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Abstract
Purpose Diagnosis of obstructive sleep apnea by the gold-standard of polysomnography (PSG), or by home sleep testing (HST),
requires numerous physical connections to the patient which may restrict use of these tools for early screening. We hypothesized
that normal and disturbed breathing may be detected by a consumer smartphone without physical connections to the patient using
novel algorithms to analyze ambient sound.
Methods We studied 91 patients undergoing clinically indicated PSG. Phase I: In a derivation cohort (n = 32), we placed an
unmodified Samsung Galaxy S5 without external microphone near the bed to record ambient sounds. We analyzed 12,352
discrete breath/non-breath sounds (386/patient), from which we developed algorithms to remove noise, and detect breaths as
envelopes of spectral peaks. Phase II: In a distinct validation cohort (n = 59), we tested the ability of acoustic algorithms to detect
AHI < 15 vs AHI > 15 on PSG.
Results Smartphone-recorded sound analyses detected the presence, absence, and types of breath sound. Phase I: In the deriva-
tion cohort, spectral analysis identified breaths and apneas with a c-statistic of 0.91, and loud obstruction soundswith c-statistic of
0.95 on receiver operating characteristic analyses, relative to adjudicated events. Phase II: In the validation cohort, automated
acoustic analysis provided a c-statistic of 0.87 compared to whole-night PSG.
Conclusions Ambient sounds recorded from a smartphone during sleep can identify apnea and abnormal breathing verified on
PSG. Future studies should determine if this approach may facilitate early screening of SDB to identify at-risk patients for
definitive diagnosis and therapy.
Clinical trials NCT03288376; clinicaltrials.org
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Abbreviations
AHI Apnea-hypopnea index
BMI Body mass index (kg/m2)
CPAP Continuous positive airway pressure
dB Decibel
ECG Electrocardiogram
EEG Electroencephalogram
EMG Electromyogram
FFT Fast Fourier transform

HST Home sleep testing
PSG Polysomnography
RMS Root-mean-square
ROC Receiver operating characteristic
SD Standard deviation
SDB Sleep-disordered breathing

Introduction

Sleep-disordered breathing (SDB) affects an estimated 30mil-
lion individuals in the USA alone [1], and is responsible for
diverse sequelae including days lost from work, daytime
sleepiness, accidents, decreased productivity, and hospitaliza-
tion for heart failure and atrial fibrillation. Sleep disordered
breathing is treatable with continuous positive airway pressure
(CPAP) or mandibular therapy [2–4], yet many at-risk
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individuals remain undiagnosed and under-treated [5] due to
delays in obtaining in-laboratory (polysomnography, PSG) or
multichannel home sleep testing (HST) [6]. A tool for early,
rapid screening by physicians, dentists, and/or patients could
enable high-risk patients to be rapidly triaged for definitive
diagnosis by PSG or HST and definitive therapy.

We hypothesized that normal and disturbed breathing
should be detectable from ambient sound recorded from a
consumer smartphone without physical contact with the pa-
tient. We reasoned that analysis of the periodicity and ampli-
tude of breaths should detect their absence (apnea) or shal-
lowness (hypopnea), i.e., key diagnostic components, and
identify loud gasping sounds (consistent with arousals in ob-
structive sleep apnea, OSA). We set out to define acoustic
signatures for SDB based on key diagnostic elements, which
may differ from prior studies on surrogates, e.g., snores, heart
rate variability [7]. For instance, Nakano et al. [8] detected
snores with a smartphone that correlated with PSG, but snores
may not always reflect diagnosed OSA. Other reports, while
interesting, required specialized equipment and physical con-
tact, e.g., sound analysis from a PSG mask [9] or during sleep
endoscopy [10], electroencephalography [11], electromyo-
gram [12], or oximetry [13] which may be less suited or tol-
erated by patients for wide at-home screening.

We tested our hypothesis by analyzing ambient sound re-
corded on an unmodified smartphone with no additional
equipment in a prospective study of patients undergoing si-
multaneous PSG for suspected obstructive sleep apnea
(NCT03288376). Phase I of the study involved the develop-
ment of acoustic signatures for normal and abnormal breaths
in a derivation cohort, while phase II validated the ability of
these signatures to diagnose OSA from clinically adjudicated
whole-night PSG in a separate test cohort.

Methods

Study design

We recruited individuals ≥ 21 years of age undergoing clini-
cally indicated PSG to assess sleep-disordered breathing as
part of an IRB-approved clinical study (Western IRB approval
#20142343, 11/25/14), conducted from 2015 to 2016 in three
AASM-accredited laboratories in the USA (see Supplement).
Individuals were included if they had clinical suspicion for
OSA (N = 223). Exclusions included prior previous PSG or
HST, prior surgery for OSA, a medical contraindication for
PSG, or factors that may interfere with completing informed
consent or the clinical questionnaire. Each subject had sound
recordings from a consumer smartphone (Galaxy S5,
Samsung corporation, Seoul, South Korea) placed on the bed-
side during PSG. No patient received CPAP therapy nor was
wearing a mask during recordings.

The study included N = 91 patients in two phases. In phase
I (algorithm derivation), we selected 32 individuals from the
entire dataset who provided examples of normal breathing,
hypopnea, apnea, arousals, and noisy recordings. We devel-
oped acoustic analysis algorithms calibrated to these events.
In phase II (validation), we randomly identified 70 patients
from the dataset excluding those in phase I, of whom N = 59
had complete whole-night acoustic recordings. This com-
prised the clinical validation cohort, in whom we performed
receiver operating characteristic analysis of the algorithm de-
veloped in phase I against simultaneous PSG.

Smart phone recordings at polysomnography

Sound files were recorded from unmodified smartphones. The
recording protocol oriented the smartphone microphone to-
ward the patient, < 1 m from the head of the bed. Equipment
in each sleep laboratory (listed in Appendix) comprised pulse
oximetry, nasal flow, ECG, respiratory effort, and EEG. PSGs
were adjudicated by certified sleep technicians at each center,
blinded to any smartphone analysis.

Recordings were made using the audio recording function
of each smartphone. To recreate real-world settings, no at-
tempt was made to pause recordings at times of external noise
(e.g., television), speech (e.g., by the patient or staff), wake-
fulness, arousal, or other events. Recordings were stored on
each phone’s storage drive as B.wav^ files, of typical size
~5MB/min or ~2.4GB for 8 h (smaller for shorter recordings).
Recordings were then exported, fully de-identified, for
analysis.

Phase I: development of acoustic analysis algorithm

Analytical algorithms were created in Matlab (version 2016a,
The Mathworks, Natick, MA). The N = 32 patients in phase I
(algorithmic development) comprised 32 individuals (37.5%
women) with body mass index 33.0 ± 7.73 kg/m2 and STOP-
BANG scores 4.13 ± 1.62. These patients provided breath
sounds of various types. Sound was sampled at 44.1 kHz
and digitized files were analyzed offline in 60–120 s epochs.

Noise reduction and signal conditioning

To identify breaths from background noise, each sound epoch
was spectrally decomposed using a fast Fourier transform
(FFT) using a Kaiser-Bessel window (length = 256, ß = 5).
An example is shown in Fig. 1a, in which bands (color coded
by frequency) represent successive breaths. A spectral
magnitude-time series was created for each epoch as the me-
dian of spectral power for all frequencies at each millisecond
(Fig. 1b). Each minute of the sound file was excluded if am-
plitudes were too low, defined a priori as (a) lowest 2 percen-
tile of amplitudes in that epoch; (b) dynamic range < 0.75 dB.
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Developing algorithms for normal and abnormal breaths

The algorithm was applied to defined breaths and non-breath
sounds, referenced to a database of ambient sounds construct-
ed for phase I and over-read by three readers (PS, TN, RS)
with discrepancies resolved by consensus. The database
consisted of 12,352 breaths (386/patient) sampled from
whole-night sound recordings, including annotated apnea,
hypopnea, arousals (marked by loud obstructive sounds),
and normal breathing referenced to PSG.We defined algorith-
mic acoustic signatures for each class of breath event.

Identifying discrete breaths (peaks)

Breaths were defined from the spectral magnitude-time series of
the sound file. A median filter of duration 10 ms was applied to
attenuate transient fluctuations, then a root-mean-squared
(RMS) envelope function was applied. To identify Bpackets^
of sound which may correspond to a breath event, each second
of the smoothed signal was divided into blocks of 1225 samples.

We calculated RMS envelope of window size 300 samples.
Individual RMS envelopes were concatenated to form the final
RMS envelope. Peak detectionwas applied to smoothed spectral
magnitude-time series to identify an array of maxima (Fig. 1c).

Breaths Bn were defined as having onset time Tn, duration
Dn, and height Hn (Fig. 1d). For each breath, we defined its
largest peak, separated from other local maxima via topological
prominence. Prominence mathematically defines the peak as
the point above the lowest contour line (local minimum) that
bounds it but contains no higher peak. If the prominence of a
peak isHn, then passing from this peak to any higher peak (i.e.,
another breath) requires a displacement defined as an, passing
through lower minima. The prominence of breath Bn = Hn –
amplitude of local minimum (key col.; Fig. 1d). Peaks were
separated by at least 50 ms with peak width of 20 ms.

Identifying non-breath sound signals

We hypothesized that breath sounds should be discrete and
periodic, while non-breath sounds (noise) may be loud, non-

Fig. 1 Spectral analysis of normal
breaths in overnight sound file. a
One minute of sound recorded
from a smartphone during sleep in
a 72-year-old woman. Each
yellow band represents a breath. b
Spectral magnitude-time series,
emphasizing peaks (breaths). c
Peaks and adjacent points in
sound analysis. d Tagged features
of each sound packet
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repeating, and/or of long continuous duration. We used
frequency-domain analyses to test this hypothesis.

The enveloped spectral-magnitude time series was
smoothed using a 100 point median filter (i.e., 100 out of
1224 points, ~81.7 ms). We calculated the area An of each
spectral packet using the trapezoidal rule (dB s; Fig. 1d).
Area outliers, defined liberally (to keep close to mean areas)
were removed if > mean area ± 1 SD. Optimal area cutpoints
for non-breath versus breathing sounds were defined from the
database created for this project referenced to adjudicated si-
multaneous PSG.

Phase II: validation of acoustic analysis algorithm

For clinical validation, we randomly identified N = 70 individ-
uals from our clinical study who were not used for algorithm
development, of whom N = 59 had complete whole-night
acoustic data. In these individuals, we created an acoustic
Respiratory Index (RI) to compare the results of smartphone
sound analysis against entire-night PSG. RI was computed from
the numbers of abnormal breaths or apneas, and the optimum
cutpoint identified which was analogous to AHI for moderate
OSA (i.e., AHI > 15 events/h). RI was then evaluated for the
two-bin case of normal and mild OSA (AHI < 15 events/h)
versus moderate and severe OSA (AHI >= 15 events/h).
Analyses were performed using open source BR^ statistical
analysis software, with the BOptimalCutpoints^ package.

Statistical analysis

Continuous data are represented as mean ± standard devia-
tion (SD). In phase I, the sound algorithm was developed
from a database of breath and non-breath sounds created for
this project, which were annotated by direct listening refer-
enced to adjudicated simultaneous polysomnograms in each
patient. Comparisons between groups were made with
Student’s t tests and summarized with means and standard
deviations for independent samples if normally distributed
or, if not normally distributed, with the Mann-Whitney U
test and summarized with medians and quartiles. Nominal
values were expressed as n (%) and compared with chi-
square tests or the Fisher exact test when expected cell fre-
quency was < 5. Multi-rater agreement was assessed using
Fleiss’ Kappa score.

In phase II, AHI scores from PSG in each patient were
compared to acoustic respiratory index (RI) using receiver
operating characteristic curves. PSG-AHI scores were
assigned from each treating center, as the average of two tech-
nicians’ reports blinded to acoustic analysis. From ROC anal-
ysis of RI to no/mild versus moderate/several OSA from PSG,
we derived sensitivity and specificity for this endpoint.

A probability of < 0.05 was considered statistically signif-
icant for all analyses.

Results

Table 1 provides clinical details for individuals in the
validation cohort, each of whom underwent smartphone
sound recordings simultaneous with clinically indicated
polysomnography.

Algorithmic development

Spectral decomposition of sounds during normal breathing

Figure 1 illustrates 1 min of sound recorded by a smartphone
during sleep in a 72-year-old woman with body mass index
(BMI) 25.7 kg/m2 analyzed spectrally (Fig. 1a). Each band
corresponds to an audible breath, of periodicity ~0.2 Hz and
duration Tn = 1–2 s. Figure 1b indicates the spectral
magnitude-time series, summarizing magnitudes across fre-
quencies at each time point with peaks clearly visible.
Figure 1c shows tagging of breaths for this file, using peaks
from which beats were defined by parameters summarized in
Fig. 1d.

Clinical derivation of optimum cutpoints for breaths,
non-breath noises

We tested the algorithm for adjudicated breath events from the
PSG in our development database. The ROC of peak promi-
nence for defining breaths produced a c-statistic (area) of 0.91
(Fig. 2a). The optimum cutpoint was 0.21.

Similarly, we derived cutpoints for non-breath sounds
corresponding to periods of body movement on simulta-
neous PSG. ROC of packet area for non-breath sounds
yielded a c-statistic of 0.95 with an optimal cutpoint of
15,000 dB s (Fig. 2b).

Table 1 Clinical characteristics of validation cohort

Patient characteristics

N 59

Age, years 52.9 ± 15.1

Male/Female 39/20

Height/m 1.70 ± 0.10

Weight/kg 94.1 ± 25.4

Body mass index, (kg/m2) 32.6 ± 9.54

Hypertension, % (n) 27.1% (16/59)

STOP-BANG score 3.59 ± 1.33

Apnea/Hypopnea Index (per hour) 30.0 ± 32.0

No. with AHI < 5 11

No. with 5 < AHI < 15 15

No. with 15 < AHI < 30 15

No. with AHI ≥ 30 18

Prior OSA therapy or surgery 0
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Automatic identification of apnea

Figure 3 illustrates 1 min of sound recorded during sleep in a
55-year-old man with BMI 30.7 kg/m2 and a history sugges-
tive of obstructive sleep apnea undergoing PSG. Spectral anal-
ysis (Fig. 3a), magnitude-time series (Fig. 3b), and peak de-
tection (Fig. 3c) are shown.

Normal breaths are seen for the first 20 s of the sound
file, at a rate of 0.25 Hz (one every 4 s) each of duration
Tn = 1–2 s. Breaths then cease from 22 to 49 s, followed by
the resumption of peaks. This period corresponded with
clinical apnea (> 10 s) on simultaneous PSG (Fig. 3d),
and was followed by an arousal event in which EEG,
EMG, and body movement showed high activity from 50
to 60 s. During the arousal, breath-peaks are still seen on

acoustic spectral analysis together with additional peaks
indicating noise.

Spectral decomposition of sounds during movement noise

Figure 4 illustrates 1 min of sound recordings recorded during
sleep in a 47-year-old woman with BMI 64.8 kg/m2. Spectral
(Fig. 4a) and spectral-peak analyses (Fig. 4b) are shown.

Period spectral bands are seen up until 40 s, which corre-
spond to breaths with periodicity ~0.2 Hz and duration Tn = 1–
2 s. However, at ~42 s, a series of rapid additional sound bands
occur (Fig. 4a), which are narrow in duration (Tn < 1 s) and
disturb the periodicity of peaks (Fig. 4b). The simultaneous
polysomnogram in Fig. 4c shows body movement at 42–50 s,
which was heard to cause these additional spectral sounds.

Fig. 2 Receiver operating
characteristic (ROC) curves of
acoustic signatures for breaths on
simultaneous PSG. a C-statistic
for identifying breaths was 0.91,
derived by varying the peak
prominence parameter, with a
maximum area under the curve
generated at a cutpoint of 0.21. b
C-statistic for identifying noise
(non-breath sounds) was 0.95,
derived by varying the packet
area, with a maximum area under
the curve generated at a cutpoint
of 15,000 dB s
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Automatic identification of non-breath sounds from breaths

Figure 5 illustrates sound recordings during sleep in a 55-year-
old man with clinical suspicion for sleep apnea. Acoustic
spectral analysis (Fig. 5a) and peak analysis (Fig. 5b) show
period breaths throughout the 100-s period as well as addi-
tional non-periodic and brief sounds. The spectral magnitude-
time series (Fig. 5b) shows that sounds from 22 to 30 s had
fewer distinct peaks. Area analysis of this packet (Fig. 5c) was
26,613 db s, above the ROC-derived cutpoint for non-breath
sounds. Auditory examination confirmed that this segment
represented noise. Figure 5d shows the corresponding PSG
recording.

Phase II: Clinical validation

In blinded analysis of the validation cohort, Fig. 6 shows ROC
curve of the respiratory index, i.e., acoustically detected breath
disturbances, compared to PSG-defined AHI ≥ 15 events/h.
The c-statistic was 0.87. To optimize sensitivity for screening,

the cutpoint of RI = 13.43 was selected and predicted AHI ≥
15 events/h with a sensitivity of 93.7%, specificity of 63.0%,
negative predictive value of 89.5%, and positive predictive
value of 75.0%. Alternative cutpoints could be selected to
provide higher specificity with expected trade-offs in sensitiv-
ity (for instance, a cutpoint of RI = 22.7 provided sensitivity
78.1%, specificity 85.2%), which could be tailored to ambient
noise in the specific environment being tested.

Discussion

We show that sound recorded from an unmodified
smartphone during sleep, avoiding specialized equipment
and physical contact with the patient, can identify acoustic
signatures of sleep disordered breathing. We first devel-
oped an algorithm to separate normal breath sounds, ap-
nea, and arousals referenced to the gold standard of con-
current PSG. In a separate validation cohort, these acous-
tic signatures provided high clinical accuracy for
moderate-severe OSA at PSG. To the best of our

Fig. 3 Automatic detection of
apnea by acoustic spectral
analysis in a 55-year-old man
being evaluated for obstructive
sleep apnea. a Spectral analysis of
sound, b magnitude-time series,
and c peak detection show apnea
between 20 and 50 ms which was
detected (d) by simultaneous PSG
in which apnea concluded with an
arousal event at ~50 s (labeled)
which is hinted by larger and a
broader constellation of spectral
peaks on acoustic analysis.
Obstructive sleep apnea was
confirmed on whole-night PSG in
this individual
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knowledge, this is the first study to demonstrate the abil-
ity of smartphone monitoring alone to identify key breath-
ing components of SDB, and differs from prior studies
that required specialized equipment typically available on-
ly through a laboratory, or that focused on surrogate sig-
nals. Further studies should test if a screening strategy for
SDB based on acoustic analysis may identify high-risk
individuals who can then be referred for traditional PSG
diagnosis and therapy.

Approaches for wider screening

There are several increasingly recognized challenges to
screening US adults for sleep disordered breathing [14]. One
potential approach may be to facilitate early and rapid screen-
ing of patients seen in family practice [15], dental clinics [16],
or other venues where patients may be unaware of this diag-
nosis. While screening questionnaires may help identify at-
risk individuals, e.g., the Berlin or STOP-BANG scores, such
tools are not tailored to individual physiology and may have
limited accuracy [17]. The PSG, while the gold standard for
diagnosis, introduces limitations for screening [18, 19] includ-
ing its in-laboratory setting, need for multiple physical

connections, expense, inter-test variability including first-
night effect, and variability in interpreting test results due to
competing scoring criteria [20]. Improved, cost-efficient
screening for SDB may enable rapid triage of high-risk indi-
viduals who are currently unscreened for gold standard PSG
followed by prescription and titration of therapy as needed.

The current study extends the literature by defining acous-
tic signatures for SDB, i.e., which reflect pathophysiological
patterns of breathing. Acoustic diagnosis offers the ultimate
potential for unobtrusive, repeatable screening for sleep dis-
ordered breathing with or without attached wires or sensors.
If further validated, acoustic analysis could potentially im-
prove the value of HST [18, 19], which has experienced
limited acceptance in part due to lack of physiological data.
Quantification of lung ventilation (breaths) using acoustic
analysis of ambient sound may provide some of this physio-
logical information. In this way, acoustic analysis also has the
potential to augment in-laboratory or home sleep testing.
Some inter-observer variability of sleep studies reflect
Bequivocal epochs^ which account for > 25% of sleep, par-
ticularly in awake/NREM, N1/N2, and N2/N3 sleep [20].
Analysis of breaths could help to understand such epochs,
and provide additional information to help in coding
hypopnea [21] or arousals [12].

Fig. 4 Detecting normal breaths
and noise on acoustic spectral
analysis. a Spectral and b peak
analyses show breaths (periodic
bands) until approximately 40 s,
representing breaths with
periodicity ~0.2 Hz (once per 5 s).
At approximately 42 s, a series of
rapid additional sound bands
disturb periodicity and
correspond in c simultaneous
polysomnogram showing body
movement at 42–50 s. Listening
to audio files confirmed that this
sound represented shuffling in
bed/moving
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Applicability of smartphones to health
screening

Smartphone technology continues to grow worldwide with
tens of millions of users in the developed and developing
world, and an explosion of mobile health (mhealth) applica-
tions. These applications have great promise if applied scien-
tifically and judiciously, but an emerging challenge is to en-
sure that they are appropriately tested and clinically validated
to guide patient expectations. Several mHealth systems exist
to record and diagnose the ECG, to measure oximetry and
pulse using the light source and camera of the mobile device
applied to the fingertip [22] and face [23], to assess cognitive
function, to analyze actigraphy (movement) as a general index
of health, and many other functions as recently reviewed [24].
Literature is emerging on the reliability of mHealth

applications compared to gold standard diagnostic screening
tests, with many providing adequate approximations yet fall-
ing short of the accuracy needed for disease screening or
health management [25]. The current study aims to provide
a rigorous clinical validation of a novel mHealth application
for screening SDB.

Prior studies using smartphones to diagnose
sleep disordered breathing

Few studies have analyzed ambient sound produced by an
individual during sleep to track the presence or absence of
breath sounds, arousal sounds, or noisy sounds, compared to
the gold standard diagnosis from PSG.

Fig. 5 Automatic quantification of non-breath sounds by acoustic spec-
tral area. a Acoustic spectral analysis and b peak analysis from
magnitude-time series indicate periodic breaths, as well as additional
non-periodic and brief sounds. Spectral magnitude-time series shows
sounds from 22 to 30 s that coalesce without distinct periodic peaks. c
Area analysis of this packet gives area 26,613 db s, above the ROC-

derived cutpoint for noise (non-breath sounds). Auditory examination
verifies that this segment of the file represents likely movement noise. d
Simultaneous polysomnogram confirms movement, shown by the leg
channel movement as well as high-frequency activity on multiple other
channels
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Nakano et al. used a smartphone taped to the anterior chest
to analyze sound to detect tracheal snore sounds, which cor-
related with sleep disordered breathing (AHI > 15) on PSG
with sensitivity 70% and specificity 94% [8]. These results,
while impressive, may not be suitable for screening for which
a higher sensitivity may be desired. Additionally, taping a
smartphone to the chest may not resolve the inconvenience
of current HST. Future studies should determine if abnormal
breathing events may be missed by snore analysis alone (i.e.,
reduced sensitivity) or if normal snores in individuals without
SDB are inadvertently captured (i.e., reduced specificity). Koo
et al. analyzed smartphone recordings during drug-induced
sleep endoscopy [26] using spectral analysis to identify the
pharyngeal region of obstruction. However, sounds during
drug-induced sleep endoscopy may differ from natural at-
home sleep. That study and others used equipment in addition
to a smartphone to detect SDB. Garde et al. used a finger
oximetry analyzed by smartphone, heart rate variability, and
clinical variables to train a linear classifier with acceptable
accuracy for SDB [13]. Al-Mardi et al. presented a sophisti-
cated smartphone system to combine data streams from an
oximetry device, a microphone placed on the throat and an
accelerometer, which showed promising correlation to OSA in
a pilot study of 15 patient samples [24]. Chang et al. analyzed
heart rate variability by ECG and found a moderate associa-
tion with SDB [7]. These and other studies used special equip-
ment including external microphones [9, 27, 28], oximetry
[29, 30], the EEG [11], EMG [12], and movement sensors [6].

Next mechanistic and clinical steps

The present study furthers the emerging science of acoustic
analysis to probe the physiology of breathing. Recording
sound from an external microphone, Ben-Israel et al.

developed Gaussian mixture models to detect snore, noise,
and silence events with 92% sensitivity for OSA (AHI ≥ 10),
and identified novel acoustic features of sleep-breathing in-
cluding silence, stability, and variance of sounds and pitch
[31]. Acoustic analyses may ultimately identify the level of
airway obstruction [26] or airflow phenotypes associated with
facial structure [32]. Clinically, acoustic screening of SDB
should be tested as a gateway to definitive diagnosis by PSG
or HST in diverse scenarios, to ensure that algorithms are
robust to noise, varying distance of the phone from the indi-
vidual, and other nocturnal variations in breathing. These
studies will provide the foundation to test the ability of acous-
tic diagnostics to streamline referral to sleep testing or to com-
plement existing technologies for in-laboratory testing.

Limitations

This proof-of-concept study has many limitations. First, al-
though we used a widely available smartphone (Samsung
Galaxy S5 or later), future studies should perform head-to-
head comparisons of multiple smartphones. Smartphone tech-
nology has advanced so rapidly that most new smartphones
today should have the capabilities of phones used in this study.
Second, future studies should establish boundary limits such
as distance from the user, maximum or minimum sound in-
tensities, or acoustic qualities of the testing environment.
Third, while several noise reduction approaches were applied
(see analyses and Fig. 2), individual sources contributing to
acoustic noise could not be identified in this clinical study to
improve breath detection. This is the subject of planned con-
trolled experiments to characterize noise that may be reflected
in the PSG such as periodic leg movement, as well as those
that are not reflected in PSG such as external speech or the
television (which will exhibit differing periodicities to breath-
ing), to improve the accuracy of acoustic analysis to track
breathing and screen for SDB. Fourth, it is possible that acous-
tic analysis for SDB could ultimately be used beyond early
screening; this could be tested prospectively in wider
populations.
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cohort. Receiver operating characteristic (ROC) curve for whole-night
acoustic respiratory index for diagnosing OSA on PSG. a AHI on PSG
< 15 events/h versus b AHI on PSG > 15 events/h. The c-statistic was
0.87
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Appendix

Data for this study were recorded in American Academy of
Sleep Medicine (AASM)-accredited sleep labs. Centers pro-
viding data were:

1. Peninsula Sleep Center, Burlingham CA (Mehran Farid,
MD; Director)

2. Northeast Medical Group, New London CT (Amit
Khanna, MD; Director)

3. Doctors Community Hospital, Lanham, MD (Riad
Dahkeel, MD; Director)
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