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Abstract
Purpose Obstructive sleep apnea (OSA) is induced by obstruction of the upper airway, which can raise multiple health risks. This
study is designed to reveal the key genes involved in OSA.
Methods GSE38792 was extracted from Gene Expression Omnibus database, including ten visceral adipose tissues from OSA
patients and eight visceral adipose tissues from normal controls. Differential expression analysis was conducted using limma
package, and then the functions of the differentially expressed genes (DEGs) were analyzed using DAVID database, followed by
protein-protein interaction (PPI) network, and integrated regulatory network analysis was performed using Cytoscape software.
Results A total of 368 DEGs (176 upregulated and 192 downregulated) were identified in OSA samples. Epstein-Barr virus
infection (involving IL10RB,MAPK9, andMAPK10) and olfactory transduction were the main pathways separately enriched for
the upregulated genes and the downregulated genes. After the PPI network was built, the top ten network nodes (such as TXN)
were selected according to node degrees. Two significant PPI network modules were identified. Moreover, the integrated
regulatory network was constructed.
Conclusion IL10RB, MAPK9, MAPK10, and TXN might function in the pathogenesis of OSA.
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Introduction

As the most common form of sleep apnea, obstructive sleep
apnea (OSA) is induced by obstruction of the upper airway [1].
OSA is characterized by loud snoring, restless sleep, and day-
time sleepiness, which is diagnosed based on medical history
and polysomnography tests [2]. The improvement measures
for OSA patients include avoiding drugs relaxing the central
nervous system, mandibular advancement devices, quitting
alcohol and tobacco, weight loss, physical training, and con-
tinuous positive airway pressure (CPAP) [3–5]. OSA can raise
multiple health risks such as aortic and cardiovascular diseases
[6], stroke [7], high blood pressure [8, 9], clinical depression

[10], diabetes [11], weight gain, and obesity [12]. The daytime
sleepiness induced byOSA influences 2–5%ofwomen and 3–
7% of men, and OSA is more common in middle-aged males
[13]. Therefore, investigating the mechanisms of OSA is im-
portant for improving the patients’ life quality.

Intermittent hypoxia induces the overexpression of 5-
lipoxygenase-activating protein (FLAP) in polymorphonucle-
ar cells, indicating that FLAP may promote early vascular
remodeling and serve as a promising therapeutic target for
cardiovascular disease in OSA patients [14]. Nuclear factor
κB (NF-κB) activation has a positive correlation with apnea
severity, which may link OSAwith cardiovascular disease and
systemic inflammation [15, 16]. Serum vascular endothelial
growth factor (VEGF) is increased in OSA patients with se-
vere hypoxia and correlated with nocturnal oxygen
desaturation, which may contribute to counterbalancing the
occurrence of cardiovascular disease in OSA patients [17].
NADPH oxidase functions in maintaining hypersomnolence
and oxidative and proinflammatory responses in OSA, sug-
gesting that inhibiting NADPH oxidase may be an approach
for restraining oxidation-mediated morbidities in patients with
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the disease [18]. Although these studies have reported the
genes related to OSA, the pathogenesis of the disease have
not been thoroughly revealed.

In 2013, Gharib et al. evaluated the influences of OSA on
the transcription activities of adipocytes through pathway-
focused analyses, finding that OSA is related to the gene ex-
pression changes in visceral fat and several key pathways may
promote the metabolic dysregulation [19]. Nevertheless,
Gharib et al. [19] have not further explored the key genes
implicated in OSA. Using the data deposited by Gharib et al.
[19], comprehensive bioinformatics analyses were conducted
to fully reveal the mechanisms of OSA.

Materials and methods

Microarray data

The expression profile of GSE38792 was extracted fromGene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/) database. GSE38792, which was based on the platform
of GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 1.0
STArray [transcript (gene) version], included ten visceral ad-
ipose tissues from OSA patients and eight visceral adipose
tissues from normal controls. The patients were from
University Hospitals Case Medical Center in Cleveland,
Ohio. Visceral adipose tissues were isolated from the omen-
tum during ventral hernia repair surgery. The samples were
washed with PBS, minced, frozen in liquid nitrogen, and fi-
nally kept at − 80 °C. Gharib et al. [19] uploaded GSE38792,
whose study were approved by their institutional review
board. All subjects signed informed consent.

Data preprocessing and identification of differentially
expressed genes

Using the R package Oligo [20] (version 1.34.0, http://
bioconductor.org/help/search/index.html?q=oligo/),
background correction of expression values and data
normalization were conducted for the raw data. Subsequently,

Fig. 1 The distribution diagrams
of gene expression values before
and after normalization. Red and
yellow represent obstructive sleep
apnea (OSA) samples and normal
samples, respectively
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probes were annotated based on the platform annotation files.
The probeswithoutmatching gene symbols were removed. For
different probe mapping to the same gene, the mean value of
the probes was taken as the final expression value of the gene.
Then, the Linear Models for Microarray Analysis (limma;
version 3.10.3; http://www.bioconductor.org/packages/
release/bioc/html/limma.html) package [21] in R was applied
for differentially expression analysis. The genes with p value <
0.01were deemed to be differentially expressed genes (DEGs).

Functional and pathway enrichment analysis

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID; version 6.8; https://david-d.ncifcrf.gov/) is
a web-accessible database that can be utilized for the functional
annotation of genes or proteins [22]. Based onDAVID database,
Gene Ontology (GO) functional [23] and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway [24] enrichment anal-
yses were carried out for the DEGs. The p value < 0.05 and the
count of involved genes ≥ 2 were significant thresholds.

Protein-protein interaction network and module
analyses

The Search Tool for the Retrieval of Interacting Genes
(STRING; version 10.0; http://string-db.org/) database
includes protein-protein interactions (PPIs) related to more
than 1100 organisms [25]. Combined with STRING database
(combined score > 0.4) [25], PPIs among the DEGs were an-
alyzed. Then, a PPI network was built using Cytoscape

software (version 3.2.0, http://www.cytoscape.org) [26]. To
screen the key nodes, topology analysis was conducted for
network nodes using the CytoNCA plug-in [27] (version 2.
1.6, http://apps.cytoscape.org/apps/cytonca) in Cytoscape
software. Furthermore, the MCODE plug-in [28] (version1.
4.2, http://apps.cytoscape.org/apps/MCODE) in Cytoscape
software was utilized for identifying the significant network
modules. The score ≥ 4 was set as the threshold.

Integrated regulatory network analysis

Using the iRegulon plug-in [29] (version 1.3, http://apps.
cytoscape.org/apps/iRegulon) in Cytoscape software, TF-
target pairs among the PPI network were predicted. The TF-
target pairs with normalized enrichment score (NES) > 4 were
selected. Using the overrepresentation enrichment analysis
(ORA) method in WebGestalt GAST tool [8] (http://www.
webgestalt.org/option.php), miRNA-target pairs were predict-
ed for the PPI network nodes. The number of enriched genes
≥ 2 and p value < 0.05 were defined as thresholds. Finally, the
TF-target and miRNA-target pairs were integrated into a reg-
ulatory network using Cytoscape software [26].

Results

Identification of DEGs

The median values after data preprocessing were at the same
level, indicating a good effect (Fig. 1). There were 368 DEGs

Fig. 2 The top 5 GO (gene ontology)_biological process (BP), GO_cellular component (CC), and GO_molecule function (MF) terms separately
enriched for the upregulated genes (a) and the downregulated genes (b)
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Table 1 The pathways enriched for the upregulated genes and the downregulated genes

Category Pathway ID Pathway name Count p value Genes

Up hsa05169 Epstein-Barr virus infection 10 8.01E-05 POLR2K, IL10RB, RAN, SHFM1, MAPK9, RB1, MAPK10,
EIF2AK2, YWHAE, GTF2B

hsa04141 Protein processing in endoplasmic reticulum 7 5.70E-03 UBE2G1, DNAJC10, PDIA6,MAPK9,MAPK10, EIF2AK2,
LMAN1

hsa05164 Influenza A 7 6.55E-03 IRAK4, HLA-DRB5, TLR3, MAPK9, IL33, MAPK10,
EIF2AK2

hsa05145 Toxoplasmosis 5 2.72E-02 IRAK4, IL10RB, HLA-DRB5, MAPK9, MAPK10

hsa05152 Tuberculosis 6 2.80E-02 IRAK4, IL10RB, HLA-DRB5, MAPK9, NFYB, MAPK10

hsa05160 Hepatitis C 5 3.96E-02 TLR3, MAPK9, MAPK10, EIF2AK2, PPP2R2A

Down hsa04740 Olfactory transduction 11 1.55E-04 OR13C3, OR4C15, OR52I2, OR10X1, OR1L6, OR4C11,
OR11A1, OR9A2, OR1L1, OR2M3, OR2M5

Fig. 3 The most significant pathway enriched for the upregulated genes. The highlights were enriched genes
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(176 upregulated and 192 downregulated) in OSA samples in
relative to normal samples.

Functional and pathway enrichment analysis

As multiple GO terms in biological process (BP), cellular
component (CC), andmolecule function (MF) categories were
enriched for the DEGs, only the top five terms (according to p
values) were presented (Fig. 2). The upregulated genes were
mainly implicated in positive regulation of chemokine pro-
duction (GO_BP, p value = 9.25E−03), extracellular exosome
(GO_CC, p value = 2.09E−08), and protein binding (GO_MF,
p value = 1.97E−04). Besides, the downregulated genes were
mainly enriched in detection of chemical stimulus involved in
sensory perception of smell (GO_BP, p value = 2.91E−04),

plasma membrane (GO_CC, p value = 3.53E−02), and olfac-
tory receptor activity (GO_MF, p value = 3.37E−04).

The upregulated genes were enriched in six pathways
(Table 1), and the top 1 pathway was Epstein-Barr virus in-
fection (p value = 8.01E−05; involving interleukin 10 recep-
tor, beta (IL10RB), mitogen-activated protein kinase 9
(MAPK9), and mitogen-activated protein kinase 10
(MAPK10)) (Fig. 3). Meanwhile, only one pathway (olfactory
transduction, p value = 1.55E−04) was enriched for the down-
regulated genes (Table 1, Fig. 4).

Network analysis

The PPI network for the DEGs were built, which had 160
nodes and 258 edges (Fig. 5). Subsequently, 2 significant

Fig. 4 The pathway enriched for the downregulated genes. The highlights were enriched genes in the pathways

Sleep Breath (2019) 23:259–267 263



network modules (module a: score = 4.6, 11 nodes and 23
edges; module b: score = 4, 10 nodes and 18 edges) were iden-
tified (Fig. 5). The top 10 network nodes (according to de-
grees; such as thioredoxin (TXN)) and the module nodes were

listed in Table 2. A total of three TFs and eight miRNAs
were predicted, involving 156 relation pairs. Afterwards,
the integrated regulatory network was built and present-
ed in Fig. 6.

Fig. 5 The protein-protein interaction network (PPI) for the differentially expressed genes, as well as the modules a and b identified from the PPI
network. Yellow circles and blue diamonds represent upregulated genes and downregulated genes, respectively
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Discussion

In this study, 368 DEGs (176 upregulated and 192 downreg-
ulated) in OSA samples were identified. There were multiple

GO terms enriched for the DEGs. Pathway enrichment
showed that the upregulated genes and the downregulated
genes separately were mainly enriched in Epstein-Barr virus
infection (involving IL10RB, MAPK9, and MAPK10) and

Table 2 The top 10 network nodes and the module nodes

Interaction network Module a Module b

Nodes Description Degree Nodes Description Degree Nodes Description Degree

ACTA1 Up 14 ACTL6A Up 12 ACTA1 Up 14

ACTR10 Up 13 UBA3 Up 9 ACTR10 Up 13

ACTL6A Up 12 ANAPC10 Up 7 DNAJC10 Up 12

DNAJC10 Up 12 CAPZA1 Up 7 TXN Up 10

IL2 Down 10 CAPZA2 Up 7 TUBA1A Up 9

TXN Up 10 DSTN Up 7 YWHAE Up 8

SNRPB2 Up 10 ARPC3 Up 6 RAB11A Up 7

RB1 Up 10 PLS3 Up 6 GLRX Up 5

TUBA1A Up 9 ASB4 Down 5 TCTN3 Up 3

UBA3 Up 9 UBE2Q2 Up 5 PDIA6 Up 3

UBE2G1 Up 4

Fig. 6 The integrated regulatory network. Yellow circles, blue diamonds, green hexagons, and red triangles represent upregulated genes, downregulated
genes, transcription factors, and microRNAs, respectively
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olfactory transduction. After the PPI network was built, 2
significant network modules were identified. In addition, the
integrated regulatory network was constructed.

The promoter polymorphisms in IL-10 may result in the
changes of inflammatory cascade and thus promote obstruc-
tive sleep apnea syndrome (OSAS) [30, 31]. Serum levels of
IL-10 were significantly reduced in obstructive sleep apnea
hypopnea syndrome (OSAHS) patients compared with normal
controls, indicating that IL-10may be correlated with intermit-
tent hypoxia during sleep [32]. Tumor necrosis factor-2 (TNF-
2)/IL-10 ratio is significantly higher in OSAHS patients and
increases correlate with the severity of the disease, suggesting
that TNF-2/IL-10 ratio may be of great usefulness for the
management and severity monitoring of OSAHS patients
[33]. OSA is correlated with the occurrence of insulin resis-
tance in subjects with morbidly obese (MO), and IL-10 serum
level is significantly decreased in MO individuals with severe
OSA [34]. Therefore, IL10RBmight function in OSA through
participating in Epstein-Barr virus infection.

Grape seed proanthocyanidin enhances learning and mem-
ory function following OSA hypoxia via suppressing phos-
phorylated p38MAPk and IL-1Beta in a rat OSA model [35].
Chronic intermittent hypoxia (CIH) interferes with insulin se-
cretion and induces inflammation in pancreatic tissue through
the MAPK signaling pathway, which may be important for
type 2 diabetes mellitus (T2DM) and OSA therapy [36, 37].
OSA is related to nonalcoholic fatty liver disease and leads to
CIH during night, and CIH can result in liver fibrosis through
toll-like receptor 4 (TLR4)/myeloid differentiation primary
response 88 (MyD88)/MAPK/NF-κB signaling pathways
[38]. This suggests that MAPK9 and MAPK10 involved in
Epstein-Barr virus infection might also play a role in the de-
velopment of OSA.

The plasma level of TXN is upregulated in OSA
patients, which may be a promising oxidative stress
marker used for monitoring the therapeutic effect of
nasal CPAP for the disease [39]. The protein disulphide
reductase TXN plays a role in antioxidant defense, and
its plasma level indicates the severity of OSA [40].
Oxidative stress is a typical trait of OSAHS, and TXN
levels in untreated OSAHS patients is lower than that in
treated OSAHS patients [41]. TXN, superoxide dismut-
ase, malondialdehyde, and reduced iron are the most
common oxidative stress markers, which may contribute
to evaluating and monitoring the patients with OSAS
[42]. TXN was among the top 10 PPI network nodes,
indicating that TXN might be involved in the pathogen-
esis of OSA.

In conclusion, 368 DEGs in OSA samples were identified
via bioinformatics analysis. IL10RB, MAPK9, MAPK10, and
TXN might be key genes acting in OSA. However, more ex-
perimental studies should be carried out to confirm the roles of
these genes in OSA.
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