

Excessive daytime sleepiness in general hospital nurses: prevalence, correlates, and its association with adverse events

Liping Chen^{1,2} • Chunliu Luo³ • Shuai Liu⁴ • Weiju Chen⁵ • Yaping Liu⁶ • Yunjia Li⁵ • Yun Du⁵ • Haihua Zou⁵ • Jiyang Pan¹

Received: 1 December 2017 / Revised: 7 May 2018 / Accepted: 12 June 2018 / Published online: 16 August 2018

© Springer Nature Switzerland AG 2018

Abstract

Objective To investigate the prevalence and correlates of excessive daytime sleepiness (EDS) in a population of hospital nurses in South China as well as the influence of EDS on the occurrence of adverse events.

Methods A total of 1102 nurses working in a large medical center were invited to participate in this cross-sectional study (96.9% females, mean age 29.6 years). They all completed a self-reported questionnaire consisting of items on demographic variables, lifestyle factors, insomnia, anxiety, depression, and both work-related and sleep-related characteristics.

Results A total of 1048 nurses gave a valid response (response rate 95.1%). Among them, 169 (16.1%) reported EDS as defined as an Epworth Sleepiness Scale ≥ 14 . Depression (adjusted odds ratio = 2.24, 95% confidence interval 1.51–3.31), anxiety (1.65; 1.02–2.67), insomnia (2.29; 1.56–3.36), rotating shift work (1.98; 1.03–3.83), and low interest in work (1.74; 1.01–2.99) were all independent risk factors of the occurrence of EDS. EDS is associated with the occurrence of adverse events after controlling for confounding factors (adjusted OR 1.83, CI 1.26 to 2.67).

Conclusions EDS was common among this relatively young and healthy nurse population in south China. There were clear associations between EDS and depression, anxiety, insomnia, rotating shift work, and low work-related interest. Furthermore, EDS was an independent risk factor in the occurrence of adverse events (AEs) in our subjects.

Keywords Excessive daytime sleepiness • Nurses • Depression • Anxiety • Rotating shift work • Adverse events

Introduction

Liping Chen and Chunliu Luo are co-first authors.

✉ Jiyang Pan
jiypan@163.com

¹ Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China

² Department of Psychiatry, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China

³ Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China

⁴ Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

⁵ Nursing Department, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China

⁶ Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China

Excessive daytime sleepiness (EDS), which affects an estimated 20% of the adults, has become a significant public health concern [1]. It not only is an accessory symptom or risk factor for various physical and mental disorders but also associates with low productivity, various life-threatening traffic accidents, and occupational injuries related to human errors [2–4]. Identifying the factors that associate with EDS is therefore of great importance for improving the occupational health.

A large number of epidemiological studies have reported the prevalence and correlates of EDS in general populations [5–8]. Previous studies have shown that age [9], shift work [10, 11], work-related stress [12], the severity of mood symptoms [1, 13], body mass index (BMI), and personal chronotype [14] are associated with EDS. Recently, several studies had also reported the associations between shift work and daytime sleepiness among nurses and other medical professionals, but the results were contradictory [15–19].

Therefore, the information on the prevalence and determinants of EDS in the population of nurses still needs to be explored yet.

On the other hand, EDS is an important occupational health issue in hospital nurses, which is relevant to the patients' safety directly. However, the influence of EDS on the occurrence of adverse events (AEs) in hospital nurses of China is still unknown. Moreover, most of the previous studies on this issue did not fully control the personal factors of their subjects, such as alcohol consumption [15], other sleep problems and mental health [16], and all of these might result in the divergent findings between different studies. The aims of our study were to determine the prevalence and correlates of EDS in hospital nurses. Furthermore, we also estimated the impact of EDS on the occurrence of AEs.

Methods

Study design and participant recruitment

The current study was based on an epidemiologic study, which aimed to explore the prevalence of various sleep and mental problems, their correlated factors, and consequences. Our participants were nurses who worked either rotating or day shifts in a large medical center of Guangzhou, Guangdong Province, China. This study was approved by the Hospital's Ethics Committee, and all participants provided written consents. Questionnaires were distributed and collected by the research staff in the current study. In total, 1102 nurses were recruited in the survey. Among them, 1048 participants with valid responses were included into the final analyses.

Measurements

The structured questionnaires developed for the study were consisted of several categories: socio-demographic, work-related characteristics, and lifestyle and sleep-related factors (Table 1). Frequency of moderate-to-intensive physical activity for more than 30 min was defined by a single 2-point scale question (1: < 3 days per week; 2: ≥ 3 days per week). Height and weight were self-reported and converted into body mass index (BMI). Based on the criteria for Asian adults developed by the World Health Organization (WHO), participants with a BMI > 25 were categorized as obese [17].

Work-related characteristics

The work-related characteristics of participants included department, position, average number of rotating shifts work per

month, the length of work experience, interest in work, and work-related stress. In our study, both interest in work and work-related stress were surveyed using a single 2-point scale question (1: high interest 2: general interest or even low interest; 1: high level of stress 2: general or even low level of stress).

Sleep-related characteristics

EDS Daytime sleepiness was assessed using the Epworth Sleepiness Scale (ESS), a brief questionnaire which has been widely validated. The ESS questionnaire captures an individual's propensity to fall asleep during commonly encountered situations on a scale from 0 to 3 (range 0 to 24). We used a validated Chinese translation of this questionnaire [18], and the total score equal to or greater than 14 indicates EDS [19].

Insomnia symptoms and short sleep duration in weekdays The Insomnia Severity Index (ISI) was used to measure the symptoms and consequences of insomnia (Morin CM1993) during the past 2 weeks. The ISI consists of seven questions with a 5-point scale (0: not at all-4: very serious). Participants who scored 14 points or higher are classified into having insomnia symptoms [20]. Moreover, we also asked the nurses whether their sleep duration in weekdays were less than 6 h per day in the past month.

Depression and anxiety symptoms The Beck Depression Inventory (BDI) and Self-Rating Anxiety Scale (SAS) were employed to access the depression and anxiety severity of our subjects during the last week, respectively. The BDI is a well-established 21-item self-reported inventory for the assessment of the severity of depressive symptoms in adults. BDI score of at least 11 is indicative of depression [21]. The Zung Self-Rating Anxiety Scale (SAS) is a self-reported scale with 20 items, which is able to distinguish normal from anxious individuals and quantifies a patient's level of anxiety [22, 23]. Participants with global scores that exceed 50 are classified considered as having anxiety symptoms.

Morningness-Eveningness Questionnaire We employed a reduced version of the Chinese Morningness-Eveningness Questionnaire (rMEQ). The total score of rMEQ of 4–11, 12–17, and 18–25 indicates eveningness, intermediate, and morningness chronotype, respectively [24].

Definition of AEs

An adverse event is an injury related to medical management [25]. It was conducted by an error known as preventable such as drug administration errors, incorrect operation of medical equipment, needle stick injuries, and patient falls. The nurses

Table 1 Results of the structured questionnaires that consisted of several categories: socio-demographic, work-related characteristics, and lifestyle and sleep-related factors

	EDS		<i>p</i>
	No (n = 879)	Yes (n = 169)	
Socio-demographics			
Age, years, mean (SD)	31.6 (9.7)	27.3 (5.9)	< 0.001***
Sex, female, n (%)	854 (97.2)	162 (95.9)	0.369
Education (bachelor), n (%)	524 (59.8)	107 (63.3)	0.395
Marital status (single), n (%)	470 (53.6)	107 (63.3)	< 0.05*
Work-related characteristics			
Monthly income (> 5000 yuan [#]), n (%)	435 (49.5)	77 (45.6)	0.350
Rotating shift work, n (%)	685 (77.9)	157 (92.9)	< 0.001***
Position (junior title), n (%)	707 (80.4)	158 (93.5)	< 0.001***
Work-related stress, n (%)	449 (51.1)	116 (68.6)	< 0.001***
Low interest in work, n (%)	659 (75.0)	151 (89.3)	< 0.001***
Work years, mean (SD)	9.64 (9.25)	7.01 (6.42)	< 0.001***
Lifestyle and sleep-related characteristics			
BMI > 25 (kg/m ²), n (%)	33 (3.8)	10 (5.9)	0.194
Alcohol drinking often, n (%)	7 (0.8)	2 (1.2)	0.110
Exercise often, n (%)	125 (14.2)	16 (9.5)	0.102
Habitual napping, n (%)	664 (75.6)	124 (73.4)	0.534
Snoring, n (%)	32 (3.6)	6 (3.6)	0.954
Time on TV or the internet (≥ 3 h/day), n (%)	265 (30.2)	60 (35.5)	0.171
Short sleep duration in weekdays (< 6 h/day), n (%)	15 (1.7)	7 (4.2)	< 0.05*
Depression, n (%)	337 (42.9)	123 (72.8)	< 0.001***
Anxiety, n (%)	73 (8.3)	39 (23.1)	< 0.001***
Insomnia, n (%)	164 (18.7)	79 (46.7)	< 0.001***
Chronotype			0.229
Eveningness chronotype, n (%)	160 (18.3)	40 (23.7)	
Intermediate chronotype, n (%)	535 (61.3)	100 (52.9)	
Morningness chronotype, n (%)	178 (20.4)	29 (17.2)	

SD Standard deviation, NA not available

* *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001

[#] One yuan equals 0.15 US dollar

were asked to report whether they had caused or been responsible for an “adverse event” including “accident” or “incident” in the past 12 months, regardless of severity of the event. Therein, an accident included medical behaviors that harmed a patient, while an incident include the action that was not taken yet but would have harmed a patient if committed or action was already taken but did not harm the patient or require follow-up observation [26].

Data analysis

The socio-demographic, work-related characteristics, lifestyle, and sleep-related factors of the participants were evaluated using descriptive statistics. The *t* test and χ^2 test were conducted to compare the nurses’ characteristics according

to the occurrence of EDS and AEs. First of all, univariate analyses and multiple logistic regression analyses were performed to examine the associations of EDS with demographic data and other confounding factors. In addition, “with AEs” and “without AEs” were taken as the dependent variables to analyze whether EDS associated with the occurrence of AEs. While with/without EDS, demographic data and work-related characteristics were considered as independent variables in model 1. Other potential confounding factors were further included into model 2. We presented odds ratios with 95% confidence intervals (CI), and a *p* value of < 0.05 was considered to indicate statistical significance. All tests were two-tailed. A Statistical Package for the Social Sciences (SPSS) 20.0 for windows (SPSS Inc., Chicago, IL) was used for all statistical tests.

Results

Characteristics of subjects and prevalence of excessive daytime sleepiness

The demographic, lifestyle, work-related, and sleep-related characteristics of the study subjects are presented in Table 1. In the present study, almost 16.1% of the subjects experienced EDS as defined as having ESS ≥ 14 . No smoker was found in the current study. Subjects with EDS were more likely to be younger and single. We also found that rotating shift work, a lower position, high work-related stress, low interest in work, anxiety, depression, insomnia, and short sleep duration in weekdays (< 6 h/day) were associated with incident EDS. However, educational level, chronotype, BMI, habitual napping, snoring, or exercises did not show a significant association with EDS (Table 1).

The correlates of excessive daytime sleepiness

Table 2 presents the results of logistic regression, which shows that rotating shift work, low work-related interest, insomnia, as well as anxiety and depression symptoms were prominent predictors of the prevalence of EDS after controlling for age, sex, marital status, education, position, monthly income, work-related stress, and short sleep duration in weekdays.

The influence of EDS on the occurrence of AEs

There were 45.9% of the nurses who reported that they experienced AEs in the past 12 months. Those nurses with EDS had a higher prevalence of AEs than those nurses without EDS (Fig. 1). Table 3 shows the results in logistic regression models. After controlling for demographic factors and work-related characteristics in model 1, subjects with EDS were significantly associated with a higher rate of AEs (OR 1.92, CI 1.33 to 2.77). In the final model with full adjustment (model 2), EDS remained as an independent risk factor in the occurrence of AEs.

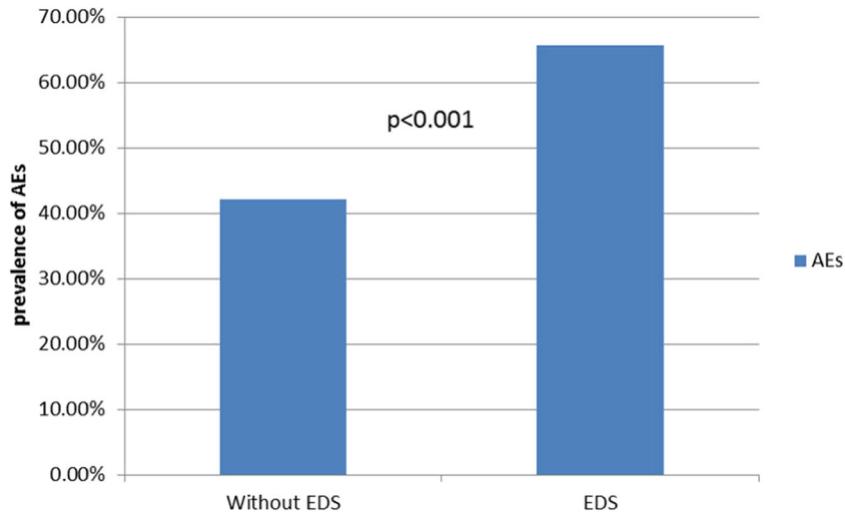
Discussion

The current study showed 16.1% of the nurse reported EDS. Rotating shift work, low work-related interest, insomnia, as well as anxiety and depression symptoms were prominent correlates of the prevalence of EDS, whereas no significant relationships were seen between educational level, chronotype, BMI, habitual napping, snoring, or exercises and EDS. In addition, EDS was an independent risk factor of AEs, a common medical problem in general hospital nurses.

Compared to the previously published results in the nursing populations in Taiwan (35%) and Japan (26%), the prevalence

Table 2 Results of logistic regression

Correlates	Crude OR (95% CI)	Logistic regression model OR (95% CI)
Age, years	NA	0.96 (0.93–1.00)
Sex, female	0.68 (0.29–1.59)	0.61 (0.24–1.53)
Marital status (single)	0.67 (0.48–0.94)*	1.00 (0.60–1.67)
Education (\geq bachelor)	1.16 (0.83–1.63)	1.32 (0.88–1.98)
Work-related stress	2.10 (1.48–2.98)***	NA
Low interest in work	2.80 (1.68–4.67)***	1.74 (1.01–2.99)*
Nightshift (Inpatient)	3.71 (2.02–6.81)***	1.98 (1.03–3.83)*
Position (junior title)	0.29 (0.15–0.54)	NA
Income (> 5000 yuan [#] /month), <i>n</i> (%)	0.85 (0.61–1.19)	NA
Depression	3.56 (2.47–5.12)***	2.24 (1.51–3.31)***
Anxiety	3.31 (2.15–5.10)***	1.65 (1.02–2.67)*
Insomnia	3.83 (2.71–5.41)***	2.29 (1.56–3.36)***
Short sleep duration in weekdays (< 6 h/day)	2.50 (1.00–6.22)*	NA


Adjusted for age, sex, married status, education, position, monthly income, rotating shift work, work-related stress, low interest in work, insomnia, sleep duration in weekdays, depression and anxiety in this logistic regression model

NA not applicable, CI confidence interval, OR odds ratio

* *p* - values < 0.05 , ** *p*-values < 0.01 , *** *p*-values < 0.001

[#] One yuan equals 0.15 US dollar

Fig. 1 Bar graph of the prevalence of AEs according to the two group subjects: without EDS vs. with EDS

of EDS in the current survey was relatively low (16%) [7, 16]. Several factors may account for the relatively low prevalence of EDS as found in our study. First, we employed a more stringent criterion to define EDS (ESS scores of ≥ 14) than the study in Taiwanese nurses (ESS scores of > 10) or the study in Japanese nurses to define EDS. Second, the subjects in the Taiwan study were much younger than that in our study. Indeed, it has been found that neurobehavioral deficits due to sleep loss are greater in younger population [27]. Our data and other studies [9, 28, 29] also revealed that younger age is a risk factor of EDS.

A number of studies have concluded that shift workers had a higher prevalence of EDS in general population [10, 11, 30, 31]. However, there were only few reports on the association between shift work and EDS on nurses or other medical staff [29, 32–34], in which findings were not consistent. Some studies found significant association between EDS and shift work in nurse population [32, 33, 35, 36], while other did not [29, 34, 37]. We speculated that a lower response rate [29], small sample size [34], differences in populations and the patterns of the night shifts might contribute to this inconsistency. Moreover, the finding that low interest in work remained an important risk factor for EDS in our study was also in keeping with previously published results [38, 39].

When it comes to mood symptoms, EDS is closely associated with depression, and depression has been shown to be a risk factor of incident and persistent EDS in general adult

population [9, 40–42]. However, only a few studies had investigated the association between EDS and mood symptoms among nurses or other medical staff [29, 32, 34]. Matias et al. (2016) failed to find a significant positive association between EDS and high scores of anxiety symptoms among psychiatry residents [34]. Nevertheless, both depression and anxiety symptoms were independent significant risk factors of the prevalence of EDS in the current study. Our results were compatible with previous literature suggesting that subjects who reported depression and anxiety symptoms tended to exhibit a high degree of EDS in the general population [9, 43–45].

The relationship between insomnia and EDS has been well established in studies of working-age adults [13, 45–47]. Similar to several Taiwanese population surveys [47, 48], we found that insomnia status independently predicted the incidence of EDS with a high OR and a narrow confidence interval even after controlling for all the confounding factors. This finding confirmed the significant impact of insomnia on EDS.

We did have discordant findings; the hypothesis that BMI has positively associated with EDS and morningness trait nurses would have more sleepiness than their evening counterparts was not supported by our study [49, 50]. Though similar results have been reported elsewhere [35, 51], these differences could be interpreted that those subjects with higher BMI had an increasing risk of pathophysiological obstructive sleep apnea [52–54]. Regarding the chronotype, we explained

Table 3 Excessive daytime sleepiness in relation to adverse events

Correlates	Crude OR (95% CI)	Logistic regression model 1 OR (95% CI)	Logistic regression model 2 OR (95% CI)
EDS	2.63 (1.87–3.72)***	1.92 (1.33–2.77)**	1.83 (1.26–2.67)**

* $P < 0.05$. ** $P < 0.01$. *** $P < 0.001$

the results with a high level of circadian sleep pressure during rotating shift work in all chronotypes.

Finally, our data showed 45.9% of nurses reporting AEs in the past 12 months, which was comparable with the prevalence rate reported by another study conducted in China (42.2%) [55]. As mentioned above, EDS is common in nurse population. Nevertheless, there had so far been only several reports that aimed to explore the associations between EDS and AEs [16, 56, 57]. These studies, in general, reported a significant association between EDS and AEs. However, one study found that the association between EDS and AEs did not maintain statistical significance after controlling for shift work and poor mental health [57]. In current study, there was a significant association between AEs and EDS even after controlling demographics, lifestyle, work-related, and sleep-related characteristics. In this regard, further studies are warranted to explore the association between EDS and AEs taking other potential confounding factors into consideration.

Implications

Our findings suggested that EDS was prevalent in Chinese nurses and was associated with various mental distresses. We also identified several risk factors that were associated with EDS in this population, which may help to develop preventive strategies for EDS. On the other hand, AEs are very common in clinical settings, which are harmful to both patients and medical professionals. The independent association of EDS with AEs may also help to develop preventive strategies for the occurrence of AEs.

Limitations

There are also several limitations in the current study when interpreting the results. First, considering that EDS is a multi-factorial construct, the unique use of the self-report ESS measurement, assessing subjective daytime sleepiness in daily life, represents a major limitation of the study. However, ESS has been previously shown to have good test-retest reliability to assess daytime sleepiness in adults [58] and has moderate association with objective daytime sleepiness measured through multiple sleep latency test [59, 60]. Recently, Johns proposed the Epworth Sleepiness Scale for Children and Adolescents (ESS-CHAD) as the official modified version of the ESS for adolescents and proved its reliability and validity in their research [61]. Similarly, it should be mentioned that the method of self-reported adverse events is also a limitation here. Sleepier nurses might remember the adverse events more frequently. Second, our study based on a cross-sectional design was insufficient to determine a causal relationship. A well-designed longitudinal study will be needed to

identify the relevant factors for EDS in this cohort in the future. Third, we did not examine caffeine consumption, which was included in previous studies, for adjustment of life habits. Fourth, 96.9% of nurses in our study were females and no smokers were found in our study. However, this result was consistent with some other investigations of Chinese doctors [62, 63] and Chinese medical students [64, 65] who have reported having no female smokers at all. This phenomenon may reflect (1) a cultural reluctance for professional women to smoke in certain parts of the world, such as China, or (2) unwillingness to report smoking behaviors as measured by self-reported questionnaires. Lastly, though our subjects came from three to four different subsidiary hospitals and different departments in a large medical center, the present study was still not a multiple-center survey; thus, these results cannot represent the situation in Chinese general hospital nurses.

Conclusions

To summarize, the current study suggests that rotating shift work, depression, anxiety, insomnia, and low work interest were independent high-risk factors for EDS. On the other hand, EDS was one of the most important independent risk factor associated with the incidence of AEs, which emphasizes the need for giving more attentions to the EDS in Chinese hospital nurses.

Acknowledgements The authors would like to express their appreciation to all of the nurses who completed the questionnaires. They would also like to thank Dr. Jihui Zhang, Dr. Liu Yaping, and Dr. Liu Shuai at the Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong for their contribution in preparing this report.

Funding information The research was supported in part by the Natural Science Foundation of Guangdong Province, China (No. 2013B022000076) and the Nursing Project Special Fund of Jinan University, China (No. 2013303).

Compliance with ethical standards

This study was approved by the Hospital's Ethics Committee, and all participants provided written consents.

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Young TB (2004) Epidemiology of daytime sleepiness: definitions, symptomatology, and prevalence. *J Clin Psychiatry* 65(Suppl 16): 12–16
2. Boulos MI, Murray BJ (2010) Current evaluation and management of excessive daytime sleepiness. *Can J Neurol Sci* 37:167–176

3. Luyster FS, Strollo PJ Jr, Zee PC, Walsh JK, Boards of Directors of the American Academy of Sleep M, the Sleep Research Society (2012) Sleep: a health imperative. *Sleep* 35(6):727–734
4. Morrison I, Riha RL (2012) Excessive daytime sleepiness and narcolepsy—an approach to investigation and management. *Eur J Intern Med* 23:110–117
5. Wu S, Wang R, Ma X, Zhao Y, Yan X, He J (2012) Excessive daytime sleepiness assessed by the Epworth Sleepiness Scale and its association with health related quality of life: a population-based study in China. *BMC Public Health* 12:849
6. Liu X, Uchiyama M, Kim K, Okawa M, Shibui K, Kudo Y, Doi Y, Minowa M, Ogihara R (2000) Sleep loss and daytime sleepiness in the general adult population of Japan. *Psychiatry Res* 93:1–11
7. Huang CF, Yang LY, Wu LM, Liu Y, Chen HM (2014) Determinants of daytime sleepiness in first-year nursing students: a questionnaire survey. *Nurse Educ Today* 34:1048–1053
8. Joo S, Baik I, Yi H, Jung K, Kim J, Shin C (2009) Prevalence of excessive daytime sleepiness and associated factors in the adult population of Korea. *Sleep Med* 10:182–188
9. Fernandez-Mendoza J, Vgontzas AN, Kritikou I, Calhoun SL, Liao D, Bixler EO (2015) Natural history of excessive daytime sleepiness: role of obesity, weight loss, depression, and sleep propensity. *Sleep* 38:351–360
10. Arendt J (2010) Shift work: coping with the biological clock. *Occup Med (Lond)* 60:10–20
11. Barger LK, Lockley SW, Rajaratnam SM (2009) Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions. *Curr Neurol Neurosci Rep* 9:155–164
12. Grossi G, Perski A, Evengard B et al (2003) Physiological correlates of burnout among women. *J Psychosom Res* 55:309–316
13. Hublin C, Kaprio J, Partinen M, Heikkilä K, Koskenvuo M (1996) Daytime sleepiness in an adult, Finnish population. *J Intern Med* 239:417–423
14. Czeisler CA (2009) Medical and genetic differences in the adverse impact of sleep loss on performance: ethical considerations for the medical profession. *Trans Am Clin Climatol Assoc* 120:249–285
15. Johns M, Hocking B (1997) Daytime sleepiness and sleep habits of Australian workers. *Sleep* 20:844–849
16. Suzuki K, Ohida T, Kaneita Y, Yokoyama E, Uchiyama M (2005) Daytime sleepiness, sleep habits and occupational accidents among hospital nurses. *J Adv Nurs* 52:445–453
17. Consultation WHOE (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. *Lancet* 363:157–163
18. Chen NH, Johns MW, Li HY, Chu CC, Liang SC, Shu YH, Chuang ML, Wang PC (2002) Validation of a Chinese version of the Epworth sleepiness scale. *Qual Life Res* 11:817–821
19. Chung KF (2000) Use of the Epworth Sleepiness Scale in Chinese patients with obstructive sleep apnea and normal hospital employees. *J Psychosom Res* 49:367–372
20. Gagnon C, Belanger L, Ivers H, Morin CM (2013) Validation of the Insomnia Severity Index in primary care. *J Am Board Fam Med* 26: 701–710
21. Wang Z, Yuan C, Huang J (2011) Reliability and validity of the Chinese version of Beck Depression Inventory-II among depression patients. *Chinese Ment Health J* 25:476–480
22. Zung WW (1971) A rating instrument for anxiety disorders. *Psychosomatics* 12:371–379
23. Zung WW (1974) The measurement of affects: depression and anxiety. *Mod Probl Pharmacopsychiatry* 7:170–188
24. Adan A, Almirall H (1991) Horne & Östberg morningness-eveningness questionnaire: a reduced scale. *Personal Individ Differ* 12:241–253
25. Hiatt HH, Barnes BA, Brennan TA, Laird NM, Lawthers AG, Leape LL, Localio AR, Newhouse JP, Peterson LM, Thorpe KE, Weiler PC, Johnson WG (1989) A study of medical injury and medical malpractice. *N Engl J Med* 321:480–484
26. Seki Y (2008) Working condition factors associated with time pressure of nurses in Japanese hospitals. *J Occup Health* 50:181–190
27. Duffy JF, Willson HJ, Wang W, Czeisler CA (2009) Healthy older adults better tolerate sleep deprivation than young adults. *J Am Geriatr Soc* 57:1245–1251
28. Foley D, Ancoli-Israel S, Britz P, Walsh J (2004) Sleep disturbances and chronic disease in older adults: results of the 2003 National Sleep Foundation Sleep in America Survey. *J Psychosom Res* 56: 497–502
29. Oyan NM, Pallesen S, Moen BE et al (2013) Associations between night work and anxiety, depression, insomnia, sleepiness and fatigue in a sample of Norwegian nurses. *PLoS One* 8:e70228
30. Sallinen M, Kecklund G (2010) Shift work, sleep, and sleepiness—differences between shift schedules and systems. *Scand J Work Environ Health* 36:121–133
31. Akerstedt T (1988) Sleepiness as a consequence of shift work. *Sleep* 11:17–34
32. Eldevik MF, Flo E, Moen BE, Pallesen S, Bjorvatn B (2013) Insomnia, excessive sleepiness, excessive fatigue, anxiety, depression and shift work disorder in nurses having less than 11 hours in-between shifts. *PLoS One* 8:e70882
33. Geiger-Brown J, Rogers VE, Trinkoff AM, Kane RL, Bausell RB, Scharf SM (2012) Sleep, sleepiness, fatigue, and performance of 12-hour-shift nurses. *Chronobiol Int* 29:211–219
34. Carvalho Aguiar Melo M, das Chagas Medeiros F, Meireles Sales de Bruin V, Pinheiro Santana JA, Bastos Lima A, de Francesco Daher E (2016) Sleep quality among psychiatry residents. *Can J Psychiatr* 61:44–49
35. Geiger Brown J, Wieroney M, Blair L, Zhu S, Warren J, Scharf SM, Hinds PS (2014) Measuring subjective sleepiness at work in hospital nurses: validation of a modified delivery format of the Karolinska Sleepiness Scale. *Sleep Breath* 18:731–739
36. Jafari Roodbandi A, Choobineh A, Daneshvar S (2015) Relationship between circadian rhythm amplitude and stability with sleep quality and sleepiness among shift nurses and health care workers. *Int J Occup Saf Ergon* 21:312–317
37. Chang YS, Chen HL, Hsu CY, Su SF, Liu CK, Hsu C (2013) Nurses working on fast rotating shifts overestimate cognitive function and the capacity of maintaining wakefulness during the daytime after a rotating shift. *Sleep Med* 14:605–613
38. Lavie P (1981) Sleep habits and sleep disturbances in industrial workers in Israel: main findings and some characteristics of workers complaining of excessive daytime sleepiness. *Sleep* 4:147–158
39. Doi Y, Minowa M, Tango T (2003) Impact and correlates of poor sleep quality in Japanese white-collar employees. *Sleep* 26:467–471
40. LaGrotte C, Fernandez-Mendoza J, Calhoun SL, Liao D, Bixler EO, Vgontzas AN (2016) The relative association of obstructive sleep apnea, obesity and excessive daytime sleepiness with incident depression: a longitudinal, population-based study. *Int J Obes* 40: 1397–1404
41. Alcantara C, Biggs ML, Davidson KW et al (2016) Sleep disturbances and depression in the multi-ethnic study of atherosclerosis. *Sleep* 39:915–925
42. Theorell-Haglow J, Akerstedt T, Schwarz J et al (2015) Predictors for development of excessive daytime sleepiness in women: a population-based 10-year follow-up. *Sleep* 38:1995–2003
43. Hayley AC, Williams LJ, Berk M, Kennedy GA, Jacka FN, Pasco JA (2013) The relationship between excessive daytime sleepiness and depressive and anxiety disorders in women. *Aust N Z J Psychiatry* 47:772–778
44. Ohayon MM, Caulet M, Philip P, Guilleminault C, Priest RG (1997) How sleep and mental disorders are related to complaints of daytime sleepiness. *Arch Intern Med* 157:2645–2652

45. Hasler G, Buysse DJ, Gamma A, Ajdacic V, Eich D, Rössler W, Angst J (2005) Excessive daytime sleepiness in young adults: a 20-year prospective community study. *J Clin Psychiatry* 66:521–529
46. Breslau N, Roth T, Rosenthal L, Andreski P (1997) Daytime sleepiness: an epidemiological study of young adults. *Am J Public Health* 87:1649–1653
47. Kao CC, Huang CJ, Wang MY, Tsai PS (2008) Insomnia: prevalence and its impact on excessive daytime sleepiness and psychological well-being in the adult Taiwanese population. *Qual Life Res* 17:1073–1080
48. Su TP, Huang SR, Chou P (2004) Prevalence and risk factors of insomnia in community-dwelling Chinese elderly : a Taiwanese urban area survey. *Aust N Z J Psychiatry* 38:706–713
49. Roenneberg T, Wirz-Justice A, Merrow M (2013) Life between clocks: daily temporal patterns of human chronotypes. *J Biol Rhythm* 18:80–90
50. Roeser K, Meule A, Schwerdtle B, Kübler A, Schlarb AA (2012) Subjective sleep quality exclusively mediates the relationship between morningness-eveningness preference and self-perceived stress response. *Chronobiol Int* 29:955–960
51. Tsuno N, Jaussent I, Dauvilliers Y et al (2007) Determinants of excessive daytime sleepiness in a French community-dwelling elderly population. *J Sleep Res* 16:364–371
52. Ng WL, Stevenson CE, Wong E, Tanamas S, Boelsen-Robinson T, Shaw JE, Naughton MT, Dixon J, Peeters A (2017) Does intentional weight loss improve daytime sleepiness? A systematic review and meta-analysis. *Obes Rev* 18:460–475
53. Basta M, Lin HM, Pejovic S, Sarrigiannis A, Bixler E, Vgontzas AN (2008) Lack of regular exercise, depression, and degree of apnea are predictors of excessive daytime sleepiness in patients with sleep apnea: sex differences. *J Clin Sleep Med* 4:19–25
54. Ng WL, Orellana L, Shaw JE, Wong E, Peeters A (2017) The relationship between weight change and daytime sleepiness: the Sleep Heart Health Study. *Sleep Med* 36:109–118
55. Hong S, Li Q (2017) The reasons for Chinese nursing staff to report adverse events: a questionnaire survey. *J Nurs Manag* 25:231–239
56. Scott LD, Arslanian-Engoren C, Engoren MC (2014) Association of sleep and fatigue with decision regret among critical care nurses. *Am J Crit Care* 23:13–23
57. Arimura M, Imai M, Okawa M et al (2010) Sleep, mental health status, and medical errors among hospital nurses in Japan. *Ind Health* 48:811–817
58. Johns MW (1992) Reliability and factor analysis of the Epworth Sleepiness Scale. *Sleep* 15:376–381
59. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. *Sleep* 14:540–545
60. Punjabi NM, Bandeen-Roche K, Young T (2003) Predictors of objective sleep tendency in the general population. *Sleep* 26:678–683
61. Janssen KC, Phillipson S, O'Connor J (2017) Validation of the Epworth Sleepiness Scale for Children and Adolescents using Rasch analysis. *Sleep Med* 33:30–35
62. Smith DR, Wei N, Zhang YJ, Wang RS (2006) Tobacco smoking habits among a cross-section of rural physicians in China. *Aust J Rural Health* 14:66–71
63. Ceraso M, McElroy JA, Kuang X et al (2009) Smoking, barriers to quitting, and smoking-related knowledge, attitudes, and patient practices among male physicians in China. *Prev Chronic Dis* 6:A06
64. Xiang H, Wang Z, Stallones L, Yu S, Gimbel HW, Yang P (1999) Cigarette smoking among medical college students in Wuhan, People's Republic of China. *Prev Med* 29:210–215
65. Palm A, Janson C, Lindberg E (2015) The impact of obesity and weight gain on development of sleep problems in a population-based sample. *Sleep Med* 16:593–597