

Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis

Y. He [†], T. Manon-Jensen [†], L. Arendt-Nielsen ^{‡§}, K.K. Petersen [‡], T. Christiansen ^{||},
J. Samuels [¶], S. Abramson [¶], M.A. Karsdal [†], M. Attur [¶], A.C. Bay-Jensen ^{*†}

[†] Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark

[‡] SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark

[§] C4Pain, Aalborg, Denmark

^{||} Orthopedic Department, Gentofte University Hospital, Hellerup, Denmark

[¶] Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, 10003, USA

ARTICLE INFO

Article history:

Received 1 June 2018

Accepted 7 January 2019

Keywords:

Chondrocyte hypertrophy

Assay

Biomarker

Type X collagen

Osteoarthritis

Cartilage

SUMMARY

Objective: Phenotypic changes of chondrocytes toward hypertrophy might be fundamental in the pathogenesis of osteoarthritis (OA), of which type X collagen (Col10) is a well-known marker. The purpose was to develop a specific immunoassay for blood quantification of a newly identified neo-epitope of type Col10 to assess its diagnostic value for radiographic knee OA.

Methods: A neo-epitope of Col10 was identified in urine samples from OA patients. A monoclonal antibody against the neo-epitope was produced in Balb/C mice. The enzyme responsible for the cleavage was identified. Immunohistochemical detection of this neo-epitope was performed on human OA cartilage. An immunoassay (Col10neo) was developed and quantified in two clinical studies: the C4Pain-003 and the NYU OA progression study. Receiver operating characteristic curve (ROC) curve analysis was carried out to evaluate the discriminative power of Col10neo between OA and rheumatoid arthritis (RA).

Results: A neo-epitope specific mAb was produced. The Cathepsin K-generated neo-epitope was localized to the pericellular matrix of chondrocytes, while its presence was extended and more prominent in superficial fibrillation in the cartilage with advanced degradation. In the C4Pain study, a higher level of Col10neo was seen in subjects with greater KL grade. The group of the highest tertile of Col10neo included more subjects with KL3–4. In the NYU study, Col10neo was statistically higher in OA than control or RA. ROC curve analysis revealed area under the curve was 0.88 (95% CI 0.81–0.94).

Conclusion: Our findings indicate that Col10neo linked to hypertrophic chondrocytes could be used as a diagnostic biochemical marker for knee OA.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Osteoarthritis (OA) is the most common joint disease, which is characterized by cartilage damage and impaired joint function¹. It can implicate synovial joints, but knees, hands, hips, and spine are usually affected by this disease². A range of risk factors, such as aging, gender, obesity, early trauma, and heredity are associated with OA of the knee³.

Although substantial progress has been made to understand the mechanisms leading to degradation of the cartilage matrix in OA,

the exact pathogenesis of OA still needs to be elucidated. Supported by emerging evidence hypertrophy of chondrocytes, the only cells present in cartilage is a key event in the development of OA^{4–8}. The time course of expression of type X collagen, a specific marker of hypertrophic chondrocytes, and MMP13 has shown to be significantly induced during OA progression in a surgically induced joint instability OA model^{5,9}. In sections of human osteoarthritic cartilage, type X collagen was found around hypertrophic chondrocyte clusters in the deep zone close to tidemark¹⁰. Also, Eerola *et al.* demonstrated that intense immunostaining of type X collagen was observed specifically at sites of osteophyte formation and surface fibrillation¹¹. Furthermore, the mineralization process has been shown in OA cartilage indicating that articular chondrocytes from OA joints develop terminal differentiation similar to those in the

* Address correspondence and reprint requests to: A. C. Bay-Jensen, Nordic Bioscience, Herlev Hovedgade 205-207, DK-2730 Herlev, Denmark.

E-mail addresses: yhe@nordicbioscience.com (Y. He), acbj@nordicbioscience.com (A.C. Bay-Jensen).

growth plate during endochondral ossification¹². Conclusively, chondrocyte hypertrophy is associated with OA.

Cartilage degradation is a common feature for rheumatoid arthritis (RA), a systemic autoimmune disorder as well. The degradation of cartilage matrix in both OA and RA is mediated by the overexpression of enzymes, mostly of MMPs and ADAMTs^{13,14}. However, the driving force behind the development of these two disorders is different as summarized by Pap *et al.* in a review¹⁵. In OA, cartilage loss occurs as part of a phenotypic shifting of chondrocytes, while in RA, cartilage damage is considered a result of activated synovial fibroblast-like synoviocytes (FLS) and monocytes.

In the current study, we have discovered a neoepitope of type X collagen, ⁴⁷⁹GIATKG, in the urine samples of OA patients. The Cathepsin K-mediated neo-epitope is in the region near the carboxyl-terminal end of the triple helix. We produced a neo-epitope specific monoclonal antibody and identified the productive enzyme responsible for the generation of the neo-epitope *in vitro*. We performed immunostaining of OA cartilage to show the distribution of the neo-epitope. We developed an enzyme-linked immunosorbent assay (ELISA). In two clinical studies, blood levels of type X collagen degradation biomarker-Col10neo are associated with Kellgren–Lawrence (KL) grade radiographic severity. Most importantly, Col10neo biomarker could distinguish between OA and RA and suggest the potential diagnostic value of this biomarker for knee OA.

Methods

Materials

Unless otherwise stated, all materials used for experiments were ordered from Sigma–Aldrich (Copenhagen, Denmark) or VWR (Rodovre, Denmark). The synthetic peptides were purchased from GenScript (USA).

Selection of the sequence for immunization

Ten urine samples of peri/postmenopausal women with knee pain undergoing arthroscopy were analyzed by GC/MS and the Mascot database was searched for type X collagen neo-epitopes. Seventeen peptide sequences were found to be unique to human type X collagen. Two sequences carrying the same free C-terminus located at amino acid (aa) position 478' (Accession No.: Q03692; UniProt) were discovered in the urine from OA patients, indicating the cleavage occurring between the bond of A⁴⁷⁸–G⁴⁷⁹. The first 10 aa, ⁴⁷⁹GIATKGLNPG⁴⁸⁸, of the free N-terminal end generated by this cleavage was selected for immunization. Further, a sequence alignment with different species was conducted using the Basic Local Alignment Search Tool (BLAST).

Monoclonal antibody (mAb) production

Six female Balb/C mice of 6–7 weeks of age were used for monoclonal antibody (mAb) production and the experiment was approved by the Danish Animal experimentation Council. Six mice were housed in the same cage (the standard type III cage, Scanner) in a ventilated closet and provided with free access to tap water and food. The 12-h light/dark cycle was used in the animal facility with a temperature of 18–22°C. Wood shavings were used for bedding. The mice were immunized subcutaneously with emulsified GIATKGLNPG-GGC-KLH with Sigma Adjuvant System® (S6322, Sigma–Aldrich). 100 µg of emulsified KLH-conjugate with adjuvant was repeatedly injected into mouse every third week until stable titer levels were obtained. The behavioral assessments were carried out throughout the study. Red bumps after injection were expected

and observed. There was no skin infection observed at the sites of injection.

The mice with the highest antibody titer and best reactivity towards the specific peptide, GIATKGLNPG, were chosen for fusion and boosted intraperitoneally (i.p.) with 100 µg of 100 µL KLH-conjugate 3 days before fusion. The isolated splenocytes were fused with murine myeloma cells, SP2/0-Ag14 (ATCC®CRL-1581™). Hybridoma cells were selected by using HAT (hypoxanthine-aminopterin-thymidine) medium. Supernatants were screened against GIATKGLNPG-k (Biotin) Limiting dilution method was used to get mAb and isotype was tested with kit (5300-05, Southern Biotech). Hi Trap Protein G column (17-0404-01, GE healthcare) was used for purification.

⁴⁷⁹GIATKG specific immuno-assay (Col10neo)

A purified mAb was first tested for specificity against three synthetic peptides 1) specific peptide (GIATKGLNPG), 2) elongation of the specific peptide (AGIATKGLNPG), 3) truncation of the specific peptide (IATKGLNPG), and two truncated recombinant type X collagen proteins [Col10(AA 479–680) and Col10 (AA 450–680)] respectively in a competitive immunoassay. The optimized competitive immunoassay protocol: a 96-well streptavidin pre-coated microplate was coated with 1 ng/ml GIATKGLNPG-k (Biotin) dissolved in 50 mM PBS-BTB for 30 min at 20°C. Then, the plate was washed five times with wash buffer (20 mM Tris, 50 mM NaCl, pH 7.2). 20 µL of standards, controls or samples were added to appropriate wells, followed by 100 µL of 23 ng/ml 2F4 in 50 mM PBS-BTB buffer containing 5% Liquid II (Roche Diagnostics, Germany), and incubated overnight (20 ± 1 h) at 4°C. After five times wash, 100 µL of secondary antibody (115-035-003, Jackson ImmunoResearch) was added and incubated for 1 h at 20°C. The plate was washed five times again. Finally, 100 µL 3,3',5,5'-tetramethylbenzidine (TMB) was added and incubated for 15 min at 20°C in the dark. The colorimetric reaction was stopped by adding 100 µL stopping solution (1% H₂SO₄) and measured at 450 nm with 650 nm as the reference.

The inter- and intra-plate variation were determined by ten independent runs of the quality control panel in duplicate. The lower limit of detection (LLOD) was calculated as 3SD of the mean value of 21 zero standards. The optimal range for quantitative measurements is defined as the boundary between the lower limit of quantification (LLOQ) and the upper limit of quantification (ULOQ). Linearity of the assay was evaluated.

In vitro cleavage of human cartilage and western blot

Articular cartilage biopsies from OA patients who underwent knee replacement surgery were obtained from Gentofte Hospital (Gentofte, Denmark). The collection and retrieval of the biopsies complied with international ethical guidelines for handling human samples and patient information. All participants signed informed consent, and the study was approved by Danish authority. To identify the enzymes responsible for the cleavage of the A⁴⁷⁸–G⁴⁷⁹ bond in Col10, a knee cartilage pool of 10 OA patients undergoing knee replacement surgery was cleaved by numerous proteases including matrix metalloproteases-2, -9, -13 Cathepsins K, B, S, and A disintegrin and metalloprotease domains with thrombospondins motifs-4, -5. Briefly, pulverized cartilage sample (30 mg) was incubated with 1 µg each enzyme in a 0.5 ml Eppendorf with 250 µL digestion buffer as previously reported¹⁶. The digestion was carried out for 24 h in replicates. The reaction was quenched by adding Ethylenediaminetetraacetic acid (EDTA) (5 mM) or E64 (5 mM). Cleaved products from Cathepsin K and control were suspended in the gel-loading buffer and electrophoresed on 4–12% Tris-Glycine gradient gel and transferred to

nitrocellulose by iBlot[®]. The blots were blocked with 5% bovine serum albumin (BSA) in Tris-buffered saline with Tween-20 (TBST), washed and probed with antibodies of 2F4 or 11G8 (antibody against the carboxyl end of type X collagen developed in our previous study¹⁷, in the absence or presence of blocking peptides in parallel.

Immunohistochemistry (IHC)

Cartilage with bone specimens for IHC study was performed in collaboration with Frederikshavn Hospital (Denmark) approved by Danish authority (N-20110031). All participants signed informed consent. The specimens isolated from OA patients who underwent knee replacement surgery were fixed and decalcified, and then embedded in paraffin. Cartilage sections (5 µm) were deparaffinized and hydrated, followed by antigen retrieval using Pronase E (10165921001, Roche) at 37°C for 10 min. The sections were treated with 0.5% casein in Tris Buffered Saline (TBS) for 30 min at room temperature to block unspecific binding. Immunostaining was performed using antibody 2F4 or 11G8. Non-sense mouse IgG was used as a negative control (X0931, Dako, Denmark). Immunoreactivity was visualized with peroxidase-labeled anti-Mouse and diaminobenzidine (DAB, Dako, Denmark). Counterstaining was with Mayer's hematoxylin. The micrographs were taken using an Olympus microscope BX60 equipped with an Olympus C5050 digital camera.

Study participants

Plasma samples were retrieved from two cohorts, the C4Pain study approved by the local ethics committee (N-20100094)¹⁸ and the NYU OA progression study by the institutional review board (IRB) of NYU School of Medicine^{19,20}. All participants provided informed consent before enrollment.

Briefly, the C4Pain is a cross-sectional study. It comprised 281 individuals with radiographic KL grade 0–4. Since most patients had bilateral knee OA, the knee with the maximal pain intensity for the last 24 h was selected as the signal knee. Sufficient samples were available only from 253 enrollees and categorized into four groups based on the KL grade since the radiographic features instead of pain were the primary focus of the current study.

The NYU study comprised 21 non-OA healthy controls (KL ≤ 1 and no pain in either knee), 146 symptomatic knee OA patients and 36 RA patients at baseline. These 146 OA patients were further followed up for 24 months. The inclusion and exclusion criteria, radiographic assessments were taken at baseline and 24 months and plasma were collected at baseline as described previously^{19,20}. Plasma samples were available from 20 non-OA healthy controls, 142 OA subjects and 34 RA subjects at baseline. In the present study, we only investigated the level of Col10neo in different groups at baseline.

Statistics

Data were analyzed using GraphPad Prism 6 or MedCalc 16.8. For normality check, a Shapiro–Wilk test for all variables of interest was performed. Between-group comparison for age, body mass index (BMI) and visual analogue scale (VAS) score, the one-way analysis of variance (ANOVA) with *post-hoc* Tukey–Kramer test was used. Plasma Col10neo data were logarithmic transformed in all analyses. The receiver operating characteristic curve (ROC) curve analysis was performed. The area under the curve was used to determine how well Col10neo can distinguish between OA and RA groups. A *P* value < 0.05 was considered statistically significant. One

asterisk (*) if *p* < 0.05; two (**) if *p* < 0.01; three (***) if *p* < 0.001 and four (****) if *p* < 0.0001.

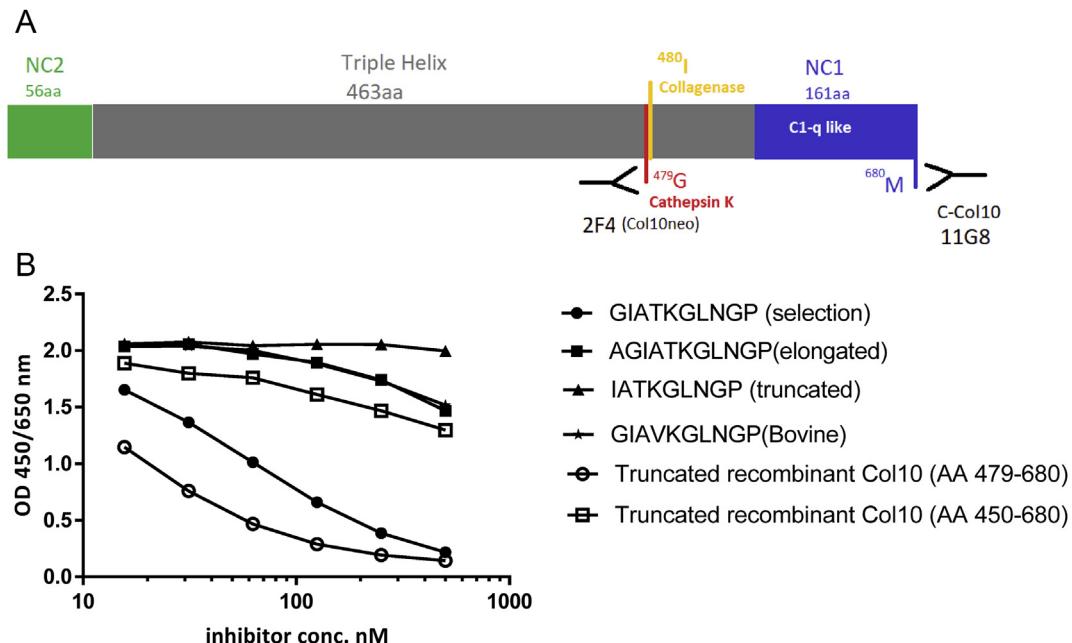
Results

Sequence alignment of the selected peptide across species

Two fragments sharing the identical C-terminal end, ⁴⁶³PGSKGDPGSPGPPGPA⁴⁷⁸ and ⁴⁶⁵SKGDPGSPGPPGPA⁴⁷⁸ were identified by mass spectrometry in the urine samples of OA patients [Fig. 1(A)], indicating the presence of a cleavage site existing between A⁴⁷⁸–G⁴⁷⁹. A 10aa length peptide from the free N-terminus generated by the cleavage, ⁴⁷⁹GIATKGLNPG, has been chosen for immunization. The blast shows the sequence is unique to human type X collagen. Sequence similarity across species shows 100% identity between human and mouse, while a mismatched aa contained in rat or bovine compared to human sequence.

Technical performance of the Col10neo assay

A mAb 2F4 (isotype: IgG2b, κ) targeting the neo-epitope, ⁴⁷⁹GIATKG, was produced from a hybridoma and purified by HiTrap Protein G affinity column. To test the specificity, the reactivity of 2F4 toward a biotinylated synthetic peptide, GIATKGLNPG-k(Biotin), completely displaced by adding of 500 nM selective peptide or equivalent amount of truncated recombinant type X collagen with free ⁴⁷⁹Glycine (AA 479–680). In contrast, a slight or no displacement of binding between the immobilized specific peptide and 2F4 was observed either with elongation/truncation of the specific peptide or cleavage-spanning recombinant type X collagen (AA 450–680) at the same concentration [Fig. 1(B)]. This indicated that 2F4 was specific to the neo-epitope instead of intact type X collagen.


The technical performance of this assay is summarized as follows: IC50 of 41.9 ng/ml, inter-, intra CV% of 4% and 9.7%. The detection range was 15–426 ng/mL 8–64 fold for EDTA-plasma and 4–32 fold for serum samples are of high dilution linearity. (See Supplementary Table S1).

Cathepsin K-derived ⁴⁷⁹GIATKG

To investigate the responsible enzyme for cleaving Col10 A⁴⁷⁸–⁴⁷⁹G bond, various proteases at similar concentration and incubation time were incubated with human cartilage and evaluated their relative efficiency to generate the neo-epitope of ⁴⁷⁹GIATKGLNPG. We did not identify release of Col10neo in all tested MMPs or ADAMTSs compared to untreated control. However, among the proteases, Cathepsin K yielded substantial amount of Col10neo release [Fig. 2(A)]. In an immunoblot, major band detected by 2F4 mAb in Cathepsin K degraded cartilage was ~50 kDa representing the trimeric form of the NC1 domain. In a completion Western blot, GIATKGLNPG peptide blocked 2F4 mAb recognition of fragment carrying the neo-epitope of ⁴⁷⁹GIATKGLNPG. Furthermore, mAb 11G8 detected a 18 kDa protein band which is most likely the monomeric NC1 domain of type X collagen [Fig. 2(B)].

Immunolocalization of ⁴⁷⁹GIATKG in cartilage

To further define the distribution of ⁴⁷⁹GIATKG, serial sections of articular cartilage from three TKR patients were stained with mAb 2F4 (Col10neo) and 11G8 (anti-C terminus of type X collagen) and non-sense mouse IgG of cartilage. A representative histological images of damaged and undamaged cartilage biopsies 1) the normal-arranged chondrocytes, smooth surface and mild degradation of superficial zone proteoglycan [Fig. 3(A)], 2) loss of smooth

Fig. 1. Schematic illustration of the positions of neo-epitope, collagenase cleavage site and antibody-binding sites on type X collagen. (A) The red line is the location of neo-epitope recognized by 2F4 in the triple helix domain. The purple line is the binding site of 11G8 at the C-terminal of NC1 domain. The yellow line is the proposed cleavage site by collagenase in other studies. The C1q-like C-terminal NC1 domain forms a stable homotrimer. (B) The specificity of 2F4 tested by three synthetic peptides: selection peptide, elongated peptide, and truncated peptide, and two truncated recombinant type X collagen proteins: Col10 with free 479Gly (AA 479–680) and Col10 (AA 450–680), 30aa longer and spanning the cleavage site A⁴⁷⁸–⁴⁷⁹G.

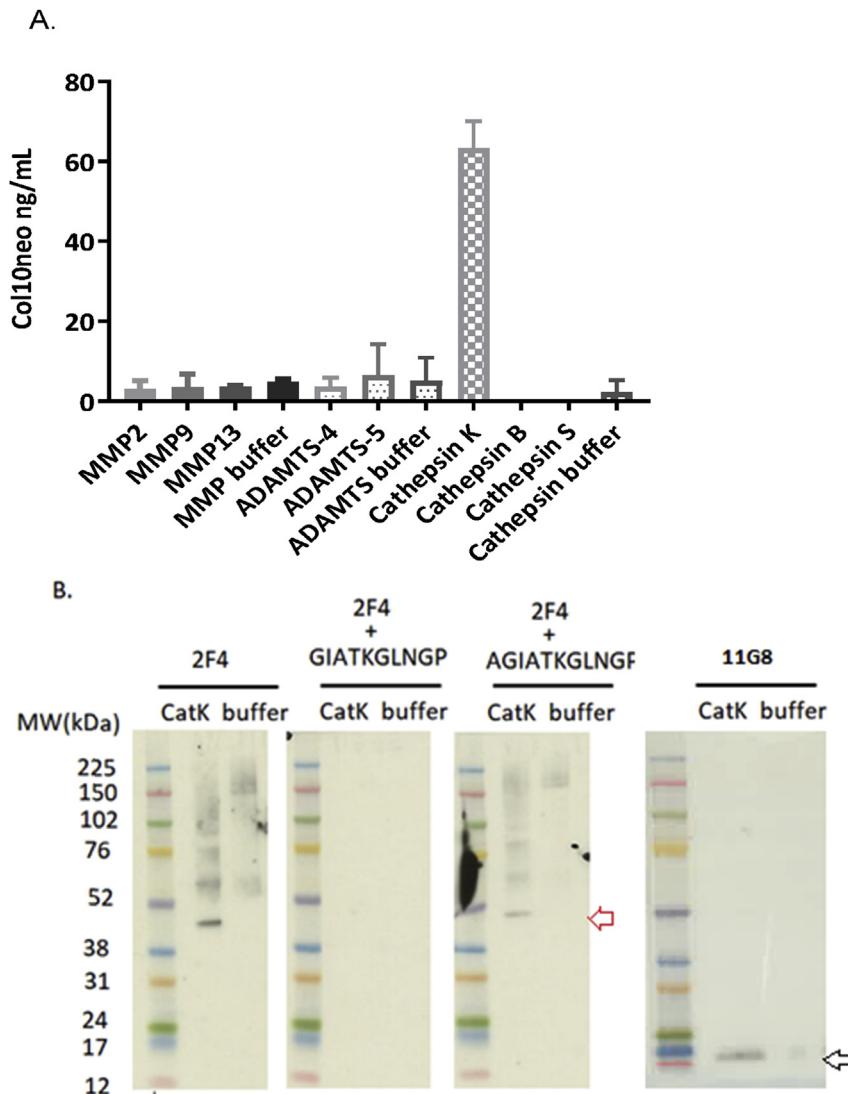
surface and moderate loss of proteoglycan (according to Mankin grading system²¹) (Fig. 3(B)) and 3) chondrocyte clusters, fibrillated surface, cleft and severe reduction in safranin O/Fast green [Fig. 3(C)] were used for general assessment of degree of loss of proteoglycan, chondrocyte morphology, and Col10neo expression. In mild and moderate degradation of cartilage, GIATKG neo-epitope was localized to the peri-cellular matrix of chondrocytes, while in severe OA its presence was extended to the territorial matrix of chondrocyte clusters and more prominent in superficial fibrillation [Fig. 3(D)–(F)]. The similar staining pattern was observed with C-terminus 11G8 mAb [Fig. 3(G)–I]. We did not observe any staining with non-sense mouse IgG [Fig. 3(J)–L].

Association between KL grade and plasma Col10neo levels in the C4Pain study

The demographic characteristics of these four groups based on radiographic KL score are summarized in Table I. Because the mean age of the participants was >60 years, few with a KL 0 and those with a KL of one were classified into the same group. 57% of the subjects involved in this study were with a KL of two and assigned to group 2. There was no significant difference in gender distribution within each group. The mean age of KL 4 group was significantly higher than KL 0–1 group ($p < 0.005$). There was a clear, but not significant trend of increased BMI with increased radiographic grades. There was a relationship between the VAS score and K/L grade, but did not reach statistical significance.

The mean \pm 95CI% concentrations of Col10neo for in each KL groups: KL0–1 2.6 [2.316–2.884] μ g/mL, KL2 3.288 [2.885–3.691] μ g/mL, KL3 3.435 [2.729–4.141] μ g/mL and KL4 3.517 [2.599–4.435] μ g/mL, respectively. Although increased Col10neo levels associated with a higher KL grade, but it was not statistically significant [Fig. 4(A)]. However, when subjects were divided into tertiles based on Col10neo levels, we found that the number of subjects with a KL 3–4 was greatest in the highest tertile of the Col10neo group [Fig. 4(B)].

Plasma Col10neo levels in the NYU study

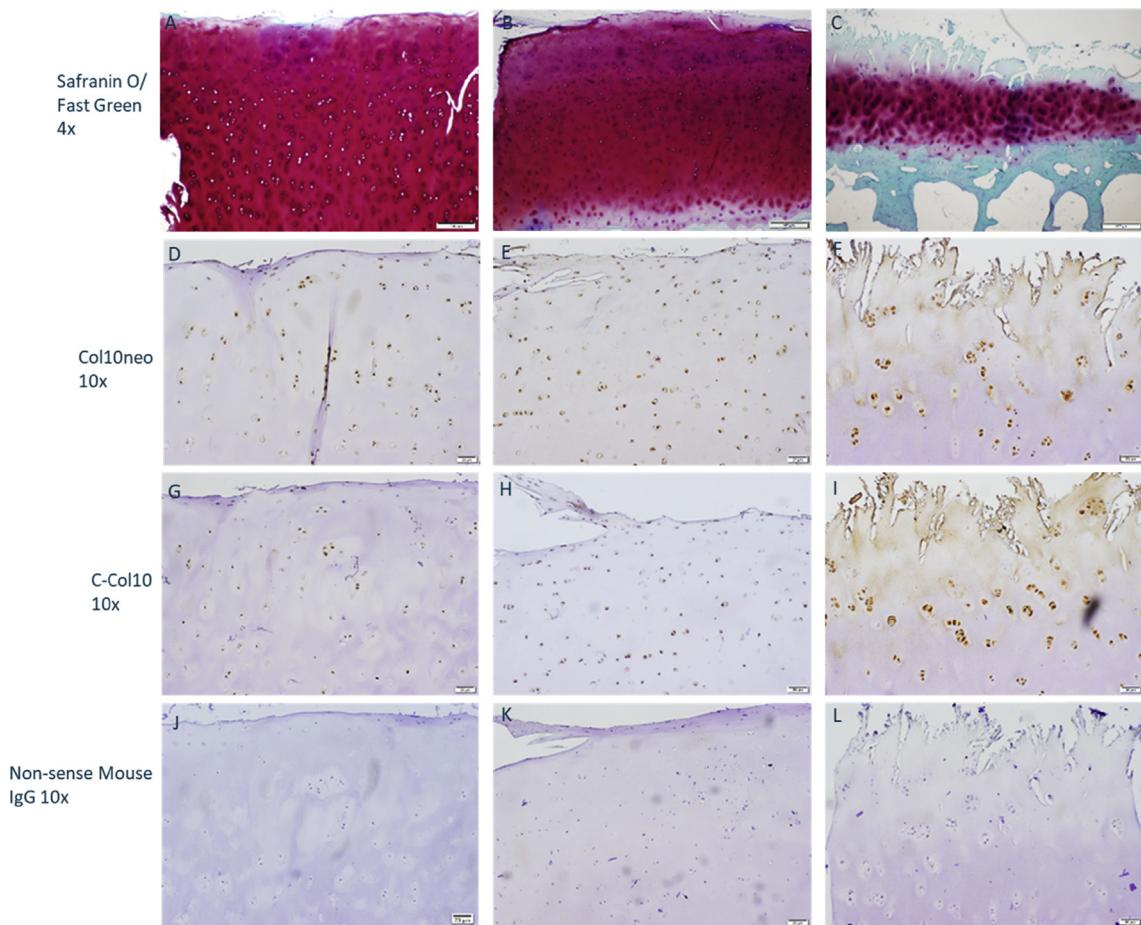

The result from the C4Pain study encouraged us to investigate the potential use of Col10neo as a diagnostic biomarker in another independent cohort of control and OA subjects. We utilized NYU Progression study which consists of non-OA healthy control, OA, and RA. In this cohort, percentage of females was higher in OA and RA groups than in the healthy control group. The mean age was significantly different in control and OA groups ($p < 0.05$). However, the subjects were significantly younger in RA than in the OA group (Table II; $p < 0.0001$). There was no significant difference in BMI across groups.

The mean \pm 95CI% concentrations of Col10neo in control, OA and RA groups were 2.95 [2.71–3.19] μ g/mL, 4.04 [3.84–4.25] μ g/mL and 2.55 [2.29–2.81] μ g/mL, respectively [Fig. 5(A)]. Plasma Col10neo level was significantly higher in OA than healthy control ($p = 0.0002$) and RA ($p < 0.0001$). Tests of Between-Subjects Effects have shown that there was an overall statistically significant difference in Col10neo levels between different groups when adjusted for covariates ($p < 0.001$). After adjusting for covariates –age, gender, and BMI, Col10neo level remained significantly higher in the knee OA patients compared to other two groups (Table III).

ROC analysis was carried out to evaluate the discriminative power of Col10neo between OA and RA. The area under the ROC curve (AUC) was 0.875 [0.806–0.943] ($P < 0.0001$), indicating there is good separation of Col10neo between the two groups [Fig. 5(B)].

Discussion

Our current findings suggest that the Cathepsin K-generated neo-epitope of type X collagen, ⁴⁷⁹GIATKGLNGP can be detected in blood circulation, where its concentration reflects the hypertrophic change in phenotype of chondrocytes in articular cartilage and shows good separation of OA from RA. Therefore, this neo-epitope


Fig. 2. In vitro cleavage of cartilage by enzymes. (A) The cleaved human cartilage by MMPs, ADAMTSs, and Cathepsins was applied to Col10neo assay. It has been shown that Cathepsin K was the only one among tested proteases to release the neo-epitope. The data were shown as mean \pm SD. (B) Western blot of human cartilage cleaved by Cathepsin K. Equivalent blots were probed with antibodies to 2F4 (left panels) or in the presence of selection peptide (middle panel) or elongated peptide (right panel) or 11G8 (the fourth panel).

can serve as a biomarker for hypertrophic chondrocytes and may have many potential clinical applications.

Type X collagen is a short and non-fibril forming collagen containing three identical chains. Type X collagen is well-recognized as a specific marker for hypertrophic chondrocytes²². It is synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage and believed to regulate bone mineralization during endochondral ossification²³. The evidence for the up-regulation of type X collagen in osteoarthritic cartilage on messenger RNA (mRNA) level or protein level by IHC has been found in multiple studies^{10,22,24–26}. In the current study, we have observed that type X collagen was stained pericellularly with antibodies to the neo-epitope or C-terminus of type X collagen and distributed extracellularly around chondrocyte clusters in the fibrillated superficial layer of osteoarthritic cartilage. This is consistent with previous studies regarding the deposition of type X collagen by chondrocytes in OA cartilage^{10,22}. Our findings confirm the notion of chondrocyte phenotype modulation in OA that chondrocytes in diseased cartilage undergo terminal differentiation to hypertrophy. Moreover, some characteristics of OA such as remodeling of extracellular

matrix by proteases, vascularization and focal calcification of joint resemble the physiological differentiation process of chondrocyte during skeletal development^{4,6,7,12,27}.

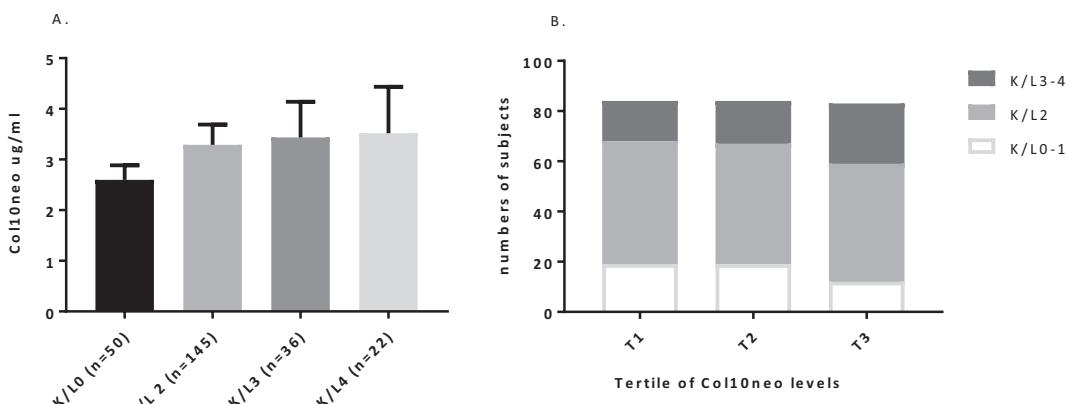
The *in vitro* cleavage of human cartilage suggests that the neo-epitope of type X collagen, ⁴⁷⁹GIATKGLNGP, was efficiently generated by Cathepsin K among a series of tested proteases. Collagenase is known to be capable of cleaving type X collagen at least two cleavage sites, $G^{151-152}I$ and $G^{479-480}I$, within its triple-helical domain^{28,29}. One site is near the amino-terminus of the triple helix, and another site is close to the carboxyl terminus of the triple helix. As a consequence, these two cleavages generate three products, a 32-kDa fragment containing the major triple-helix domain, a 9-kDa fragment from the amine-end of type X collagen and another 18-kDa fragment containing the entire globular domain at the carboxyl end. Interestingly, the newly identified cleavage site from human OA urine in the current study was verified to be generated by Cathepsin K. This cleavage site at $A^{478-479}G$ bond is located an amino acid apart from the proposed collagenase $G^{479-480}I$. Not surprisingly, both bonds are in the same region where the Gly-Ile-Ala triplet was disrupted by two additional amino acids from the

Fig. 3. Immunolocalization of 479 GIATKG in cartilage. (A–C). Histology with Safranin O/Fast green. A. The normal-arranged chondrocytes, smooth surface and mild degradation of superficial zone proteoglycan in first biopsy and B. less smooth surface and moderate degradation of proteoglycan in the cartilage matrix in the second biopsy. C. chondrocyte cluster, fibrillated surface, cleft and severe reduction in safranin O/Fast green was found. (D–F) Immunostaining with the 479 GIATKG antibody. G–I immunostaining with C-terminus 11G8. (J–L) With non-sense mouse IgG as negative control. Scale bar in A–C = 100 μ m; Scale bar in D–L = 20 μ m.

Table I
Demographics of subjects in the C4Pain study

KL grade	No. of women	No. of men	Total	VAS grade	Age, years	BMI, kg/m ²
0–1	23	27	50	37 \pm 30	61.8 \pm 8.5	26.4 \pm 3.1
2	79	66	145	42 \pm 29	64.6 \pm 7.3	28.2 \pm 3.8
3	17	19	36	56 \pm 21	64.3 \pm 7.1	29.3 \pm 5.6
4	12	10	22	54 \pm 24	67.8 \pm 7.7 [§]	29.5 \pm 3.9

Except where indicated otherwise, values are the mean \pm SD. Vas grade = maximal pain intensity for the last.


24 h, BMI = body mass index.

§, $P < 0.05$ compared to KL0–1 group.

next triplet. Because of the interruption, the region is inevitably susceptible to attacks by a protease. Furthermore, increased expression and activation of Cathepsin K has been reported in a transgenic mouse model for OA and human osteoarthritic cartilage^{30,31}. It is still uncertain whether cleavage of collagenases occurs prior to cleavage of Cathepsin K. Further investigation is required. To sum up, our data suggest that Cathepsin K is potentially involved in the turnover of type X collagen which is expressed by hypertrophic chondrocytes in OA.

Most interestingly, a recently published study has shown that a group of fragments containing the entire C1q domain and variable portions of the attached linker and collagenous region designated as CXM, was a degradation product of type X collagen during endochondral ossification and an ideal biomarker for the overall

growth plate activity³². The serum-based assay for CXM used in this study was built upon a mAb X34 specifically targeting a multimeric form of the NC1 domain, the ~50 kDa NC1 region¹⁰. In the present study, a similar major band of 50 kDa was detected in the Cathepsin K-generated human cartilage products by 2F4, a mAb specific to the neo-epitope 479 GIATKG_{LN}GP. It most likely consists of the compact coiled C1q-like domain which has been reported to resist further proteolysis in other studies^{33,34}. In our previous study, 11G8, an antibody raised against the last 10 amino acids at the carboxyl end of type X collagen only recognizes the monomeric NC1 domain, ~18 kDa¹⁷. Given that the dominant form of the NC1 domain in circulation is an intact trimer, it is not surprising that Col10neo levels are generally higher than C-Col10 in the same samples of clinical study C4Pain.

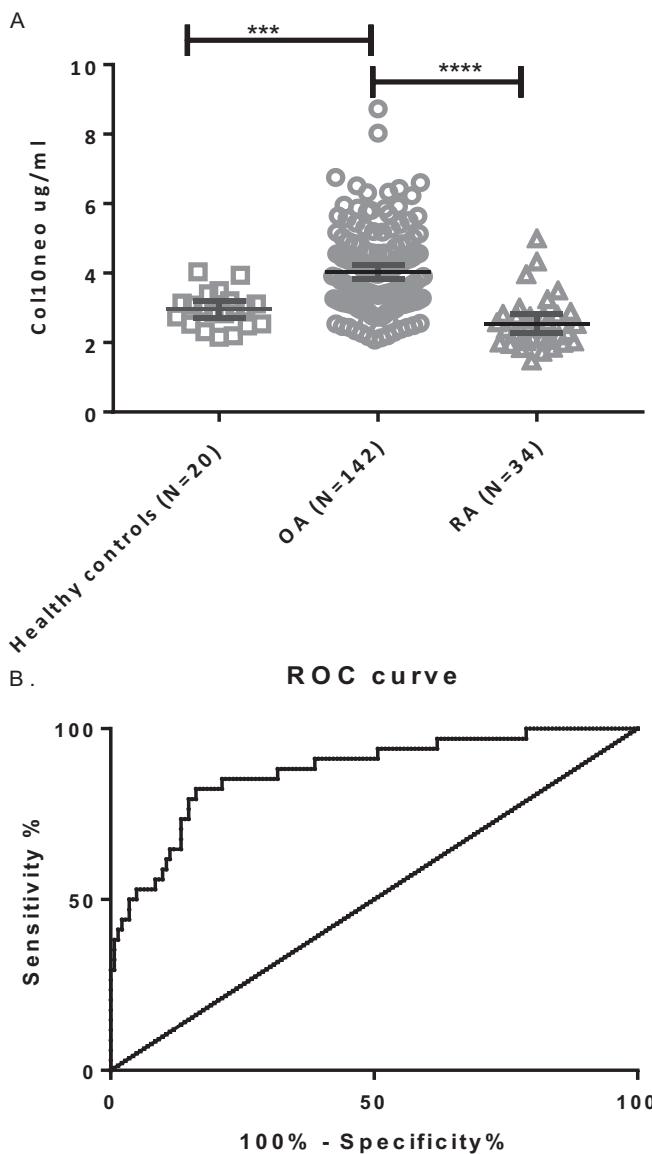
Fig. 4. Association between KL grade and Col10neo level in the plasma of subjects in the C4Pain study. The data were shown as mean \pm 95CI%. (A) There was a trend toward a higher level of Col10neo in subjects with greater KL score, but do not reach statistical significance. (B) The greatest percent of subjects with KL3-4 was in the highest tertile of Col10neo. The one-way ANOVA with post-hoc Tukey–Kramer test was used. Plasma Col10neo data were logarithmic transformed in all analyses. A P value < 0.05 was considered statistically significant.

Table II
Demographics of subjects in the NYU study

	Non-OA controls	OA	RA
No. of men	12	56	6
No. of women	8	86	28
Total No.	20	142	34
Age, years	56.7 \pm 8.7 [#]	62.5 \pm 10.1	53.2 \pm 10.5 ^{\$\$\$\$}
BMI, kg/m ²	26.75 \pm 4.14	26.58 \pm 3.62	27.99 \pm 5.70
KL score	≤ 1	KL 0-4	Not Available
Treatments	No	21.8 percent of the 142 enrolled OA patients were taking NSAIDs.	All enrolled 34 RA patients were taking vitamin or mineral supplements or medication treating high blood pressure. Besides, 34 percent were taking biologics (such as Orenica, Humira, and Enbrel); 71 percent were on methotrexate and among methotrexate patients 48 percent were on biologics.

Except where indicated otherwise, values are the mean \pm SD. BMI = body mass index.

#, $p < 0.05$ compared to OA group.


\$\$\$\$, $p < 0.0001$ compared to OA group.

To the best of knowledge, it is the first time that a single biomarker has shown the possibility of distinguishing OA from RA. Although both arthritis diseases affect joint, the molecular mechanisms of cartilage breakdown are quite different in OA and RA. The role of terminally differentiated hypertrophic chondrocytes in OA is still controversial. One study has shown the loss of expression of SOX-9, a transcription factor inhibiting the differentiation progression of chondrocytes during endochondral ossification, but a significant down-regulation of type X collagen gene expression in chondrocytes from OA patients compared to age-matched controls³⁵. However, there is increasing evidence to support changes in the phenotypic state of chondrocytes in OA. One important study demonstrated that the chemokines were retained by binding to heparan sulfate proteoglycans to maintain chondrocyte resting phenotype. The release of chemokines during cartilage degradation in OA contributes to chondrocyte phenotype shift³⁶. Further damage is caused by proteolytic enzymes secreted by hypertrophic chondrocytes which in return will lead to more loss of stability of chondrocytes, amplifying a vicious circle. To explain the discrepancy between studies, there might be different patient subgroups existing as shown by the scattered Col10neo levels in the OA group in the current study. The question if chondrocyte hypertrophy differentiation is a generalized phenomenon in OA needs to be further investigated. RA is a chronic systemic inflammatory disease instead, which is characterized by synovial lining cell proliferation, inflammatory cell infiltration, and

destruction of cartilage and bone. Therefore, the underlying molecular mechanisms behind the pathogenesis of OA and RA may be different. We speculate that in OA, the hypertrophy phenotypic changes in chondrocyte embedded in cartilage play a critical role in the degradation of cartilage matrix. However, in RA, FLS are the predominant cell type and contribute to the destruction of cartilage³⁷. This might explain the findings from the present study that Col10neo, a degradation biomarker of type X collagen, is significantly higher in OA than RA.

The limitations of this study were: 1) the tissue-specificity of the serological Col10neo level. Although type X collagen is exclusively expressed by hypertrophic chondrocytes in cartilage, it has been found in human lumbar intervertebral discs^{38,39}. We previously reported that C-Col10, an assay measuring the C-terminus of type X collagen, was significantly higher in spondyloarthritis (SpA) patients due to the syndesmophyte outgrowth similar to osteophyte formation in OA⁴⁰. Thus, the origin of serological Col10neo is worthy of further investigation. 2) Small sample size study. A study with larger sample size is needed to see if the findings from this study can be generalized. 3). The unequal sample size in different groups, which might minimize the statistical power. We noted that it was an exploratory research and cohorts with larger samples might be useful for validating this biomarker in the future research.

In conclusion, our findings raise the possibility that Col10neo linked to hypertrophic chondrocyte could be used as a biochemical

Fig. 5. Plasma Col10neo levels in the NYU study. (A) The data were shown as mean \pm 95CI%. Col10neo was statistically higher in OA than control ($P = 0.0002$) or rheumatoid arthritis (RA) ($P < 0.0001$), and no significant difference was seen between control and RA. The one-way ANOVA with post-hoc Tukey–Kramer test was used. Plasma Col10neo were logarithmic transformed in all analyses. P value < 0.05 was considered statistically significant. (B) ROC curve analysis. The area under the ROC curve (AUC) was 0.875 (95% confidence interval 0.806–0.9427; $P < 0.0001$), indicating there was a good separation of Col10neo of two groups.

Table III
ANCOVA analysis of plasma Col10neo levels adjusted for age, gender, and BMI

Factors	Mean difference	Std. error	P^*	95% CI a
OA	Non-OA control	0.1152	0.02926	0.0003 0.04453 to 0.1866
	RA	0.2176	0.02477	<0.0001 0.1578 to 0.2774
Non-OA	OA	-0.1152	0.02926	0.0003 -0.1859 to -0.04453
	control	0.1024	0.03487	0.0112 0.01819 to 0.04453

* Bonferroni corrected.

marker for knee OA with a diagnostic potential in OA and RA, and also help get a better understanding of the role of hypertrophic chondrocytes in the pathogenesis of OA.

Author contributions

MK, ACBJ, and YHE are in charge of overall direction and planning. YHE carried out all the experiments and took the leading role in writing manuscript. TMJ participated in monoclonal antibodies development. KKP and LAN contributed to the preparation of the C4Pain cohort. JSA, SAB, and MAT contributed to the preparation of the NYU progression cohort. TCH contributed to the human cartilage sample preparation. All authors contributed to and approved the final manuscript.

Acknowledgements

Thanks to Tülay Dastan who did the monoclonal antibody production in Denmark. We also thank Helene Sofie Hector for picking up human cartilage samples at the hospital. The study was founded by the Danish National Research Foundation and the Danish High Technology Fund. NYU Progression study samples were collected as part of NIH funded study (R01-AR-052873) to SBA.

Conflict of interest

MK, and ACBJ were full-time employees and share holders of Nordic Bioscience A/S. YHE and TMJ are the full-time employee at Nordic Bioscience A/S. The rest co-authors have no conflict of interest to report.

Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.joca.2019.01.001>.

References

- Breedveld FC. Osteoarthritis—the impact of a serious disease. *Rheumatology (Oxford)* 2004;43(Suppl 1):i4–8, <https://doi.org/10.1093/rheumatology/keh102>.
- Buckwalter JA, Martin J, Mankin HJ. Synovial joint degeneration and the syndrome of osteoarthritis. *Instr Course Lect* 2000;49:481–9, <http://www.ncbi.nlm.nih.gov/pubmed/10829201>.
- Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. *Casp J Intern Med* 2011;2(2): 205–12, <http://www.ncbi.nlm.nih.gov/pubmed/24024017>.
- Dreier R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders 2010.
- Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, et al. Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. *Arthritis Rheum* 2006;54(8): 2462–70, <https://doi.org/10.1002/art.22041>.
- Pesesse L, Sanchez C, Delcour JP, Bellahcène A, Baudouin C, Msika P, et al. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. *Osteoarthritis Cartilage* 2013;21(12):1913–23, <https://doi.org/10.1016/j.joca.2013.08.018>.
- Van der Kraan PM, Van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? *Osteoarthritis Cartilage* 2012;20(3): 223–32, <https://doi.org/10.1016/j.joca.2011.12.003>.
- Sun MMG, Beier F. Chondrocyte hypertrophy in skeletal development, growth, and disease. *Birth Defects Res Part C Embryo Today - Rev* 2014;102(1):74–82, <https://doi.org/10.1002/bdrc.21062>.

9. Kamekura S, Hoshi K, Shimoaka T, Chung U, Chikuda H, Yamada T, et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. *Osteoarthritis Cartilage* 2005;13(7):632–41, <https://doi.org/10.1016/j.joca.2005.03.004>.
10. Girkontaitė I, Frischholz S, Lammi P, Wagner K, Swoboda B, Aigner T, et al. Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. *Matrix Biol* 1996;15(4):231–8, [https://doi.org/10.1016/S0945-053X\(96\)90114-6](https://doi.org/10.1016/S0945-053X(96)90114-6).
11. Eerola I, Salminen H, Lammi P, Lammi M, von der Mark K, Vuorio E, et al. Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. *Arthritis Rheum* 1998;41(7):1287–95, [https://doi.org/10.1002/1529-0131\(199807\)41:7<1287::AID-ART20>3.0.CO;2-D](https://doi.org/10.1002/1529-0131(199807)41:7<1287::AID-ART20>3.0.CO;2-D).
12. Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y, et al. Calcification of articular cartilage in human osteoarthritis. *Arthritis Rheum* 2009;60(9):2694–703, <https://doi.org/10.1002/art.24774>.
13. Murphy G, Knäuper V, Atkinson S, Butler G, English W, Hutton M, et al. Matrix metalloproteinases in arthritic disease. *Arthritis Res* 2002;4(Suppl 3):S39–49, <https://doi.org/10.1186/ar572>.
14. Fosang AJ, Rogerson FM, East CJ, Stanton H. ADAMTS-5: the story so far. *Eur Cells Mater* 2008;15:11–26, <http://www.ncbi.nlm.nih.gov/pubmed/18247274>.
15. Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis—two unequal siblings. *Nat Rev Rheumatol* 2015;11(10):606–15, <https://doi.org/10.1038/nrrheum.2015.95>.
16. Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, et al. Characterization of metalloprotease cleavage products of human articular cartilage. *Arthritis Rheum* 2008;58(8):2420–31, <https://doi.org/10.1002/art.23654>.
17. He Y, Siebuhr AS, Brandt-Hansen NU, Wang J, Su D, Zheng Q, et al. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. *BMC Musculoskelet Disord* 2014;15(1):309, <https://doi.org/10.1186/1471-2474-15-309>.
18. Arendt-Nielsen L, Eskehave TN, Egsgaard LL, Petersen KK, Graven-Nielsen T, Hoeck HC, et al. Association between experimental pain biomarkers and serologic markers in patients with different degrees of painful knee osteoarthritis. *Arthritis Rheum* 2014;66(12):3317–26, <https://doi.org/10.1002/art.38856>.
19. Attur M, Statnikov A, Samuels J, Li Z, Alekseyenko AV, Greenberg JD, et al. Plasma levels of interleukin-1 receptor antagonist (IL1Ra) predict radiographic progression of symptomatic knee osteoarthritis. *Osteoarthritis Cartilage* 2015;23(11):1915–24, <https://doi.org/10.1016/j.joca.2015.08.006>.
20. Attur M, Krasnokutsky S, Statnikov A, Samuels J, Li Z, Friese O, et al. Low-grade inflammation in symptomatic knee osteoarthritis: prognostic value of inflammatory plasma lipids and peripheral blood leukocyte biomarkers. *Arthritis Rheum* 2015;67(11):2905–15, <https://doi.org/10.1002/art.39279>.
21. Pauli C, Whiteside R, Heras FL, Nesić D, Koziol J, Grogan SP, et al. Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development. *Osteoarthritis Cartilage* 2012;20(6):476–85, <https://doi.org/10.1016/j.joca.2011.12.018>.
22. von der Mark K, Kirsch T, Nerlich A, Kuss A, Weseloh G, Glückert K, et al. Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. *Arthritis Rheum* 1992;35(7):806–11, <https://doi.org/10.1002/art.1780350715>.
23. Kwan Pang, Zhou Cowan. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. *J Cell Biol* 1997;136(2):459–71.
24. Hoyland JA, Thomas JT, Donn R, Marriott A, Ayad S, Boot-Handford RP, et al. Distribution of type X collagen mRNA in normal and osteoarthritic human cartilage. *Bone Miner* 1991;15(2):151–63, <http://www.ncbi.nlm.nih.gov/pubmed/1764631>.
25. Aigner T, Reichenberger E, Bertling W, Kirsch T, Stöß H, von der Mark K. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. *Virchows Arch B Cell Pathol Incl Mol Pathol* 1993;63(4):205–11, <http://www.ncbi.nlm.nih.gov/pubmed/8099458>.
26. von der Mark K, Frischholz S, Aigner T, Beier F, Belke J, Erdmann S, et al. Upregulation of type X collagen expression in osteoarthritic cartilage. *Acta Orthop Scand Suppl* 1995;266: 125–9, <http://www.ncbi.nlm.nih.gov/pubmed/8553841>.
27. Lories RJU, Luyten FP. Osteoarthritis, a disease bridging development and regeneration. *BoneKEy Rep* 2012;1(8):1–6, <https://doi.org/10.1038/bonekey.2012.136>.
28. Schmid TM, Mayne R, Jeffrey JJ, Linsenmayer TF. Type X collagen contains two cleavage sites for a vertebrate collagenase. *J Biol Chem* 1986;261(9):4184–9.
29. Welgus HG, Fliszar CJ, Seltzer JL, Schmid TM, Jeffrey JJ. Differential susceptibility of type X collagen to cleavage by two mammalian interstitial collagenases and 72-kDa type IV collagenase. *J Biol Chem* 1990;265(23):13521–7, <http://www.ncbi.nlm.nih.gov/pubmed/2166034>.
30. Morko JP. Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. *Ann Rheum Dis* 2004;63(6):649–55, <https://doi.org/10.1136/ard.2002.004671>.
31. Kozawa E, Cheng XW, Urakawa H, Arai E, Yamada Y, Kitamura S, et al. Increased expression and activation of cathepsin K in human osteoarthritic cartilage and synovial tissues. *J Orthop Res* 2016;34(1):127–34, <https://doi.org/10.1002/jor.23005>.
32. Coghlán RF, Oberdorf JA, Sienko S, Aiona MD, Boston BA, Connelly KJ. A Degradation Fragment of Type X Collagen Is a Real-Time Biomarker for Bone Growth Velocity 2017, <https://doi.org/10.1126/SCITRANSLMED.AAN4669>.
33. Gadher SJ, Schmid TM, Heck LW, Woolley DE. Cleavage of collagen type X by human synovial collagenase and neutrophil elastase. *Matrix* 1989;9(2):109–15, <http://www.ncbi.nlm.nih.gov/pubmed/2542740>.
34. Bogin O, Kvansakul M, Rom E, Singer J, Yayon A, Hohenester E. Insight into Schmid metaphyseal chondrodyplasia from the crystal structure of the collagen X NC1 domain trimer. *Structure* 2002;10(2):165–73, [https://doi.org/10.1016/S0969-2126\(02\)00697-4](https://doi.org/10.1016/S0969-2126(02)00697-4).
35. Brew CJ, Clegg PD, Boot-Handford RP, Andrew JG, Hardingham T. Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. *Ann Rheum Dis* 2010;69(1):234–40, <https://doi.org/10.1136/ard.2008.097139>.
36. Sherwood J, Bertrand J, Nalessø G, Poulet B, Pitsillides A, Brandolini L, et al. A homeostatic function of CXCR2 signalling in articular cartilage. *Ann Rheum Dis* 2015;74(12):2207–15, <https://doi.org/10.1136/annrheumdis-2014-205546>.
37. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of

rheumatoid arthritis. *Arthritis Res Ther* 2017;19(1):110, <https://doi.org/10.1186/s13075-017-1303-3>.

38. Boos N, Nerlich AG, Wiest I, Von Der Mark K, Aebi M. Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. *Histochem Cell Biol* 1997;108(6):471–80, <https://doi.org/10.1007/s004180050187>.

39. Roberts S, Bains MA, Kwan A, Menage J, Eisenstein SM. Type X collagen in the human invertebral disc: an indication of repair or remodelling? *Histochem J* 1998;30(2):89–95, <http://www.ncbi.nlm.nih.gov/pubmed/10192549>.

40. Gudmann NS, Munk HL, Christensen AF, Ejstrup L, Sørensen GL, Loft AG, et al. Chondrocyte activity is increased in psoriatic arthritis and axial spondyloarthritis. *Arthritis Res Ther* 2016;18(1):141, <https://doi.org/10.1186/s13075-016-1040-z>.