworth
sleepiness scale following 6 weeks of treatment. Of particular
note to REM OSA, the effect of dronabinol at the higher dose
(10 mg/day) on the REM apnea index was the largest treat-
ment effect size for any event type in any sleep stage after
controlling for age, gender, race, ethnicity, and baseline

@ Springer

AHI3%a. Furthermore, analysis of treatment responders, arbi-
trarily defined as those subjects with a final on-treatment
AHI3%a of <15 events/h plus a reduction from baseline
AHI3%a of >50%, demonstrated that responders had a sig-
nificantly higher REM AHI3%a and ratio of REM AHI%3a to
total AHI3%a versus non-responders. The mean decrease in
REM AHI%3a in responders was 33 events/h while the mean
decrease in non-REM AHI3%a in responders was 10 events/
h. These tantalizing observations should prompt a further spe-
cific assessment of dronabinol in individuals with REM OSA.

The role of REM-sleep suppressing medications such as
tricyclic antidepressants, monoamine oxidase inhibitors, or
serotonin/norepinephrine reuptake inhibitors in the manage-
ment of REM OSA has not been explored in human subjects.
That said, combined use of the tricyclic antidepressant trazo-
done combined with L-tryptophan resulted in a dose-
dependent decrease in OSA in an English bulldog model.
Obstructive events during REM sleep in particular were re-
duced by 63% at the highest dose compared to placebo [103].

Conclusions, knowledge gaps, and future
directions

REM OSA is quite prevalent and is associated with adverse
cardiovascular, metabolic, and neurocognitive outcomes. The
literature suggests that obstructive apneas and hypopneas dur-
ing REM sleep are more toxic than those in non-REM sleep.
One ongoing gap in knowledge is whether this is related to the
intermittently more severe obstructive events during REM, a
fundamental property of REM physiology, or both. Evidence
suggesting that, for example, supine OSA severity is associ-
ated with adverse health outcomes would at least lend cre-
dence to concept that intermittently severe OSA can be harm-
ful. CPAP therapy of 3—4 h per night may leave the majority of
REM OSA untreated. While the concept of “effective AHI”
has been explored [104], which estimates an individual’s re-
sidual AHI based on their baseline severity and hours of CPAP
use, systematic study of timing of CPAP use in relation to
sleep onset and offset is lacking. We suggest that this type of
research should not only require time series analysis of nightly
CPAP use but also require concomitant actigraphy data in
order to ascertain time of sleep onset. Further research is need-
ed to explore novel therapeutic approaches, or combination of
currently available non-CPAP therapies, in patients with REM
OSA. Moreover, outcomes studies are necessary to demon-
strate that effective treatment of REM OSA leads to better
patient outcomes. While we await new research, clinicians
should recognize the importance of REM OSA severity, even
when overall OSA severity is significantly lower, and also
emphasize the need for more prolonged CPAP usage in order
to cover the second half of the sleep period when REM sleep
predominates.
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