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Abstract

Introduction Adequate sleep is fundamental to wellness and recovery from illnesses and lack thereof is associated with disease
onset and progression resulting in adverse health outcomes. Measuring sleep quality and sleep apnea (SA) at the point of care
utilizing data that is already collected is feasible and cost effective, using validated methods to unlock sleep information
embedded in the data. The objective of this study is to determine the utility of automated analysis of a stored, robust signal
widely collected in hospital and outpatient settings, a single lead electrocardiogram (ECG), using clinically validated algorithms,
cardiopulmonary coupling (CPC), to objectively and accurately identify SA.

Methods Retrospective analysis of de-identified PSG data with expert level scoring of Apnea Hypopnea Index (AHI) dividing
the cohort into severe OSA (AHI > 30), moderate (AHI 15-30), mild (AHI 5-15), and no disease (AHI < 5) was compared with
automated CPC analysis of a single lead ECG collected during sleep for each subject. Statistical analysis was used to compare the
two methods.

Results Sixty-eight ECG recordings were analyzed. CPC identified patients with moderate to severe SA with sensitivity of 100%,
specificity of 81%, and agreement of 93%, LR+ (positive likelihood ratio) 5.20, LR— (negative likelihood ratio) 0.00 and kappa
0.85 compared with manual scoring of AHI.

Conclusion The automated CPC analysis of stored single lead ECG data often collected during sleep in the clinical setting can
accurately identify sleep apnea, providing medically actionable information that can aid clinical decisions.

Keywords Sleep apnea - Cardiopulmonary coupling - Cyclic variation of heart rate - Apnea Hypopnea Index

Introduction

Good sleep quality sleep is important and fundamental for a
healthy cardiovascular system, glucose metabolism, immune

Data registry

The data is obtained from an open access research database https://
physionet.org/physiobank/database/apnoea-ecg/ contributed by Dr.
Thomas Penzel of Philipps-University, Marburg, Germany.
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function, and hormonal regulation, all of which are highly
important while recovering from an illness [1, 2]. Sleep apnea
(SA), the intermittent cessation or reduction in breathing suf-
ficient to disturb sleep, is one of the most common sleep
disorders among adults and is increasingly recognized as an
important modifiable risk factor for cardiovascular disease
(CVD). SA is prevalent in the adult population, with about
12% of adults suffering from the disease, and in the USA, it is
estimated that 80% of this patient population is undiagnosed
[3] and is likely to increase with increased prevalence of obe-
sity and the aging population [4]. Obstructive sleep apnea
(OSA) is the more common form of sleep apnea, is character-
ized by repeated partial, or complete obstruction of the upper
airway during sleep, causing intermittent hypoxia and tran-
sient repetitive sympathetic arousals from sleep. The less com-
mon form, central sleep apnea (CSA), is associated with
disrupted respiratory control [5]. A recent European study
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looking at a general population found the prevalence of OSA
to be 43.1 or 19% when looking at only moderate and severe
OSA [6]. Untreated, SA is potentially a lethal disease, which
increases the risk of onset and progression of numerous health
complications like hypertension, congestive heart failure, atri-
al fibrillation, coronary artery disease, obesity, type 2 diabetes,
stoke, and depression [7, 8]. Data also suggests that untreated
SA is associated with an increased risk of stroke and cardio-
vascular mortality [2].

A critical part of public health approach to CVD is to iden-
tify and treat modifiable CVD risk factors such as OSA as
continuous positive airway pressure treatment (CPAP) may
reduce mortality and other associated risks [9, 10] but not
universally [11].

In patients with medical conditions causing hospitalization,
SA has been found to be highly prevalent. Acute hospitalization
is known to contribute to poor inpatient sleep quality and acute
sleep loss due to environmental factors [12]. Inpatients with
preexisting, undiagnosed sleep disorders like SA may experience
even more sleep disruptions than patients free of SA [13, 14].

The high prevalence of SA among hospitalized patients
[14, 15] suggests that hospitalization may represent a missed
opportunity to identify SA and initiate appropriate treatment
that might both improve patient outcomes and decrease risk of
postoperative complications [15—17]. ECG data routinely col-
lected during hospitalization can serve as a source of addition-
al objective information to risk stratify patients that may be
identified with SA and who would benefit from treatment
during hospitalization for potentially faster recovery and re-
duced risk of readmission as research on patients identified
with SA has confirmed that non-adherence to CPAP is asso-
ciated with increased 30-day all-cause and cardiovascular-
cause readmission [17-19]. Polysomnography (PSG) is the
reference standard for diagnosis of SA, can be challenging,
resource intensive, and generally not available to inpatients
[20]. The methods that have been used to identify SA in hos-
pital settings have therefore mostly been limited to subjective
questionnaires: the STOP-BANG questionnaire being the
most widely used to screen patients for SA [21].
Questionnaires, based on the respondents’ own subjective
evaluation, put clinicians in the situation of not being able to
verify or validate the accuracy of the respondent’s output. For
these reasons, using easy to collect objective data to analyze
sleep physiology to identify sleep disorders in inpatients could
potentially both improve patient outcomes and reduce
healthcare spending by decreasing readmission rates and post-
operative complications [17, 18].

The proposed technique, cardiopulmonary coupling (CPC),
evaluates the usefulness of analyzing a single lead ECG data
stream to measure sleep duration, sleep quality, and sleep pa-
thology that may be used to identify SA and guide clinical
decisions and therapy management. CPC measures coupling
of interactions between two physiological streams which both
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are strongly modulated by sleep, autonomic (heart rate variabil-
ity, HRV), and respiratory (ECG-derived respiration, EDR) and
identifies oscillations associated with prolonged cycles of sleep
apnea (cyclic variation of heart rate, CVHR). Both methods
have previously been described [22-25].

CPC is Food and Drug Administration (FDA) cleared for
evaluation of sleep disorders to inform or drive clinical man-
agement and accurately identifies sleep apnea in adults [26,
27], monitors treatment efficacy in sleep apnea [28, 29], and
can objectively identify insomnia based on the patients’ sleep
quality and architecture, to guide therapy initiation and track
therapy efficacy [30, 31].

Materials and methods

Retrospectively collected, open access, de-identified data was
accessed at PhysioNet (http://www.physionet.org/
physiobank/database/-ecg/) [32].

Data set of 70 PSG studies including ECG signals extracted
from full laboratory PSG studies of approximately 8 h of du-
ration, digitalized at 100 Hz and a set of apnea annotations
(derived by human experts on the basis of simultaneously
recorded respiration and related signals). Of the 70 studies,
68 had acceptable ECG signal quality for CPC analysis.

The subjects (Table 1) are males and females with AHI
ranging from 0 to 93.5, of age ranging from 27 to 63 years
and weigh between 53 and 135 kg. Based on numbers of
epochs containing apneas or hypopneas, PSG recordings were
grouped as no disease (AHI < 5), mild SA (AHI 5-15), mod-
erate SA (AHI 15-30), and severe SA (AHI > 30).

The CPC method is FDA approved for evaluating sleep
disorders to inform or drive clinical management
(Sleeplmage®). The technique is based on continuous ECG-
data collected during sleep analyzing coupling between HRV
and EDR to generate frequency maps, the ECG-derived sleep-
spectrogram (Fig. 1), a detailed methodology on the basic
algorithms has been published [22, 23]. During periods of
prolonged SA, changes in heart rate dynamics have been de-
scribed where heart rate typically shows cyclic increases and
decreases associated with apneic phase and resumption of
breathing (CVHR) [24, 25]. CPC output is presented as the
Sleep Quality Index (SQI) providing a summary index of an
automated measure of sleep duration, sleep stability (stable
sleep (high-frequency coupling, HFC), unstable sleep (low-
frequency coupling, LFC)), sleep fragmentation, and sleep
pathology (elevated low-frequency coupling broad band
(eLFCpgp) and elevated low-frequency coupling narrow band
(eLFCyp)), to generate a number between 0 and 100.

The sleep pathology markers of elevated low-frequency
coupling broad band (eLFCpp) and elevated low-frequency
coupling narrow band (eLFCyp) aid in distinguishing
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Table 1 Characteristics of the study cohort

All Female (n =13) Male (n =55) p value
Age 45.1 (£10.9) 32.8(+£0.1) 48.1 (£9.6) 0.00
Height (cm) 1759 (£5.6) 1713 (+0.6) 176.9 (£4.2) 0.00
Weight (kg) 85.4 (£19.4) 65.6 (£0.2) 90.1 (£17.2) 0.00
BMI 27.6 (£6.0)  22.1(%0.1) 28.8 (+5.7)  0.00
AHI 28.7 (£27.7) 12.8(£0.1) 324 (£25.7) 0.03

BMI body mass index, AHI Apnea-Hypopnea Index

between sleep disordered breathing caused by upper airway
anatomical obstruction and respiratory dyscontrol [26, 33].

Sleep Apnea Indicator (SAI) is an automated measure de-
tecting oscillations in heart rate often associated with
prolonged cycles of sleep apnea showing abrupt tachycardia
on the cessation of the apneic event and return to baseline
occurring during periods of unstable breathing (tidal volume
fluctuations in breathing). Displaying SAI based on these os-
cillations in the cardiovascular system as a consequence of
drop in oxygen saturation during unstable breathing (LFC)
helps to identify sleep-disordered breathing. Using SAI to-
gether with SQI, eLFCgp, and eLFCyp, it is possible to iden-
tify the presence of SA and to categorize SA as obstructive,
central, or complex sleep apnea [26, 33].

The CPC analysis automatically generates an ECG-derived
sleep spectrogram (Fig. 1), presenting a distinct bimodal-type
of sleep periods during non-rapid eye movement sleep
(NREM), alternating between high- and low-frequency
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cardiopulmonary coupling (CPC). High-frequency coupling,
HFC (stable sleep), occurs during part of stage N2 and all of
N3 NREM sleep. During stable sleep periods, desirable sleep
features dominate (periods of stable breathing, strong sinus
arrhythmia, blood pressure dipping, non-cyclic alternating
pattern (non-CAP) electroencephalogram (EEG)).
Conversely, during low-frequency coupling, LFC (unstable
sleep) periods of less desirable sleep features dominate (vari-
ability of tidal volumes, non-dipping of blood pressure, and
cyclic alternating pattern (CAP) EEG). Normal rapid eye
movement sleep and wake show very low-frequency coupling
signature (VLFC) while fragmented REM sleep is part of LFC
(Fig. 2) [23, 26].

Being based on analyzing ECG data and not relying on
EEG amplitudes, the CPC method is not constrained by the
“loss” of slow wave sleep associated with aging and apparent
in individuals over the age of 40—50 years for whom stage N3
makes up less than 20% of the sleep period [23, 34] eliminat-
ing reliance on absolute delta power for detecting sleep apnea.
Increase in the CPC eLFCyp index has been associated with
hypertension and stroke [35], unstable sleep negatively affects
glucose disposal characteristics [36], and stable sleep is re-
duced in cases of depression [37, 38] and heart failure [39].

Clinical diagnosis of sleep apnea is currently primarily
based on the Apnea Hypopnea Index (AHI). This study ex-
amines the feasibility of analyzing single lead ECG data and
applying the SQI and SAI together with the underlying CPC
parameters of high-frequency coupling (HFC), low-frequency
coupling (LFC), and markers of sleep pathology, eLFCgp, and

01:004

00:00

a0 |A

200

Time

10 |

20:00

19:00

I T

T
0.00 0.05 Freq. (Hzl 0.10 0.15

Fig. 1 Sleep spectrogram-healthy sleep (patient-c01); front view spectrogram (left) and 90-view spectrogram (right). SQI = 84, HFC = 82%, LFC = 8%,

eLFCgg = 1%, cLFCxg = 0%, SAI=0, AHI =0
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Fig. 2 Front view sleep spectrogram-left (patient-b03); obstructive sleep
apnea (AHI=24) (left); SQI=21, HFC =7%, LFC =76%, eLFCgp =
40%, eLFCyp =2%, SAI=56. Sleep spectrogram (x 27); front view
sleep spectrogram—right; central sleep apnea (AHI=75) (right). SQI =
17, HFC = 0%, LFC =99%, eLFCgp = 17%, eLFCxp = 82%, SAI = 89.

eLFCyp to establish criteria to aid clinical evaluation of SA to
diagnose and better guide therapy management during hospi-
talization [15-19].

We hypothesized that the CPC metrics may aid in detecting
SA in at-risk patients with at least the same degree of accuracy
as is commonly accepted for clinical diagnosis-based AHI
values and may offer guidance to therapy initiation during
hospitalization for potentially faster recovery and reduced risk
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Note the lack of stable sleep and increase in unstable sleep in both cases
and the difference between when looking at the 90-view spectrograms
below with respect to eLFCgp, a marker of obstructive sleep apnea and
eLFCyg, a marker of periodic breathing

of readmission (the reference inter-agreement standard for
scoring PSG studies is 80%) [40—42].
Outcome measures

The CPC parameters of interest to identify SA are SQI and
SAI combined with either eLFCgpg, correlating with sleep
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fragmentation or eLFCyg, correlating with periodic breathing
and central sleep apnea. These outputs from the automated
analysis of CPC are compared with a manually scored PSG-
derived AHI to distinguish moderate to severe SA.

Statistical analysis

The data was categorized based on clinical diagnostic criteria
determined by the manual scoring of the PSG studies using
the AHI. Results between patient groups were presented as
means with the associated standard deviations and compared
for each category (no disease, mild disease, or severe disease)
for PSG versus CPC variables separately. Statistical signifi-
cance was rejected for p values > 0.01, and receiver operating
characteristics were calculated for comparison between the
two outcome metrics of CPC and AHI. Stata 12.0 was used
for the analysis [43].

Results
Study sample allocation
ECG signal from 68 studies from the PhysioNet database was

analyzed. The data is grouped based on AHI scoring, no-mild
SA (n =26), moderate SA (n =11), and severe SA (n =31).

Sleep time, sleep quality (SQI), and CPC sleep pathology
markers of SAIL eLFCgg, and eLFCyg were compared to AHI.
Table 1 summarizes the cohorts’ characteristics; of the total of 68
patients, there were 13 females (F) (19.1%) and 55 males (M)
(80.8%) with a mean age of45.1 +£10.9 (F 32.8 £0.1 vs. M 48.1

+9.6) and range of 27-63 years. The mean body mass index
(BMI) was 27.6 £6.0 (F 22.1+£0.1 vs. M 28.8 £5.7).

PSG parameters

Of the total of 68 patients, the manually scored AHI identified a
total of 42 patients with SA. Patients identified with no or mild
SA (n =26), moderate SA (n =11), and severe SA (n =31).

CPC parameters

The CPC parameters are summarized in Table 2. Patients iden-
tified with no or mild SA (n =26) were identified to have
statistically significant (p <0.01) shorter sleep duration (CPC
period), higher SQI, a lower SAI, less unstable sleep (LFC), and
lower eLFCpp and eLFCyp, when compared to both the group
identified with moderate (n = 11) and severe SA (n =31).
Receiver operating characteristics comparing CPC vs. AHI
are summarized in Table 3. Of the total of 68 patients when
combining SQI, SAI and the sleep pathology markers eLFCgp
and eLFCyp for SA identification, the system identified a total

Table 2  Multivariate analysis of variance comparing variables between sleep apnea categories

p value

(o) Normal-mild (n = 26)

(B) Moderate (n = 11)

Age 36 (£0.18) 55.5 (£5.57)
Height (cm) 175 (= 0.87) 175.7 (£ 2.61)
Weight (kg) 70 (£ 0.36) 88.9 (£9.82)
BMI 22.8 (+0.12) 28.8 (£ 3.31)
AHI 1.4 (£0.02) 20.1 (£3.21)
Duration (min) 441(£2.22) 497.6 (+ 22.86)
SAI 7.1 (£0.05) 34.1 (£22.03)
SQI 54.7 (£0.28) 31.6 (£13.41)
HFC (%) 46.9 (£ 0.25) 24.9 (£ 16.3)
LFC (%) 27.5(x0.15) 65.2 (£ 15.35)
vLFC (%) 21.3 (x0.11) 9.4 (£ 2.55)
eLFCgp(%) 10 (+0.06) 31.8 (£13.18)
eLFCnp(%) 0.9 (£ 0.02) 12.8 (8.16)
HFC < vLFC 14 (£ 0.07) 35 (£2.5)
HFC < LFC 12.9 (£ 0.07) 17.5 (£7.94)
vLFC < LFC 21.7 (£0.12) 19.5 (£ 5.54)

(8) Severe (n =31) xvs 3 ovs d Bvsd
49.1 (£ 8.34) 0.00 0.00 0.00
176.6 (+3.74) 0.76 0.00 0.00
97.1 (£ 14.46) 0.06 0.00 0.00
31.1 (+4.54) 0.06 0.00 0.00
54.6 (£ 18.18) 0.00 0.00 0.00
497.3 (£23.72) 0.01 0.00 0.00
65.5 (£21.42) 0.00 0.00 0.00
19 = 7.71) 0.00 0.00 0.00
9.8 (£10.08) 0.02 0.00 0.00
82.2 (£13.53) 0.00 0.00 0.00
7.1 (£4.6) 0.00 0.00 0.00
35.2 (£ 17.38) 0.00 0.00 0.00
31.9 (21.08) 0.00 0.00 0.00
2.5 (£2.26) 0.00 0.00 0.00
7.8 (£7.21) 0.02 0.00 0.00
13.5 (£ 7.84) 0.28 0.00 0.00

BMI body mass index, AHI Apnea-Hypopnea Index, SA/ Sleep Apnea Index, SQI Sleep Quality Index, HFC high-frequency coupling, LFC low-
frequency coupling, vLFC very low-frequency coupling, eLFChb clevated low-frequency coupling broad band, eLFCnb elevated low-frequency
coupling narrow band, HFC <> vLFC sum of CPC transactions between HFC and vLFC, HFC < LFC sum of CPC transition between HFC and
LFC, vLFC «» LFC sum of CPC transitions between VLFC and LFC
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Table 3 Receiving operating characteristics
AHI?
1 0

SAI & 1 42

CPC* 0 0 21
Sensitivity 100%
Specificity 81%
PPV 89%
NPV 100%
Agreement 93%
PABAK 0.85
LR+ 5.20
LR—- 0.00

PPV positive predictive value, NPV negative predictive value, PABAK
prevalence and bias adjusted kappa, LR+ positive likelihood ratio, LR—
negative likelihood ratio

*SAI=>151 eLFCbb>18% 1 eLFCnb => positive sleep disorder
breathing

~AHI=> 15 => positive sleep disorder breathing

of 47 patients with moderate to severe SA compared to 42
patients identified by the AHI.

The automated system identified patients with moderate to
severe SA with sensitivity of 100% (Clgsq, 1.0, 1.0), specific-
ity of 81% (Clgsq, 0.656, 0.959), agreement of 93%, LR+
(positive likelihood ratio) of 5.20 and LR— (negative likeli-
hood ratio) of 0.00 and kappa 0.85 when compared with the
manual scoring of AHI.

Discussion

The PhysioNet database is scored using AASM scoring rules
1999 [44] which are based on more stringent scoring guide-
lines than the current AASM scoring rules that now include
scoring of hypopneas [45]. The CPC algorithms are, however,
designed to work with the current AASM scoring rules, which
may explain why 5 out of the 26 individuals who were iden-
tified as normal or having a mild sleep apnea in the PhysioNet
database (AHI < 15) were identified with moderate to severe
sleep disorder breathing symptoms. The CPC algorithms,
based on low sleep quality (SQI<55), increased unstable
breathing (LFC > 30%), increased markers of sleep fragmen-
tation and obstructive sleep apnea (eLFCgp > 15%) or period-
ic breathing (eLFCyp >2%) and sleep apnea indicator (SAI >
15) in this analysis have shown consistency with AASM cur-
rent scoring rules for moderate-severe sleep apnea as in sim-
ilar clinical studies [26].

A fundamental assumption in comparing two methods is
that the test results are compared to an error-free reference stan-
dard. To diagnose SA, the reference standard is human scored
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PSG data. A wide body of literature has documented that expert
human scoring has substantial inter-rater and intra-rater vari-
ability and is therefore an imperfect standard to compare to.
As there is no anatomic or physiologic “gold standard” for
the diagnosis of SA, in contrast to conditions where a tissue
biopsy result can serve as the definitive reference standard,
which makes true sensitivity and specificity analysis of PSG
in diagnosing not straightforward and poses a practical difficul-
ty in diagnosing SA [40-42]. Assessing validity of a new meth-
od to identify SA, it should not only be based on how well it
compares the results of the reference standard, but also how
comparable it is to agreement between currently used methods
for clinical diagnosis. Our analysis demonstrates a high concor-
dance between the CPC method when compared to manually
scored AHI from PSG studies, to determine the presence or
absence of SA. Sensitivity of 100%, specificity of 81%, a low
NPV (negative predictive value, 100%), a good PPV (positive
predictive value, 89%), and agreement with PSG diagnostic
studies of 93%, rendering it sufficiently reliable compared to
currently accepted methods to aid clinical diagnosis and guide
clinical management in the hospital.

Several publications have looked at algorithms for auto-
mated ECG detection of SA based on wavelet analysis of R-
R intervals classifying minute-by-minute apnea/hypopnea pe-
riods to discriminate SA patients from normal subjects
[46-50] and found that these methods tend to overestimate
AHI in central apnea patients and patients with periodic leg
movements (PML). Autonomic activations and heart rate
changes are known to happen during PLM episodes consistent
with CVHR [51, 52] although they have been reported to have
a briefer duration and shorter cycle length than those associ-
ated with SA causing an overlap between CVHR accompa-
nied by PLM and CVHR accompanied by SA.

The CPC analysis incorporates an automated method to
distinguish between CVHR happening during stable breathing
(HFC) and CVHR that happens during unstable breathing
(LFC), thus automatically excluding CVHR events happening
during stable breathing from being included in sleep disor-
dered breathing calculations that would overestimate sleep
apnea episodes. The CPC spectral analysis automatically dis-
plays a subset of data in the low-frequency band (LFC), an
elevated-low frequency (eLFC), enabling clear and easily ob-
served differentiation between obstructive breathing and cen-
tral or periodic breathing. Sleep apnea caused by respiratory
control dysfunction shows almost metronomic characteristics
of oscillations, presented as elevated-low frequency narrow
band coupling (eLFCyg) on the sleep spectrogram detecting
sustained periods of central apnea (CSA) or periodic breathing
vs. apneas driven by upper airway anatomical obstruction
(OSA) presenting more variable patterns of oscillations, pre-
sented as elevated-low frequency coupling broad-band
(eLFCpgp) correlating with sleep fragmentation and obstruc-
tive apnea-hypopnea [22, 26, 33]. CPC is thus able to
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distinguish between unstable breathing directly reflected in
the SAI and pure PLMs that would show up in the SAI to
be <15 and a high total CVHR. The relationship between
PLMs vs. both arousals and respiratory events during PSG
recordings and clinical evaluation is complex. When they ul-
timately coexist, either clinical correlation or follow-up reas-
sessment is required.

These results indicate that when compared to manually
scored PSG studies, the automated CPC technology can be
applied to existing ECG data to accurately identify patients
that may test positive for SA, thus providing a powerful ECG-
based tool to risk stratify patients and improve clinical
decision-making based on data that is already collected but
not currently analyzed for sleep pathology. ECG is a widely
collected signal to monitor CVD patients using both Holter
and hospital monitors representing a missed opportunity to
identify sleep apnea and initiate treatment when appropriate,
given the positive impact SA management can have on chron-
ic care of CVD patients. Abundant evidence exists that con-
firms a pathophysiologic link between OSA and CVD and
that CPAP treatment benefits certain CVD patient populations
[9-11], although further studies of this question are still re-
quired to fully comprehend this question 53.

There are several limitations to this study. The demo-
graphic heterogeneity within the small study sample is sig-
nificant representing both a strength and a weakness. The
small population sample contained within the database
limits generalizability of the actual findings to any given
population. This study demonstrates a potential application
of the CPC algorithms to a clinical sample of stored ECG
data. The lack of subjects with CSA is reinforced as an
additional limitation acknowledging the rates of CSA in
any given sample would be highly dependent on presence
or absence of discreet CSA risk factors.

PLMs may have been present in this cohort; hence, to mit-
igate overdiagnosis, we have confined this automated analysis
to moderate and severe OSA.

These findings might have implications for future clinical
interventions. Using CPC to analyze ECG data that is already
collected during sleep such as in hospital settings, to accurate-
ly and cost-effectively identify SA may deliver output that can
be reliably used to identify sleep apnea at the point of care.
This method will need to be tested in additional environments.
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