

Biochemical markers of cardiac dysfunction in children with obstructive sleep apnoea (OSA)

Daniel Hirsch¹ · Carla A. Evans² · Melanie Wong³ · Rita Machaalani^{2,3} · Karen A. Waters^{2,3}

Received: 13 December 2017 / Revised: 17 April 2018 / Accepted: 19 April 2018 / Published online: 9 May 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract

Objectives We explored relationships between biochemical markers and cardiac responses of children with and without obstructive sleep apnoea (OSA) during exercise. We hypothesised that serum markers of sympathetic nervous system activity and low-grade inflammation would correlate with cardiac responses to exercise in children with or without OSA.

Methodology The study included 40 of 71 children with previously characterised responses to cardiopulmonary exercise testing. Measures included serum cytokine levels using a multiplex bead-based assay (interleukins IL-1 β , IL-2, IL-4, IL-6, IL-8, IL-10, TNF- α and IFN- γ). Serum amyloid A (SAA) was quantified by nephelometry, and metanephrine/normetanephrine levels were measured by liquid chromatography, mass-spectroscopy. Comparisons were made between children with and without OSA, and with and without obesity. Relationships between biomarkers and various cardiac parameters were explored by linear regression.

Results Amongst the 40 children in this study, OSA was present in 23. Compared to the 17 children without OSA, those with OSA had higher resting serum IL-6 levels compared to those without (median 3.22 pg/ml vs. 2.31, $p < 0.05$). Regarding correlations with cardiac function after adjusting for OSA, IL-8 negatively correlated to heart rate (HR) response following exercise ($p = 0.03$) and IFN- γ negatively correlated with Stroke Volume Index (SVI) ($p = 0.03$). Both metanephrine and normetanephrine levels positively correlated with SVI ($p = 0.04$, $p = 0.047$; respectively) and QI ($p = 0.04$, $p = 0.04$; respectively) during exercise when adjusting for OSA.

Conclusions Children with OSA have raised morning levels of serum IL-6. Separately, higher levels of IFN- γ and IL-8 and lower levels of metanephrine and normetanephrine related to poorer cardiac function during exercise.

Keywords Biochemical markers · Cardiac responses · Obstructive sleep apnoea · Cardiopulmonary exercise testing (CPET)

Abbreviations

BMI	Body mass index
BP	Blood pressure
CRP	C-reactive protein
CPET	Cardiopulmonary exercise testing

GM-CSF	Granulocyte-macrophage colony-stimulating factor
HR	Heart rate
IFN- γ	Interferon-gamma
IL-1 β	Interleukin-1-beta
IL-2	Interleukin-2
IL-4	Interleukin-4
IL-6	Interleukin-6
IL-8	Interleukin-8
IL-10	Interleukin-10
OSA	Obstructive sleep apnoea
Q	Cardiac output
QI	Cardiac Output Index
SAA	Serum amyloid A
SV	Stroke volume
SVI	Stroke Volume Index
TNF- α	Tumour necrosis factor-alpha

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11325-018-1666-y) contains supplementary material, which is available to authorized users.

✉ Karen A. Waters
karen.waters@health.nsw.gov.au

¹ School of Medicine, University of Sydney, Sydney, NSW 2006, Australia

² Department of Medicine, University of Sydney, Sydney, NSW 2006, Australia

³ The Children's Hospital, Westmead, Sydney, NSW 2145, Australia

Introduction

OSA is associated with significant cardiovascular morbidity and mortality in adults [1–3]. It is also associated with structural and functional changes to the cardiovascular system, including a decreased cardiac output in response to exercise—even in the early stages of disease [4]. Children with OSA also show evidence of cardiovascular changes, including higher BP parameters [5, 6], HR measurements, [6–8] and impaired Q at peak exercise independent of BMI [9].

Two proposed mechanisms to explain these cardiovascular changes are persistent inflammation and autonomic dysfunction, both of which relate to characteristic biochemical changes. Supporting the inflammation theory, children with OSA have a pro-inflammatory cytokine profile resembling that seen in heart failure [10, 11] and coronary artery disease in adults [12, 13]. This includes reports of raised circulating levels of CRP, TNF- α , IFN- γ , IL-6 and IL-8 [14–17], and decreased levels of the anti-inflammatory cytokine IL-10 [15]. Of interest, serum amyloid A (SAA) is a conserved acute phase reactant and adipokine with an established relationship to cardiac dysfunction [18, 19] and inflammation in adults [20] that is yet to be explored in children with OSA.

Autonomic dysfunction has been demonstrated in children with OSA during sleep [8, 21] and in response to physiological stress [22–24]. Biochemically, children (and adults) with OSA have raised overnight plasma noradrenaline [25] and morning urine noradrenaline [26, 27], independent of BMI [27, 28]. This is often considered a marker of increased sympathetic activity. Metanephrine and normetanephrine are catecholamine metabolites [29] that may serve as alternative markers of sympathetic nervous system activity.

To date, the relationship between impaired cardiac function in OSA and the biochemical changes expected with chronic low-grade inflammation and autonomic dysfunction has not been investigated in the same cohort. In 2014, Evans et al. showed that a population of children with OSA had lower cardiac output measures during exercise when compared to healthy controls, independent of BMI [9]. The current study characterises the biochemical profiles of these children and explores the relationships between biochemical markers and those cardiac parameters. We hypothesise that serum markers of sympathetic nervous system activity and low-grade inflammation relate to an impaired cardiac response during exercise in children with OSA.

Material and methods

This was a cross-sectional study with ethics approval from the Sydney Children's Hospitals Network Human Ethics Committee. Methods pertaining to recruitment, anthropometry, polysomnography, spirometry, and cardiopulmonary exercise testing (CPET) have been published previously [9].

Informed consent was obtained from all individuals who participated in the study.

Recruitment, anthropometry and sleep study

Between February 2009 and June 2011, children aged 7–12 years who attended the Sleep Clinic or Weight Management Service at the Children's Hospital at Westmead, NSW, Australia, were approached to be in the study. Age- and weight-matched controls were recruited from the community. Subjects in both groups were included if they were healthy weight or obese and were taller than 135 cm in order to perform CPET. Healthy weight was characterised by a BMI between the 5th and 85th centile, and obesity by a BMI \geq 95th centile, for age and sex [30]. Exclusion criteria included a BMI between the 85th and 95th centile for age and sex, developmental delay, any underlying syndrome, a diagnosed sleep disorder other than OSA or OSA already on treatment.

Height and waist circumference were measured to the nearest 0.1 cm. Weight was measured to the nearest 0.01 kg. BMI centiles and z -scores were determined using the US CDC reference values [30].

Polysomnography was performed at the Children's hospital at Westmead, NSW, Australia, according to the 1997 American Thoracic Society (ATS) guidelines [31], recording a minimum of 9 continuous hours of data. Studies were analysed according to the Australasian Sleep Association addendum to the 2007 American Academy of Sleep Medicine guidelines [32]. OSA was diagnosed if the Obstructive Apnoea Hypopnoea Index (OAHI) was $\geq 1/h$ [33].

Cardiopulmonary exercise testing

CPET was performed using a cycle ergometer (Excalibur Sport Cycle ergometer, the Medgraphics CPX/D Breath-by-Breath Exchange system and BreezsSuite version 6.4.1 software, Medgraphics Corporation). Children were cycled at 60 revolutions per minute (rpm) against increasing resistance until physically exhausted or unable to maintain 60 rpm, or until the maximum predicted heart rate was reached (estimated as 220–age). Satisfactory tests had a respiratory quotient (RQ) > 1.00 . Children who did not achieve peak exercise were excluded. All testing and analysis were in accordance with the ATS and American College of Chest Physician guidelines [34].

Ultrasonic Cardiac Output Monitor Doppler was used to measure Q, SV, and HR. QI and SVI were then calculated by adjusting Q and SV, respectively, to the participants body surface area in meters-squared.

Blood collection and analysis

Fasting bloods were collected by venepuncture between 6 and 7am in the morning after participants' sleep study. Bloods

were centrifuged between 7 and 7:30am, and serum samples were stored at -80°C until the time of analysis.

Cytokine levels were quantified by a multiplex bead-based assay using the Human Ultrasensitive Cytokine 10-plex Panel as per the manufacturer's instructions (Invitrogen, catalog no. LHC6004) at the Children's Hospital at Westmead. All cytokine assays were batched in a single run to minimise inter-assay variability. Included in this panel were IL-1 β , IL-2, IL-4, IL-6, IL-8, IL-10, TNF- α , IFN- γ and GM-CS. SAA was quantified by nephelometry as per the protocol at the Children's Hospital Westmead. The lower limit of detection was 4 mg/l.

Serum metanephrine and normetanephrine levels were quantified at the NSW government South Eastern Area Laboratory Services, north clinical chemistry department, according to their liquid-chromatography/mass spectrometry protocol [29].

Statistical analysis

Data are presented as mean (SD) unless otherwise stated. Data analysis was performed using SPSS version 22 (IBM SPSS statistics, Armonk, New York). Categorical variables are shown as frequencies and compared using the chi-squared test. Descriptive and continuous variables are shown as mean (SD). Means were compared using independent two-tailed *t* tests.

For the cytokine markers, data are represented as median with interquartile range and were compared using non-parametric independent samples median test.

Cardiac parameters were compared to serum biomarkers by linear regression for any associations (relationships were adjusted for OSA status). Cardiac parameters were used as the dependent variables. No adjustment was made for multiple statistical comparisons. $P < 0.05$ was considered statistically significant.

Results

Demographics, anthropology, polysomnography and CPET

For the study, 115 children were approached, 71 participated in CPET and morning blood samples were obtained in 40 children after their overnight sleep study. Thus, 40 children were included in the current study. This group included 23 children with OSA (mean age 10.0 ± 1.7 years) and 17 without OSA (mean age 10.7 ± 1.2 years). There were no differences in age, gender or BMI *z*-score between the groups (Supplementary Table 1).

Cardiopulmonary testing for this subgroup supported the original findings and is shown in Supplementary Tables 2

and 3. We were able to confirm that, as in the original study, children with OSA had impaired responses to exercise compared to those without OSA. Peak exercise was achieved at comparable workloads and respiratory quotients (RQ) and pulmonary function was also comparable between the groups. However, children with OSA had lower levels of expired oxygen for their weight (measured as VO_2 peak in ml/kg/min) during exercise compared to those without OSA. In addition, children with OSA had lower mean Q, QI and SVI at peak exercise, in keeping with an impaired ability of the heart to meet the demands of the body (Supplementary Table 3).

We also confirmed that obese children achieved peak exercise at comparable workloads and respiratory quotients to healthy weight children, but obese children demonstrated lower levels of expired oxygen during exercise when correcting for weight (as seen with children with OSA) and had lower ventilatory equivalents for CO_2 and O_2 during exercise. Compared to healthy weight participants, obese children had higher baseline Q and HR, and a lower SVI. During exercise, they demonstrated lower QI and SVI when compared to healthy weight participants (Supplementary Table 3).

The only variation compared to the larger study group was that there was no difference in peak HR during exercise between those with and without OSA. However, the change in HR (HR difference) in response to exercise was lower in children with OSA.

Inflammatory markers

Children with OSA had higher median morning serum IL-6 levels compared to those without OSA (Table 1). No cytokine differences were noted between groups when analysed by weight category (Table 1).

All 40 samples were assayed for metanephrine and normetanephrine on the same day. Neither serum metanephrine nor normetanephrine levels differed between children with or without OSA (Table 2). However, obese children had lower metanephrine levels than healthy weight children ($p = 0.03$, Table 2).

Detectable levels of SAA were found in 5 of 23 children with OSA and 5 of 17 children without OSA ($p = 0.72$). Similarly, when stratified by weight category, there was no difference in the number of detectable SAA samples between groups ($p = 0.26$) (Table 2).

Regression analyses

IL-8 negatively correlated to HR difference ($p = 0.03$, Table 3), such that higher levels of IL-8 predicted a smaller increase in HR during exercise. Additionally, higher IFN- γ levels associated with lower SVI measures ($p = 0.03$, Table 3).

Higher levels of serum metanephrine correlated with higher SVI and QI measures at peak exercise ($p = 0.04$, $p =$

Table 1 Inflammatory cytokines by OSA and by weight category

	<i>n</i> OSA, non-OSA	OSA median (IQR)	Non-OSA median IQR	<i>p</i>	<i>n</i> Ob, healthy wt	Obese median (IQR)	Healthy wt median (IQR)	<i>p</i>
IL-1b (pg/ml)	23, 17	0.34 (0.23–0.63)	0.33 (0.14–0.46)	1	24, 16	0.33 (0.17–0.57)	0.34 (0.57–0.18)	0.75
IL-2 (pg/ml)	23, 17	2.13 (1.46–4.84)	1.43 (1.16–2.52)	0.2	24, 16	2.28 (1.28–4.68)	1.53 (1.2–2.75)	0.11
IL-4 (pg/ml)	23, 17	4.87 (2.46–8.14)	5.48 (2.79–8.39)	0.52	24, 16	5.7 (2.55–9.5)	4.76 (2.79–6.56)	0.75
IL-5 (pg/ml)	22, 16	0.63 (0.44–1.08)	0.45 (0.37–0.82)	0.27	23, 15	0.49 (0.39–1.33)	0.45 (0.43–0.81)	0.42
IL-6 (pg/ml)	23, 15	3.22 (2.25–4.21)	2.31 (0.97–2.95)	0.046	23, 15	2.95 (2.31–4.08)	1.56 (0.81–3.95)	0.18
IL-8 (pg/ml)	23, 17	4.07 (3.48–6.41)	3.46 (2.63–5.71)	0.52	24, 16	4.49 (3.20–8.01)	3.49 (2.54–5.15)	0.33
IL-10 (pg/ml)	23, 16	2.09 (1.26–2.91)	1.72 (1.13–2.08)	0.85	23, 16	1.86 (1.5–3.02)	1.59 (1.13–2.38)	0.85
TNF- α (pg/ml)	21, 11	0.97 (0.36–1.67)	1.35 (0.48–2.09)	0.46	19, 13	1.02 (0.39–1.8)	1.21 (0.43–1.83)	1
IFN- γ (pg/ml)	17, 12	2.68 (1.13–4.71)	2.55 (1.27–3.76)	1	17, 12	3.3 (1.13–4.71)	2.24 (1.4–3.0)	0.26
GM-CSF (pg/ml)	21, 15	0.57 (0.32–1.21)	0.36 (0.23–0.57)	0.18	22, 14	0.54 (0.31–1.4)	0.42 (0.22–0.58)	0.73

Values shown in bold have significant differences

OSA obstructive sleep apnoea, *Ob* obese, healthy wt healthy weight, *IL* interleukin, *IFN- γ* interferon-gamma, *TNF- α* tumour necrosis factor-alpha, *GM-CSF* granulocyte-macrophage colony-stimulating factor

0.04; respectively, Table 4). The same was true for normetanephrine ($p = 0.047$, $p = 0.04$; respectively, Table 4).

Discussion

This study is the first to explore biochemical correlations with cardiac dysfunction in response to exercise in a paediatric population with OSA. Higher morning plasma levels of IFN- γ and IL-8 correlated with poorer cardiac function during exercise, while higher serum metanephrine and normetanephrine levels were, contrary to our hypothesis, associated with better cardiac function during exercise. Children with OSA demonstrated higher morning levels of serum IL-6.

We first confirmed that this subgroup also showed the original abnormalities of lower Q, QI and SVI, and a smaller increase in heart rate during exercise for children with OSA. In addition, As with the original cohort studied by Evans et al. [9], children with OSA, and separately obesity, demonstrated

changes in cardiac parameters consistent with an impaired ability of the heart to meet the demands of the exercising body.

In this subgroup, the impaired cardiac responses correlated with higher serum IL-8 levels. This finding has not been previously reported and may represent an inflammation-related haemodynamic compromise. Other studies have demonstrated raised IL-8 levels in children with OSA [16, 35]. Li et al. also found raised IL-8 levels in children with moderate/severe disease [35]. The current finding may offer an additional functional association to the previously demonstrated inflammatory abnormalities.

IFN- γ is a pro-inflammatory cytokine that is raised in adults with congestive cardiac failure [36] and has been causally linked to markers of cardiac dysfunction in animals [37–39]. Higher IFN- γ levels correlated with lower SVI and a lower QI. Given that SVI and QI reflect the ability of the heart to supply blood to the body, this finding is in keeping with inflammation-related haemodynamic compromise. While reports linking IFN- γ to reduced systolic function and cardiomyocyte contractility are restricted to animals [38, 39], they are consistent with our associations with lower SVI and QI in the current cohort.

Table 2 Catecholamine metabolites and SAA

	OSA (<i>n</i> = 21)	Non-OSA (<i>n</i> = 14)	<i>p</i>	Obese (<i>n</i> = 23)	Healthy wt (<i>n</i> = 12)	<i>p</i>
MET (nmol/l)	0.2 (0.06)	0.2 (0.11)	0.95	0.18 (0.06)	0.24 (0.11)	0.03
NORMET (nmol/l)	0.44 (0.16)	0.43 (0.19)	0.88	0.40 (0.14)	0.50 (0.2)	0.12
N:NM ratio	0.48 (0.16)	0.45 (0.11)	0.63	0.46 (0.16)	0.48 (0.09)	0.75
Detectable SAA (<i>n</i> ^a)	OSA (<i>n</i> = 23)	Non-OSA (<i>n</i> = 17)		Obese (<i>n</i> = 24)	Healthy wt (<i>n</i> = 16)	
	5	5	0.72	8	2	0.08

Values shown in bold have significant differences

MET metanephrine, NORMET normetanephrine, N:NM ratio normetanephrine to normetanephrine ratio, SAA serum amyloid A

^a The number of samples in which serum amyloid A was detectable (> 4 mg/l) is shown

Table 3 Relationships between cytokines and cardiac function

	IL-8 Slope	<i>p</i>	IFN- γ Slope	<i>p</i>
CO rest	0.08	0.10	−0.07	0.43
CO peak	0.01	0.89	−0.19	0.16
QI rest	−3.32	1.00	−0.14	0.07
QI peak	−0.12	0.16	−0.36	0.05
SV rest	0.05	0.91	−0.39	0.65
SV peak	0.41	0.34	−1.28	0.21
SVI rest	−0.63	0.10	−1.25	0.15
SVI peak	−0.52	0.29	−2.29	0.03
HR rest	1.40	0.05	−0.33	0.81
HR peak	−0.96	0.22	0.32	0.86
HR diff	−0.24	0.02	0.66	0.73

Values shown in bold have significant differences

IL-8 interleukin-8, *IFN- γ* interferon-gamma, *CO* cardiac output, *QI* Cardiac Output Index, *SV* stroke volume, *SVI* Stroke Volume Index, *rest* values at rest, *peak* values at peak exercise, *HR diff* (HR difference) change in HR in response to exercise

The current finding of significantly raised IL-6 levels in morning samples of children with OSA is consistent with the findings of transient elevations in IL-6 (but not TNF- α) in piglets submitted to acute intermittent hypercapnic hypoxia in an animal model of OSA in children [40]. Since IL-6 is a key inducer of inflammatory responses [41], including the production of CRP and SAA, if repeated on a nightly basis, this transient elevation could commence the cascade of pro-inflammatory responses leading to chronic low-grade inflammation and possible changes in

cardiovascular function. Raised inflammatory cytokines are variably reported in children with OSA. As an example, raised levels of IL-6 [15, 42] and lower levels of IL-10 [15] are reported in some OSA cohorts but not others [43], and some findings depend on disease severity [42]. They are also hard to disentangle from the effects of obesity, for example Gaines et al. recently attributed 42% of the association of obesity and OSA to IL-6 [44].

Although we were unable to demonstrate relationships between IL-6 and cardiac parameters, animal studies have causally linked IL-6 to reduced myocardial contractility [45], with downstream reductions in myocardial nitric oxide synthase 2 in papillary muscle [46] and reduced expression of contractile proteins in rat cardiac myocytes [47]. Our findings would support exploring the role of IL-6 on cardiac function in a larger paediatric OSA cohort.

SAA is a conserved acute phase reactant and adipokine that was investigated because of its established relationship to cardiac dysfunction [18, 19] and to inflammation relating to cardiovascular disease in adults [20]. No prior studies have looked at SAA in children with OSA, and we found no differences in the amount of detectable SAA samples between disease groups. The same was true when comparing children by weight category. In adults, SAA seems to share a closer relationship to obesity than to OSA [48], but in children, further inquiry with a larger group is needed. SAA had low statistical power in this cohort partly because detection rates were lower than those we expected based upon an existing study [18].

Serum metanephrine and normetanephrine levels were chosen as markers of sympathetic nervous system activity due to their long half-lives in the blood despite limited evaluation in existing studies [49], with the hypothesis that levels of both would be elevated as markers of sympathetic dysfunction in children with OSA. No other study has examined associations amongst these markers, OSA and cardiac dysfunction in children. The metanephrine levels were within expected ranges for age and sex, while normetanephrine levels were higher than those expected [50, 51]. While we found no correlations with the presence or absence of OSA, both metanephrine and normetanephrine levels correlated positively to SVI and QI during exercise. SVI and QI reflect the ability of the heart to meet the demands of the exercising body and higher morning serum metanephrine levels predicted better cardiac function during exertion. Consistent with this, obese children had lower levels of serum metanephrine and worse cardiac function than healthy weight controls. Since autonomic dysregulation amongst children with OSA is typically independent of BMI [27, 28], this finding was unexpected.

We acknowledge that the main limitation of this study is the small sample size, because it limited our ability to stratify and evaluate the relative contributions of obesity and OSA to our findings.

Table 4 Regression analysis of catecholamine metabolites

	Metanephrine		Normetanephrine	
	Slope	<i>p</i>	Slope	<i>p</i>
CO rest	−1.83	0.48	−1.35	0.29
CO peak	0.35	0.92	1.77	0.27
QI rest	0.49	0.42	−0.07	0.94
QI peak	8.89	0.04	4.12	0.05
SV rest	−14.72	0.5	−10.63	0.32
SV peak	3.96	0.86	10.1	0.34
SVI rest	26.45	0.18	4.84	0.62
SVI peak	51.78	0.03	23.15	0.05
HR rest	−14.58	0.7	−8.87	0.63
HR peak	−13.11	0.74	−3.03	0.88
HR diff	1.46	0.98	5.83	0.81

Values shown in bold have significant differences

HR diff (HR difference) the change in HR in response to exercise, *CO* cardiac output, *QI* Cardiac Output Index, *SV* stroke volume, *SVI* Stroke Volume Index, *rest* values at rest, *peak* values at peak exercise

Conclusions

In this study, children with OSA had impaired cardiac function in response to exercise and raised levels of IL-6. Correlations between serological markers and poorer cardiac function during exercise included higher morning serum levels of IL-8 and IFN- γ , and lower morning serum levels of metanephrine and normetanephrine.

Acknowledgements The authors thank the staff from the David Read Sleep Unit, Respiratory Function Unit, The Children's Hospital Institute of Sport's Medicine and Weight Management Service and the Immunology laboratory at The Children's Hospital at Westmead for contributing and supporting this study. Also, we thank the children and families who agree to participate in this study.

Funding The National Health and Medical Research Council (NHMRC) provided financial support in the form of a postgraduate scholarship for Dr. Evans. The sponsor had no role in the design or conduct of this research.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (name the institution/committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

- Parish JM, Somers VK (2004) Obstructive sleep apnea and cardiovascular disease. In: Mayo clinic proceedings. Elsevier
- Arias MA, García-Río F, Alonso-Fernández A, Martínez I, Villamor J (2006) Pulmonary hypertension in obstructive sleep apnoea: effects of continuous positive airway pressure: a randomized, controlled cross-over study. *Eur Heart J* 27(9):1106–1113
- Guilleminault C, Connolly SJ, Winkle RA (1983) Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome. *Am J Cardiol* 52(5):490–494
- Alonso-Fernández A, García-Río F, Arias MA, Mediano O, Pino JM, Martínez I, Villamor J (2006) Obstructive sleep apnoea-hypoapnoea syndrome reversibly depresses cardiac response to exercise. *Eur Heart J* 27(2):207–215
- Kohyama J, Ohnata J, Hasegawa T (2003) Blood pressure in sleep disordered breathing. *Arch Dis Child* 88(2):139–142
- Amin R, Somers VK, McConnell K, Willging P, Myer C, Sherman M, McPhail G, Morgenthal A, Fenchel M, Bean J, Kimball T, Daniels S (2008) Activity-adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing. *Hypertension* 51(1):84–91
- Xu Z, Li B, Shen K (2013) Ambulatory blood pressure monitoring in Chinese children with obstructive sleep apnea/hypopnea syndrome. *Pediatr Pulmonol* 48(3):274–279
- Walter LM, Nixon GM, Davey MJ, Anderson V, Walker AM, Horne RS (2013) Autonomic dysfunction in children with sleep disordered breathing. *Sleep Breath* 17(2):605–613
- Evans CA, Selvadurai H, Baur LA, Waters KA (2014) Effects of obstructive sleep apnea and obesity on exercise function in children. *Sleep* 37(6):1103–1110
- Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk H-D, Coats AJ (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. *Circulation* 102(25):3060–3067
- Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure an analysis of the cytokine database from the Vesnarinone Trial (VEST). *Circulation* 103(16):2055–2059
- Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL, Hill HR (2006) Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay. *Am J Clin Pathol* 125(6):906–913
- Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T, Masson S, Signorini S, Mocarelli P, Hester A, Glazer R (2005) C-reactive protein in heart failure. *Circulation* 112(10):1428–1434
- Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. *Circulation* 107(8):1129–1134
- Gozal D, Serpero LD, Capdevila OS, Kheirandish-Gozal L (2008) Systemic inflammation in non-obese children with obstructive sleep apnea. *Sleep Med* 9(3):254–259
- Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. *Circulation* 112(17):2660–2667
- Lago F, Dieguez C, Gómez-Reino J, Gualillo O (2007) The emerging role of adipokines as mediators of inflammation and immune responses. *Cytokine Growth Factor Rev* 18(3):313–325
- Johnson BD, Kip KE, Marroquin OC, Ridker PM, Kelsey SF, Shaw LJ, Pepine CJ, Sharaf B, Merz CNB, Sopko G (2004) Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood Institute–Sponsored Women's Ischemia Syndrome Evaluation (WISE). *Circulation* 109(6):726–732
- Kosuge M, Ebina T, Ishikawa T, Hibi K, Tsukahara K, Okuda J, Iwahashi N, Ozaki H, Yano H, Kusama I (2007) Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes. *Circ J* 71(2):186–190
- Wang Z, Nakayama T (2010) Inflammation, a link between obesity and cardiovascular disease. *Mediat Inflamm* 2010:1–17
- Liao D, Li X, Vgontzas AN, Liu J, Rodriguez-Colon S, Calhoun S, Bixler EO (2010) Sleep-disordered breathing in children is associated with impairment of sleep stage-specific shift of cardiac autonomic modulation. *J Sleep Res* 19(2):358–365
- O'Brien LM, Gozal D (2005) Autonomic dysfunction in children with sleep-disordered breathing. *Sleep* 28(6):747–752
- Chaicharn J, Lin Z, Chen ML, Ward S, Keens T, Khoo M (2009) Model-based assessment of cardiovascular autonomic control in children with obstructive sleep apnea. *Sleep* 32(7):927–938
- Guilleminault C, Khramov A, Stoohs RA, Kushida C, Pelayo R, Kreutzer ML, Chowdhuri S (2004) Abnormal blood pressure in prepubertal children with sleep-disordered breathing. *Pediatr Res* 55(1):76–84
- Nakra N, Bhargava S, Dzuira J, Caprio S, Bazzi-Asaad A (2008) Sleep-disordered breathing in children with metabolic syndrome: the role of leptin and sympathetic nervous system activity and the effect of continuous positive airway pressure. *Pediatrics* 122(3):e634–e642
- O'Driscoll DM, Horne RS, Davey MJ, Hope SA, Anderson V, Trinder J, Walker AM, Nixon GM (2011) Increased sympathetic

- activity in children with obstructive sleep apnea: cardiovascular implications. *Sleep Med* 12(5):483–488
- 27. Snow AB, Khalyfa A, Serpero LD, Capdevila OS, Kim J, Buazza MO, Gozal D (2009) Catecholamine alterations in pediatric obstructive sleep apnea: effect of obesity. *Pediatr Pulmonol* 44(6):559–567
 - 28. Lam JC, Yan CS, Lai AY, Tam S, Fong DY, Lam B, Ip MS (2009) Determinants of daytime blood pressure in relation to obstructive sleep apnea in men. *Lung* 187(5):291–298
 - 29. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. *Pharmacol Rev* 56(3):331–349
 - 30. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL (2000) CDC growth charts: United States. *Adv Data* (314): 1–27
 - 31. Society AT (1996) Standards and indications for cardiopulmonary sleep studies in children. *Am J Respir Crit Care Med* 153:866–878
 - 32. Medicine, A.A.O.S (2007) AASM manual for the scoring of sleep and associated events. American Academy of Sleep Medicine, Darien
 - 33. Katz ES, Marcus CL (2005) Diagnosis of obstructive sleep apnea syndrome in infants and children. In: Sheldon SH, Ferber R, Kryger MH (eds) *Principles and practice of pediatric sleep medicine*. Elsevier Saunders, Philadelphia, pp 197–210
 - 34. Society, A.T (2003) ATS/ACCP statement on cardiopulmonary exercise testing. *Am J Respir Crit Care Med* 167(2):211
 - 35. Li AM, Lam HS, Chan M, So HK, Ng SK, Chan I, Lam C, Wing YK (2008) Inflammatory cytokines and childhood obstructive sleep apnoea. *Ann Acad Med Singap* 37(8):649–654
 - 36. Cheng X, Ding Y, Xia C, Tang T, Yu X, Xie J, Liao M, Yao R, Chen Y, Wang M (2009) Atorvastatin modulates Th1/Th2 response in patients with chronic heart failure. *J Card Fail* 15(2):158–162
 - 37. Garcia AG, Wilson RM, Heo J, Murthy NR, Baid S, Ouchi N, Sam F (2012) Interferon- γ ablation exacerbates myocardial hypertrophy in diastolic heart failure. *Am J Phys Heart Circ Phys* 303(5):H587–H596
 - 38. Reifenberg K, Lehr H-A, Torzewski M, Steige G, Wiese E, Küpper I, Becker C, Ott S, Nusser P, Yamamura K-I (2007) Interferon- γ induces chronic active myocarditis and cardiomyopathy in transgenic mice. *Am J Pathol* 171(2):463–472
 - 39. Borda E, Leirós CP, Sterin-Borda L, de Bracco MM (1991) Cholinergic response of isolated rat atria to recombinant rat interferon- γ . *J Neuroimmunol* 32(1):53–59
 - 40. Tam CS, Wong M, Tarn K, Aouad L, Waters KA (2007) The effect of acute intermittent hypercapnic hypoxia treatment on IL-6, TNF-alpha, and CRP levels in piglets. *Sleep* 30(6):723–727
 - 41. Tanaka T, Narasaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. *Cold Spring Harb Perspect Biol* 6(10): a016295
 - 42. Gileles-Hillel A, Alonso-Álvarez ML, Kheirandish-Gozal L, Peris E, Cordero-Guevara JA, Terán-Santos J, Martinez MG, Jurado-Luque MJ, Corral-Peña J, Duran-Cantolla J (2014) Inflammatory markers and obstructive sleep apnea in obese children: the NANOS study. *Mediat Inflamm* 2014:1–9
 - 43. Tam CS, Wong M, McBain R, Bailey S, Waters KA (2006) Inflammatory measures in children with obstructive sleep apnoea. *J Paediatr Child Health* 42(5):277–282
 - 44. Gaines J, Vgontzas AN, Fernandez-Mendoza J, Calhoun SL, He F, Liao D, Sawyer MD, Bixler EO (2016) Inflammation mediates the association between visceral adiposity and obstructive sleep apnea in adolescents. *Am J Physiol-Endocrinol Metab* 311(5):E851–E858
 - 45. Janssen SP, Gayan-Ramirez G, Van Den Bergh A, Herijgers P, Maes K, Verbeken E, Decramer M (2005) Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. *Circulation* 111(8):996–1005
 - 46. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. *Science* 257(5068):387–389
 - 47. Patten M, Krämer E, Bünenmann J, Wenck C, Thoenes M, Wieland T, Long C (2001) Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo. *Pflugers Arch* 442(6):920–927
 - 48. Zhao Y, He X, Shi X, Huang C, Liu J, Zhou S, Heng C-K (2010) Association between serum amyloid A and obesity: a meta-analysis and systematic review. *Inflamm Res* 59(5):323–334
 - 49. Kadiritis AG, Alexopoulos EI, Damani E, Hatzi F, Chaidas K, Kostopoulou T, Tzigeroglou A, Gourgoulianis K (2009) Urine levels of catecholamines in Greek children with obstructive sleep-disordered breathing. *Pediatr Pulmonol* 44(1):38–45
 - 50. Franscini LC, Vazquez-Montes M, Buclin T, Perera R, Dunand M, Grouzmann E, Beck-Popovic M (2015) Pediatric reference intervals for plasma free and total metanephrenes established with a parametric approach: relevance to the diagnosis of neuroblastoma. *Pediatr Blood Cancer* 62(4):587–593
 - 51. Weise M, Merke DP, Pacak K, Walther MM, Eisenhofer G (2002) Utility of plasma free metanephrenes for detecting childhood pheochromocytoma. *J Clin Endocrinol Metab* 87(5):1955–1960