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Abstract

Purpose We tested the hypothesis that (i) diet associated with exercise would improve arterial baroreflex (ABR) control in
metabolic syndrome (MetS) patients with and without obstructive sleep apnea (OSA) and (ii) the effects of this intervention
would be more pronounced in patients with OSA.

Methods Forty-six MetS patients without (noOSA) and with OSA (apnea-hypopnea index, AHI > 15 events/h) were allocated to
no treatment (control, C) or hypocaloric diet (— 500 kcal/day) associated with exercise (40 min, bicycle exercise, 3 times/week)
for 4 months (treatment, T), resulting in four groups: noOSA-C (n = 10), OSA-C (n=12), noOSA-T (n=13), and OSA-T (n=
11). Muscle sympathetic nerve activity (MSNA), beat-to-beat BP, and spontaneous arterial baroreflex function of MSNA
(ABRysna, gain and time delay) were assessed at study entry and end.

Results No significant changes occurred in C groups. In contrast, treatment in both patients with and without OSA led to
a significant decrease in weight (P <0.05) and the number of MetS factors (P =0.03). AHI declined only in the OSA-T
group (3145 to 17+4 events/h, P<0.05). Systolic BP decreased in both treatment groups, and diastolic BP decreased
significantly only in the noOSA-T group. Treatment decreased MSNA in both groups. Compared with baseline,
ABRysna gain increased in both OSA-T (13+£1 vs. 24+2 a.u/mmHg, P=0.01) and noOSA-T (27+3 vs. 37+
3 a.u/mmHg, P=0.03) groups. The time delay of ABRysna Was reduced only in the OSA-T group (4.1+0.2 s vs.
2.84£0.3 s, P=0.04).

Conclusions Diet associated with exercise improves baroreflex control of sympathetic nerve activity and MetS components in
patients with MetS regardless of OSA.
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Introduction

Metabolic syndrome (MetS) is characterized by a cluster of
cardiovascular risk factors, including central obesity, glucose
>4 Edgar Toschi-Dias intolerance, dyslipidemia, and elevated blood pressure (BP)
edgardias @usp.br levels [1]. Several lines of evidence support the concept that
MetS is associated with sympathetic hyperactivation [2—4]. In
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characterized by recurrent upper airway obstructions during
sleep, intermittent hypoxemia, and sleep fragmentation [7, 8].
Recent evidence consistently suggests that OSA concurrent
with MetS contributes to worse autonomic and vascular dys-
function [5, 9, 10]. OSA exacerbates muscle sympathetic
nerve activity (MSNA) [2, 3, 5] and impairs ABR in MetS
patients [2, 3, 5]. The clinical implications for these findings
rely on the fact that both ABR dysfunction and increased
MSNA are associated with a poor prognosis in patients with
cardiovascular diseases [11, 12].

Currently, the therapy using continuous positive airway
pressure (CPAP) is the standard treatment of OSA with bene-
ficial effect on BP, insulin resistance, and serum triglyceride
levels in patients with obesity [13]. In addition, changing
one’s lifestyle is strongly recommended for patients with
MetS [1]. Previous studies have demonstrated that exercise
and a hypocaloric diet provoke a remarkable reduction in
body weight [14—16]. Moreover, this non-pharmacological
strategy reduces sympathetic nerve activity [15, 16] and im-
proves the ABR of heart rate [15] in MetS patients. However,
the treatment of OSA with CPAP seems not to promote weight
loss [17] or reverse MetS [18]. Unknown is whether diet as-
sociated with exercise improves the ABR of sympathetic
nerve activity in MetS patients with OSA. In the present study,
we investigated the effects of a hypocaloric diet combined
with exercise on time delay and sensitivity of ABR of
MSNA and heart rate (HR), MSNA, and systolic BP (SBP)
in MetS patients with and without OSA. We made the follow-
ing hypothesis: (i) diet and exercise will improve ABR of
MSNA and HR in MetS patients independent of the presence
or absence of OSA and (ii) the effects of this intervention
would be more pronounced in patients with OSA.

Methods

The study was approved by the ethics committee, and the
signed informed consent was obtained during the screening
visit. Subsequently, the patients were submitted to measure-
ment of office BP, blood tests, clinical evaluation, and to de-
termine if they fulfilled the criteria to take part in the study. In
a sitting position, three office BP recordings were obtained
with a mercury sphygmomanometer at 5-min intervals, and
the average of these measurements was used to determine
office BP. Following 12 h of overnight fasting, blood samples
were collected to determine HDL-c, triglycerides, and plasma
glucose concentrations. After clinical evaluation, all partici-
pants underwent a nocturnal polysomnography to detect the
absence or presence of OSA (apnea-hypopnea index, AHI >
15 events/h). Then, the subjects with and without OSA (OSA
and noOSA, respectively) were allocated to either a
hypocaloric diet associated with exercise (treatment) or con-
trol (C) in a 1:1 ratio. Polysomnography, cardiopulmonary
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exercise testing, microneurography, beat-to-beat BP, and
spontaneous ABR and cardiac and peripheral spectral analysis
were assessed at baseline and at study end (after 4 months).

Subjects

MetS patients were recruited from the Exercise Cardiology
Ambulatory Unit of the Heart Institute (InCor), University of
Sao Paulo Medical School, and some of the patients in the
present study participated in other research protocols that have
already been published by our group [5, 19]. Patients were
diagnosed with MetS by Adult Treatment Panel 111 (ATP-III)
Report criteria [1], and according to international guidelines,
only patients that did not have any indication for medical
treatment were enrolled in the present study. Initially, 95 pa-
tients with MetS were recruited. We excluded patients taking
any medications, smokers, those with a history of excessive
alcohol consumption, and individuals participating in a regu-
lar exercise-training program. From the remaining 59 patients,
22% were excluded, because of the need for drug intervention,
pregnancy, or starting smoking during the protocol. Thus, 46
patients with MetS represent the study population; they were
assigned to four groups: (1) noOSA-C (n=10); (2) OSA-C
(n=12); (3) noOSA-T (n=13); and (4) OSA-T (n=11).

Polysomnography

As previously described [7, 20], the sleep pattern was re-
corded during a nocturnal polysomnography. According to
international guidelines, apnea was defined as complete
cessation of airflow for at least 10 s, whereas hypopnea
was defined as a reduction (>50%) in respiratory signals
for at least 10 s associated with oxygen desaturation of >
3% or an arousal. The AHI was calculated by sum of epi-
sodes of apnea and hypopnea per hour of sleep. OSA was
defined by an AHI of at least 15 events per hour of sleep
and all patients with OSA had predominantly (> 50%) ob-
structive events [5, 19].

Cardiopulmonary exercise testing

All patients underwent cardiopulmonary exercise testing as
previously described [21] on a braked cycle ergometer,
using a ramp protocol with work rate increments (e.g.,
10, 15, or 20 W) every minute at 60 rpm to exhaustion.
Peak values of oxygen (VO,) uptake were averaged from
the last 30-s interval and were considered as the maximal
exercise capacity (peak VO,). Ventilatory anaerobic
threshold and respiratory compensation point were
assessed as previously described [21].
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Miscellaneous measurements

As previously described [5, 19], multiunit nerve postgangli-
onic MSNA was recorded using the microneurography tech-
nique, HR was measured through ECG lead 11, arterial pres-
sure was quantified non-invasively on a beat-to-beat basis by a
finger photoplethysmography device (Finapres 2300,
Ohmeda), and respiratory activity was measured with a pie-
zoelectric belt placed around the upper abdomen.

Experimental protocol

On the experimental day, all patients abstained from caffeine
or other types of stimulants for 12 h and any type of physical
activity for 24 h. The protocol experiment was performed
between 8:00 and 10:00 AM, with the patients in a supine
position in a quiet room which was kept comfortably warm
(22 to 24 °C). After obtaining an adequate sympathetic nerve
recording and stabilization of the autonomic and cardiovascu-
lar variables, baseline recordings of MSNA, HR, arterial pres-
sure, and respiratory activity were taken for 10 min.

Autonomic control

Cardiac and peripheral autonomic control was measured as
previously described and in accordance with international
standards [22]. Briefly, the variability of R-R interval (RR1i),
systolic arterial pressure (SAP), and respiratory rate was ana-
lyzed by autoregressive spectral algorithm. The spectral den-
sities detected in low-frequency band (LF 0.04 to 0.15 Hz)
reflecting sympathetic modulation predominance and in high-
frequency band (HF 0.15 to 0.40 Hz), since synchronized with
spontaneous breathing, are markers of cardiac vagal modula-
tion. Furthermore, the LF-to-HF ratio of RRi was calculated
for estimation of the cardiac sympathovagal balance (LFrg;/
HFgg)) [5, 21-23].

Arterial baroreflex control

Arterial baroreflex control of MSNA and HR was quanti-
fied using the transfer function analysis by means to bivar-
iate autoregressive identification procedure [5, 23]. This
procedure quantifies several parameters [e.g., gain, coher-
ence (K?), and phase shift (®)] of transfer function between
input (SAP) and output (MSNA or HR) signals. The gain
measures the intensity of the response of arterial baroreflex
control of MSNA and HR, being expressed in a.u./mmHg
and ms/mmHg, respectively [5, 23]. The time delay of
baroreflex control, an index that quantifies the latency of
the response this reflex arc, was quantified by means of
ratio to phase shift and angular velocity in LF range, being
expressed in seconds [5, 23].

Intervention

OSA and noOSA patients allocated into the treatment group
underwent supervised exercise program (60 min of exercise
training, 3 times/week) during 4 months. As previously de-
scribed [15, 16, 19, 21], each exercise session consisted of 8%
of stretching, 67% of cycling on an ergometer bicycle, 17% of
local strengthening exercises, and 8% cool down with
stretching exercises. The patients began their training program
at the HR corresponding to the anaerobic threshold and the
aerobic exercise intensity was progressively increased up to
the HR corresponding to the respiratory compensation point.

Simultaneous to the exercise-training program, patients
consumed a hypocaloric diet. As previously described [19],
the basal energy demands were estimated using the FAO/
WHO/UNU equation multiplied by a factor of 1.3 [19]. In
the present study, energy intake was reduced 500 kcal/day
during the 4 months of intervention. The hypocaloric diet
consisted of an eating plan divided into five meals. The food
composition was divided into 55-75% carbohydrates, 15—
30% fat, and 10—15% protein [19]. Adherence to the nutrition-
al program was controlled during monthly visits, in which the
patients were weighed and encouraged to record their daily
consumption to evaluate adherence to the hypocaloric dietary
program.

Statistical analysis

The data are presented as mean + standard error. A chi-square
(x?) test was used to assess categorical data differences. For
each continuous or discrete variable, the Lévene and
Kolmogorov-Smirnov tests were used to assess the homoge-
neity and normality of distribution, respectively. All paramet-
ric data were compared using a two-way ANOVA. When a
significant difference was found, Scheffé’s post hoc compar-
ison test was used. Wilcoxon or Mann-Whitney tests were
used when appropriate. A value of P<0.05 was considered
statistically significant.

Results

Physical characteristics and MetS criteria pre- and post-
treatment are shown in Table 1. The treatment significantly
decreased body weight, BMI, waist circumference, and office
SBP and significantly increased peak of oxygen uptake re-
gardless of the presence of OSA, but had no effect on glucose,
triglyceride, and HDL-cholesterol levels (Table 1). However,
office DBP significantly decreased after intervention only in
the noOSA group (Table 1). No significant changes were
found in the control groups over the 4-month duration of the
study. Interestingly, we observed that after 4 months of diet
associated with exercise, approximately 42% of the noOSA
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Table 1 Physical characteristics and metabolic syndrome criteria at baseline and after 4 months

noOSA OSA

C T C T

Pre Post Pre Post Pre Post Pre Post
Physical characteristics
Sex (male/female) 3/7 7/6 8/4 7/4
Age (years) 44+2 45+2 48+3 52+2
Body weight (kg) 88+3 88+3 89+3 83+3x 1 90+4 90+4 87+3 80+2%
BMI (kg/m?) 32+1 32+1 32+1 30+ 1% T 32+1 32+1 32+1 29+1% T
VO, peak (mL/kg/min) 22+1 21+1 26+2 30+ 1% 24+2 24+1 24+£2 29+2% F
Metabolic syndrome criteria
Waist circumference (cm) 105+2 105+1 105+2 10042+ 108 +2 106+2 106+2 98 +2% T
Glucose (mg/dL) 101 +3 98+4 99+2 98+2 100+3 103+3 110+4 101+4
HDL-c (mg/dL) 39+2 41+3 43+3 45+3 40+3 42+4 41+2 42+2
Triglycerides (mg/dL) 220+44 234+42 179+17 156 +17 190 +31 180+30 17727 158 +21
Office SBP (mmHg) 1314 130+4 13243 118+3% T 130+5 130+4 138+7 121 +£4*
Office DBP (mmHg) 87+3 89+2 89+3 7943 T 89+3 88+4 92+4 87+3

Values are mean + SE. noOSA, metabolic syndrome without obstructive sleep apnea patients; OSA, metabolic syndrome with obstructive sleep apnea
patients; C, control group; 7, treatment group (hypocaloric diet associated with exercise training); Pre, pre-intervention; Post, post-intervention; BMI,
body mass index; VO, peak, peak oxygen uptake; SBP, systolic blood pressure; DBP, diastolic blood pressure. *P < 0.05 vs. pre; T P<0.05 vs. C

(P=0.03) and 36% of the OSA (P =0.03) patients no longer
had a diagnosis of MetS. The individual representative
values of the number of factors for diagnosis of MetS in
patients with and without OSA pre- and post-control or
treatment are shown in Fig. 1.

Fig. 1 Individual representative
values of the number of factors for
diagnosis of metabolic syndrome
(MetS) in patients with (OSA)
and without obstructive sleep
apnea (noOSA) in the pre- and
post-intervention periods. Note
that hypocaloric diet associated
with exercise training (T)
significantly decreased the
number of factors for diagnosis of
MetS in both noOSA (¢) and
OSA (d) groups. No significant
changes were observed in patients
in the control (C) groups (a, b)
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Table 2 Sleep pattern characteristics

noOSA OSA

C T C T

Pre Post Pre Post Pre Post Pre Post
Total sleep time (min) 407 + 20 398 + 18 381 + 10 371 +23 389 +24 405 + 36 398 + 20 417 + 14
Sleep efficiency (%) 89+3 84 +4 87 +2 84 +5 82+5 83+7 87 +2 89 +2
Stage 1 (%) 5+2 6+1 4+1 5+1 6+2 9+3 7+2 6+2
Stage 2 (%) 59+2 60 +3 59+3 63+3 61 +4 57+6 61 +2 57+5
Stage 3 (%) 102 12+4 9+2 9+2 12+3 12+5 7+1 12+4
REM (%) 20+2 18 +2 21 +£2 182 17+1 182 20+2 20+2
Arousal index (events/h) 8§+£2 11+£2 14+2 14+3 19+4 35+£9 21+3 16 + 5% T
AHI (events/h) 8+1 10+3 9+1 9+1 37+7 48 £ 12 31+5 17 £ 4+ T
Minimum Sa0O, (%) 89 £ 1 87 £ 1 86 £ 1 87 1 80 £2 79+3 79 £2 83 + 2% 1
Sa0, <90% (%) 1£1 2+1 1+1 2+1 11 +1 10+ 1 10 £ 1 24 1%

Values are mean + SE. noOSA, metabolic syndrome without obstructive sleep apnea patients; OSA, metabolic syndrome with obstructive sleep apnea
patients; C, control group; 7, treatment group (hypocaloric diet associated with exercise training); Pre, pre-intervention; Post, post-intervention; REM,
rapid eyes movement; AHI, apnea-hypopnea index; SaO,, saturation of oxygen; SaO, < 90%, time of saturation of oxygen below 90%. *P < 0.05 vs. pre;

TP <0.05 vs. C post

90% and a significant increase in minimum SaO, in the OSA
group. However, this group still had moderate OSA (on aver-
age) after 4 months of treatment (Table 2). In the noOSA-C and
OSA-C groups, no changes in sleep patterns were observed.

The treatment significantly reduced MSNA in noOSA-T
and OSA-T patients (Fig. 2a, b). After 4 months, the levels
of MSNA in the OSA-T group were significantly lower com-
pared with those in the OSA-C group (Fig. 2b).

The patients who underwent treatment had reduced cardiac
sympathetic modulation (LFgg;), sympathovagal balance
(LFrri/HFRR;) and increased cardiac parasympathetic modu-
lation (HFRrg;) in patients with MetS with and without OSA
(Table 3). However, treatment reduced the SAP variability
(variance) and vascular sympathetic modulation (LFgsp) only
in the OSA-T patients (Table 3). No changes in cardiac and
peripheral autonomic control were observed in the noOSA-C
and OSA-C groups (Table 3).

Treatment significantly increased the gain in ABRysna
(Fig. 3a, ¢) and ABRgp; (Table 3) in noOSA and OSA pa-
tients. This intervention significantly decreased the time delay
(response) of ABRygna (Fig. 3d) and ABRgy; (Table 3) in
OSA patients, but caused no significant changes in noOSA
patients (Fig. 3b and Table 3, respectively). No significant
changes in the gain and time delay of ABRygna and
ABRRgg; were observed in noOSA-C and OSA-C groups.

Discussion

The novel findings from the present study are that diet asso-
ciated with exercise (i) reduced the number of components of

MetS regardless of OSA presence; (ii) improved sleep pattern
in MetS patients with OSA; (iii) increased the gain of
ABRysna and ABRgp; in MetS patients with and without
OSA; and (iv) decreased the time delay of ABRyisna and
ABRgg; in OSA groups, but caused no changes in noOSA
groups after 4 months of treatment.

The treatment proposed in the present study resulted in
several beneficial effects in both patients with and without
OSA, including not only weight loss but also a decrease in
the number of components of MetS. Of note, the waist cir-
cumference and office SBP declined regardless of the pres-
ence of OSA, but office DBP significantly decreased after
treatment only in the noOSA group. The effects of treatment
on diastolic BP were less pronounced in the OSA group than
those in the noOSA group. The precise reasons for this het-
erogeneous response are not clear, but we speculated that re-
sidual OSA after treatment might mitigate the impact of treat-
ment on vascular resistance.

To our knowledge, few studies have evaluated the effect of
this treatment in patients with MetS considering the impact of
OSA. We found that the amelioration in the sleep pattern
observed in the present study by improvements in arousal
index, AHI, and minimum oxygen saturation was not accom-
panied by sleep efficiency or significant sleep architecture
improvements. This apparent inconsistency may be related
to the relative small sample size comprised in this study.
This is an interesting issue to be clarified in future studies that
address a larger population.

The evaluation of the effect of diet or exercise alone in
OSA severity is out of the scope of this study. However, it
has been described that the magnitude of the effect of the
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Fig. 2 Resting muscle sympathetic nerve activity (MSNA) in patients
with metabolic syndrome without obstructive sleep apnea (noOSA, a)
and in patients with obstructive sleep apnea (OSA, b) in the
hypocaloric diet associated with exercise training (T) and control (C)
groups, pre- and post-intervention. Note that T reduced MSNA in
noOSA (a) and in OSA (b) groups. In addition, in patients with OSA
after intervention, MSNA levels were lower (b) in the T group compared
with those in the C group. Asterisk symbol indicates difference vs. pre, P
<0.05. Dagger symbol indicates difference vs. C after 4 months (post), P
<0.05

intervention on the OSA severity depends of the percentage of
weight loss reached at the end of treatment [24]. Thus, our
study confirms that diet associated with exercise is mandatory
in the treatment of patients with MetS. In fact, we have sys-
tematically observed this treatment improves the AHI in pa-
tients with MetS [19].

The mechanisms involved in the amelioration of OSA
are out of the scope of the present study. However, some-
one could suggest that this treatment increased neck mus-
cle or decreased fluid accumulation in the neck. The result
of such changes is the attenuation of upper airway
narrowing and collapsibility [25].

Another important new finding in our study is the signifi-
cant improvement in ABR function after treatment. Besides
being an important modulator of sympathetic outflow, ABR
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has important clinical implications once that the reduced ABR
is directly associated with worse prognosis in patients with
cardiovascular disease [26]. In the present study, we found
that treatment increased ABR of both MSNA and HR in both
MetS patients with and without OSA. Despite the uncertainty
regarding the mechanisms underlying the amelioration of ar-
terial baroreflex control, there are some potential candidates to
explain such autonomic reflex change. The ability of the ABR
to translate spontaneous oscillations in BP depends on defor-
mation of the carotid sinus and aortic arch in response to acute
changes in intravascular pressure [27]. Exercise training asso-
ciated or not with diet causes a variety of vascular effects
including improvement in arterial compliance and endothelial
function [28]. Thus, changes in compliance and endothelial
function caused by exercise and diet may play a pivotal role in
the amelioration of ABR.

Interestingly, the effects of this non-pharmacological treat-
ment on arterial baroreflex control were more pronounced in
patients with MetS with OSA than those in patients without
OSA. The reduction in the time delay of ABRysna and
ABRRgg; was observed in OSA patients, but not in noOSA
patients. The change in the time delay of ABRygna and
ABRRgg; may be associated with the reduction in the arterial
pressure variability (variance) and vascular sympathetic mod-
ulation (LFgp). Alternatively, the reduction in the time delay
of ABRgg; may be due to the increase in cardiac parasympa-
thetic modulation, because treatment significantly increased
cardiac vagal modulation. The lack of change in the time delay
of ABRy;sna and ABRRg;, arterial pressure variability (vari-
ance), and vascular sympathetic modulation (LFgap) in the
noOSA group might be expected, because these physiological
parameters are not altered in these patients. In a recent study,
we found no difference in the time delay of ABRysna and
ABRgg;, arterial pressure variability (variance), and vascular
sympathetic modulation (LFgap) between MetS patients with-
out OSA and healthy controls [5].

The reduction in MSNA has clinical implications.
Accumulated evidence shows that an increased sympathetic
nerve activity is associated with a poor prognosis [12]. Of
course, the improvement in arterial baroreflex sensitivity is a
potential mechanism to explain the reduction in sympathetic
activity. However, we cannot disregard that the reduction in
MSNA may also be related to improvement in chemoreflex
control [29]. In a recent study, we reported that peripheral and
central chemoreflex control of MSNA is substantially in-
creased in patients with MetS and OSA [29] and that treatment
decreases this autonomic dysfunction [19].

This study has some strengths and limitations. The
strengths are that all the patients underwent polysomnography,
considered the “gold standard™ for diagnosing OSA. Second,
the spontaneous breathing during experimental protocol rein-
forces the findings on physiological effects of diet and exer-
cise in ABR. We know that respiratory activity contributes
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Table 3  Cardiac and peripheral autonomic control

noOSA OSA

C T C T

Pre Post Pre Post Pre Post Pre Post
R-R interval
Variance (ms?) 25324596 1512+ 171 1523 +338 2712 +372 1712 £212 2180 +£375 1077 +£206 2353 + 381
VLF abs. (ms?) 939+ 189 759+ 147 609 + 145 1259 + 248 1031 £233 1333 +£294 549+ 141 1184 + 197
LF abs. (ms?) 896 +302 470+ 137 676 +166 795+ 160 507 + 75 612 + 88 403+ 188 625+ 94
LF n.u. (%) 63+5 67 +3 65+4 53+ 6% 1 74 +3 75+5 76 +3 57 + 51
HF abs. (ms?) 697 +305 283 + 60 324 £ 85 642 + 128 174 + 33 236 + 25 124 + 28 545 + 180+ T
HF n.u. (%) 38 +4 32+3 35+4 46 + 6% T 26+3 25+5 24+3 40 £5% T
LF/HF 21405 27+05 25+04 1.7 +04x T 34406 29+03 3.9+ 0.7 1.8 +0.4% T
Gain of ABR (ms/mmHg) 15+1 10+ 1 14+1 19+ 1% T 7+1 6+1 7+1 IS
Time delay of ABR (s) 1.6+ 0.2 1.8 +02 1.7+02 15+0.1 29+ 04 33+04 29+03 15+02¢ T
Systolic arterial pressure
Variance (mmHg?) 32+7 32+6 23 +4 19+3 29+3 49+9 38+5 22 + 3% ¥
LF abs. (nmHg?) 5+1 5+1 6+1 4+1 82 10+1 71 341t
HF abs. (mmHg?) 3+1 3+1 2+1 2+1 2+1 3+1 4+1 1+ 1%

Values are mean + SE. noOSA, metabolic syndrome without obstructive sleep apnea patients; OSA, metabolic syndrome with obstructive sleep apnea
patients; C, control group; 7, treatment group (hypocaloric diet associated with exercise training); Pre, pre-intervention; Post, post-intervention; VLF,
very low frequency; LF, low frequency; HF, high frequency; abs., absolute unit; ».u., normalized unit; LF/HF, sympathovagal balance; ABR, arterial
baroreflex control. *P <0.05 vs. pre; T P<0.05 vs. C pos
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Fig. 3 Sensitivity of arterial baroreflex control (ABR) of muscle
sympathetic nerve activity (gain SAP-MSNA) and latency of ABR of
MSNA (time delay SAP-MSNA) in patients with metabolic syndrome
without obstructive sleep apnea (noOSA, a, b, respectively) and in
patients with OSA (OSA, ¢, d, respectively) in the hypocaloric diet
associated with exercise training (T) and control (C) groups, pre- and
post-intervention. Note that T increased gain SAP-MSNA in noOSA

C T

(a) and OSA groups (c). In addition, after intervention, gain SAP-
MSNA levels in both T groups were higher in comparison with those in
the C groups. Besides, only in the OSA group, the time delay SAP-
MSNA decreased after T (d) and their levels were lower than those in
the C group. Asterisk symbol indicates difference vs. pre, P <0.05.
Dagger symbol indicates difference vs. C group after 4 months (post),
P<0.05
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importantly to short-term modulation of autonomic nervous
system. For example, controlled deep breathing at 0.10 Hz
promotes ABR overestimation under resting conditions [30].
On the other hand, isocapnic hyperventilation at 0.32 Hz re-
duces the ABR gain when compared with normal quiet breath-
ing in the same frequency band [31]. As spontaneous breath-
ing was synchronized in HF band during data analysis, the
control of this possible bias strengthens our findings. Lastly,
the absence of medications reinforces our findings about the
real effect of this non-pharmacological treatment. The follow-
ing limitations should be acknowledged: although there was
no significant difference in sex distribution between groups,
the number of women in the OSA group was lower than that in
the noOSA group. It is unlikely this difference influenced our
interpretation, because a recent study [32] demonstrated that
MSNA is similar between men and women with MetS [32].
The treatment lasted for 4 months. Thus, the effects of a longer
period of intervention on the baroreflex control of MSNA and
HR are unknown.

In conclusion, diet associated with exercise improves
ABRysna function and sympathetic modulation and MetS
components in patients with MetS, regardless of OSA. It has
been documented that weight loss intervention combined with
CPAP therapy had an additional beneficial effect on BP, insu-
lin resistance, and serum triglyceride levels in patients with
obesity and OSA [13]. Because patients with MetS had resid-
ual OSA events after diet and exercise, it is possible that the
association of diet, exercise, and CPAP may exert an incre-
mental effect on MetS and decrease the cardiovascular risk in
patients with MetS and OSA. Further studies are needed to
confirm this hypothesis.
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well-designed study with supervised exercise and diet program.
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