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SUMMARY

Objective: To review recent biomechanics literature focused on the interactions between biomechanics
and articular cartilage health, particularly focused on macro-scale and human studies.

Design: A literature search was conducted in PubMed using the search terms (biomechanics AND
osteoarthritis) OR (biomechanics AND cartilage) OR (mechanics AND osteoarthritis) OR (mechanics AND
cartilage) for publications from April 2017 to April 2018.

Results: Abstracts from the 559 articles generated from the literature search were reviewed. Due to the
wide range of topics, 62 full texts with a focus on in vivo biomechanical studies were included for further
discussion. Several overarching themes in the recent literature were identified and are summarized,
including 1) new methods to detect early osteoarthritis (OA) development, 2) studies describing healthy
and OA cartilage and biomechanics, 3) ACL injury and OA development, 4) meniscus injury and OA
development, and 5) OA prevention, treatment, and management.

Conclusions: Mechanical loading is a critical factor in the maintenance of joint health. Abnormal me-
chanical loading can lead to the onset and progression of OA. Thus, recent studies have utilized various
biomechanical models to better describe the etiology of OA development and the subsequent effects of

OA on the mechanics of joint tissues and whole body biomechanics.
© 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Mechanical loading is critical to joint health. However, abnormal
mechanical loading can lead to the onset and progression of oste-
oarthritis (OA)". Specifically, OA results from an imbalance of
anabolism and catabolism in the joint, which may be influenced by
the biological and mechanical environment?. Thus, biomechanical
studies are critical to understanding OA development, prevention,
and treatment. Various biomechanical models have been utilized in
an attempt to better describe the etiology of OA development and
the effects of OA on the biomechanics of joint tissues. Furthermore,
large-scale biomechanical studies have been used to describe how
injury alters the mechanical environment of the joint, whether
surgery or other interventions can restore normal joint function,
and whether biomechanical measures can be used as indicators of
OA risk.
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While OA is a disease of joint degeneration involving multiple
tissues®, in this review we focused on studies aimed at under-
standing the interactions between biomechanics and articular
cartilage health. Specifically, this review summarizes the recent
literature (between April 2017 and April 2018) regarding these
topics. Due to the large number of publications, we have focused on
macro-scale and human studies. Specifically, we highlight recent
biomechanics studies that investigate 1) new methods to detect
early OA development, 2) studies describing healthy and OA carti-
lage and biomechanics, 3) ACL injury and OA development, 4)
meniscus injury and OA development, and 5) OA prevention,
treatment, and management.

Methods

A PubMed literature search was performed, and recent publi-
cations were reviewed. PubMed was searched for publications
between April 2017 and April 2018 with search terms including
(biomechanics AND osteoarthritis) OR (biomechanics AND carti-
lage) OR (mechanics AND osteoarthritis) OR (mechanics AND
cartilage). This search yielded 559 results. All of the abstracts from
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the articles in the search were reviewed. Due to the wide range of
topics, 62 full texts with a focus on in vivo biomechanical studies
were included for further discussion.

Results

Identification of early changes in articular cartilage composition and
mechanics leading to OA

Osteoarthritic changes in articular cartilage, including changes
in cartilage composition and its response to mechanical loading,
occur over time. However, most often OA is not identified until its
advanced stages, where radiographic changes have occurred and
symptoms are present®”. Thus, recent efforts have focused on
identifying earlier markers of the disease, which may aid in
developing preventative measures. To this end, new methodologies
have been applied to the study of cartilage properties in healthy
and early OA tissues. For example, Pedoia et al.® used machine
learning techniques to analyze a data set that included de-
mographics, clinical information, gait kinematics and kinetics, and
quantitative magnetic resonance imaging (MRI) relaxometry met-
rics to identify subpopulations of patients and data that may be
associated with OA progression. This study identified that a com-
bination of quantitative MRI metrics, specifically 1/T2 — 1/T1rho,
was associated with cartilage lesion progression over 2 years using
whole-organ MRI score (WORMS) within a subpopulation of in-
dividuals with OA. Previously, T1rho and T2 relaxation times have
been shown to be sensitive to alterations in cartilage proteoglycan
content and collagen organization, respectively’~''. Another study
by the same group examined relationships between 3D proximal
femur shape, cartilage morphology, joint biomechanics, and carti-
lage biochemical composition as measured by T1rho and T2 in
subjects with hip OA'2. Their findings revealed that there is a
relationship between femur shape variations and morphological
and compositional markers of hip joint degeneration, suggesting
that 3D MRI-based bone shape variations may be a potential
biomarker of early hip joint degeneration. magnetic resonance
(MR) diffusion tensor imaging (DTI) at 3T has also recently been
investigated as a means to assess collagen and proteoglycan ar-
chitecture. Specifically, in a study by Ferizi et al.®, osteochondral
samples from patients undergoing knee replacement were har-
vested and mechanically overloaded. DTI, mechanical properties,
and histology were performed prior to mechanical injury and at
one and 2 weeks post injury. This study found that in the most
severe injury group, DTI was sensitive to early changes in cartilage
following mechanical injury, and these changes were correlated
with alterations in mechanical properties and histology. Further-
more, a recent study explored the use of ultrasound imaging and an
acoustic parameter referred to as “average magnitude ratio” (AMR)
to reflect cartilage degeneration in enzymatically degraded porcine
cartilage in vitro'4. This study suggests that with more development
AMR could be a parameter to assist ultrasound diagnosis of OA in
the future. These studies reveal the potential utility of new imaging
methodologies that may be utilized together with MR imaging
techniques’ 2" to detect earlier cartilage changes associated with
primary OA or joint injury.

In addition to novel imaging techniques, other studies have
assessed biochemical biomarkers that may be associated with
degenerative changes in cartilage. Osteochondral and synovial
samples were harvested from varus-aligned medial OA patients
who underwent total knee replacement and biomechanical, his-
tological, and immunohistochemical analyses were performed'®. In
this study, higher numbers of neutrophils, which were detected by
CD15 immunostaining, were associated with increased synovitis,
increased cartilage degeneration by Osteoarthritis Research Society

International (OARSI) grading, and decreased cartilage aggregate
and dynamic moduli. This study suggests that large numbers of
neutrophils in the synovium may be an indicator of cartilage
degeneration and impaired cartilage mechanical properties.
Another study tested the hypothesis that changes in serum bio-
markers in response to a mechanical stimulus in patients with
medial knee OA are related to cartilage thickness changes 5 years
later'”. In this study, the serum biomarkers C1,2C (a type I and type
II collagen degradation marker) and CS846 (an aggrecan synthesis
marker) were measured following a 30 min walk. MRI was used to
measure cartilage thickness at the time of study entry and at a 5
year follow-up. Cartilage thickness changes over 5 years were
correlated with changes in biomarkers induced by walking. Inter-
estingly, this study identified medial tibial cartilage thinning in
patients with increased C1,2C. Together, these recent studies have
improved our understanding of biochemical and mechanical bio-
markers with the potential to serve as novel indicators and pre-
dictors of cartilage degradation. Together with prior work'¢=20,
these studies point to an interplay between mechanical and bio-
logical factors that are important to consider when assessing OA
development and progression.

Healthy and OA cartilage and biomechanics

Studies investigating the relationships between biomechanics,
cartilage loading, and cartilage properties in healthy tissue provide
important baseline data to compare with diseased populations. In
recent publications, healthy cartilage properties and mechanics
have been explored using a variety of techniques, including kine-
matic analysis, in vivo imaging techniques, and finite element
models (FEM).

For example, a recent kinematic study investigated the effect of
knee joint loading, using active and passive orthoses during
running, on serum levels of cartilage oligomeric matrix protein
(COMP), a biomarker of cartilage metabolism?'. This study found
that COMP levels increased immediately after running with both
types of orthoses, and that changes in COMP concentration after
physical activity were highly influenced by the COMP baseline
level. Another kinematic analysis compared lower extremity kine-
matics and kinetics between young healthy women with a greater
or lesser degree of valgus knee alignment during gait?2. This study
found that the group with greater valgus alignment demonstrated
decreased knee abduction moments, knee adduction angles, knee
abduction angular impulse, and knee adduction range of motion at
peak vertical ground reaction force. These findings may suggest
that women with greater valgus knee alignment have biome-
chanics that promote lateral tibiofemoral joint loading, and thus
have increased propensity for lateral OA development.

Various imaging methodologies have recently been imple-
mented to study the relationships between cartilage function and
cartilage loading in vivo in healthy individuals. For example, Harkey
et al.>® investigated the association between habitual walking
speed and resting femoral cartilage thickness and deformation
using ultrasound after 30 min of walking. These ultrasound images
were acquired by having subjects flex their dominant legs to 140°
and imaging the femoral condyles above the superior region of the
patella (Fig. 1). This study found that while habitual walking speed
was not associated with resting cartilage thickness, it was signifi-
cantly associated with greater medial femoral cartilage deforma-
tion in the region superior to the patella. Van Rossom et al.’*?°
investigated the relationships between knee cartilage thickness,
loading during gait, and cartilage composition measured using
T1rho and T2 mapping. Specifically, these studies used gait data to
create 3D musculoskeletal models, resulting in estimates of the
cartilage contact forces and pressure maps. Local cartilage
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Fig. 1. Ultrasound has been utilized as a tool to measure cartilage thickness in vivo. In
this study, cartilage thickness was measured in three locations within a single image
(lateral condyle, intercondylar space, and medial condyle) and was defined as the
distance between the cartilage-bone and synovium-cartilage borders. Image from
Harkey et al.>>.

thickness was found to be related to local cartilage pressures on
both the medial and lateral femoral condyles. Further, these studies
found that thicker cartilage was associated with higher condylar
loading during walking. Decreased T1rho and T2 relaxation times
correlated with increased compressive forces and pressures®*.
Based on these studies, the authors suggest that medial femoral
condyle cartilage is “adapted” to localized loading during gait®>.
Also in healthy individuals, Yin et al.?® analyzed in vivo tibiofemoral
articular cartilage contact biomechanics during a dynamic step-up
motion, using MRI and dual fluoroscopic imaging, and found that
both the medial and lateral compartments of the knee experienced
convex (femur) to convex (tibia) contact in the sagittal plane upon
fitting a circle to the curvature of the femoral condyles and tibial
plateaus. Together, these studies provide important baseline in-
formation regarding cartilage composition and morphology during
various activities, which can serve as a point of comparison for
identifying the development and progression of disease.

FEM studies have been performed to understand the relation-
ship between joint alignment and cartilage stresses. It was found
that during quasi-static loading, femoral internal rotation and
adduction led to increased patellar cartilage stress, whereas tibial
rotations had minimal influence?’. A similar methodology was
utilized to investigate whether recreational runners with patello-
femoral pain (PFP) exhibited greater peak patellar cartilage stress as
compared to pain-free runners, and to determine the kinematic and
kinetic predictors of peak patellar cartilage stress during running,.
Knee external rotation was found to be the best predictor of peak
hydrostatic pressure and peak maximum shear stress, which were
elevated in runners with PFP?®, Thus, given appropriate boundary
conditions, FEM provides additional insight into kinematic move-
ments leading to increased cartilage stress, providing another
avenue into understanding the relationship between mechanical
loading and OA development.

Several recent kinematic studies have been used to identify the
effects of knee OA on activities of daily living, particularly gait*® 3>,
For example, Tanimoto et al.>® studied shank angular velocity using
an inertial sensor during the swing phase of gait in subjects with
knee OA. This study found that worse knee function scores were
correlated with decreased angular velocity and increased vari-
ability in angular velocity, suggesting that control of the swing limb
is affected by degree of disability. Another study’' examined dif-
ferences in gait mechanics and muscle activation between
asymptomatic and symptomatic individuals with radiographic

evidence of knee OA. The authors of this study suggested that
symptomatic individuals have stiffer frontal and sagittal plane dy-
namics during gait, with more muscle activity and more torsional
loading in the transverse plane than the asymptomatic group.
Ogaya et al.>? applied a musculoskeletal model of the lower limbs
and trunk with 92 muscle-tendon units to subject-specific gait data
obtained from individuals with knee OA and healthy elderly control
subjects. Individual muscle contributions to knee extension me-
chanics during the early stance phase of gait were analyzed. This
study found that OA patients had decreased dependency on vasti
muscles to control knee movement during early stance as
compared to control subjects. Furthermore, this study found that
hip adductor muscles compensate in part for this weaker knee
extension through control of mediolateral motion. A study by
Roberts et al.>® compared measures of in vivo dynamic knee joint
loads obtained from gait analysis in advanced stage OA, and
microarchitecture of subchondral trabecular bone samples
collected during total knee arthroplasty. This study suggests that
anteromedial tibial plateau bone volume correlates with peak
external rotation moment, and that medial to lateral bone volume
ratios correlate with measures of medial to lateral joint loading,
such as knee adduction moment.

A number of recent kinematic studies focused on changes in
biomechanics associated with hip 0A?>*’. For example, one study
investigated differences in gait mechanics between men and
women with hip OA%°. This study found sex-based differences in
gait mechanics that are normally observed in asymptomatic in-
dividuals were not observed in those with OA. Asymptomatic
women had 12% increased peak adduction moments and 23%
increased external rotation moments than asymptomatic men,
while women and men with hip OA had no significant differences.
This finding suggests the need to account for sex when designing
interventions. Another study identified that high daily cumulative
hip moments in the frontal plane predicted radiographic hip OA
progression over 12 months in female patients®’. Changes in
biomechanics in stair ascent and descent in patients with hip OA
were also studied®®. It was found that patients with hip OA had
limited range of hip joint motion during stair ascent and employed
compensatory strategies that suggest impaired hip abductor func-
tion. These studies have revealed new insights into the physiologic
function of cartilage and the relationships between kinematics and
joint loads, as well as the associations between in vivo biome-
chanics and cartilage properties.

ACL injury and OA development

ACL injury increases the risk of OA development. Several recent
studies have investigated alterations in kinematics, cartilage func-
tion, and cartilage morphology following ACL injury that may be
related to OA development. One study characterized the proteo-
glycan and collagen content following ACL transection (ACLT) in a
rabbit model and related these measures to altered chondrocyte
mechanics that were observed upon mechanical loading of carti-
lage (Fig. 2)°°. This study identified that at 9 weeks following ACLT,
proteoglycan content was reduced and collagen orientation was
altered in the cartilage of the superficial zone. These changes were
associated with changes in chondrocyte morphology. The authors
hypothesized that the chondrocyte deformation response to me-
chanical compression in OA changes because of alterations in the
matrix structure. Another study assessed whether different ap-
proaches of ACL rupture, specifically surgical transection or
nonsurgical rupture induced by joint loading, had different effects
on joint biomechanics in rodent models of post-traumatic OA*°, An
increase in anteroposterior knee laxity was found in the surgical
transection model, while no differences were detected in the
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Fig. 2. Mechanical indentation and analysis schematic (A), microscopic analysis via Fourier transform infrared imaging, digital densitometry, and polarized light microscopy (B), and
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pericellular matrix analysis based on optical density profiles for proteoglycan content (C) from Han et al.””.

overloading model. These findings are important when considering
the use of animal models in studying OA following ACL injury.
Recent studies have focused on the lasting effects of ACL injury,
even after ACL reconstruction (ACLR). For example, Pietrosimone
et al.*! identified changes in gait mechanics that were associated
with alterations in biochemical markers of cartilage metabolism at
6 months following ACL injury. This study found decreased
biomechanical loading in the ACLR limb, which was associated with
markers of deleterious joint tissue metabolism, such as matrix
metalloproteinase-3, interleukin-6, and a ratio of collagen break-
down to collagen synthesis (C2C/CPII). Another study identified
that individuals with ACLR who had poor knee function (deter-
mined by self-reporting and/or hop test performance) had changes
in knee moments during running that may be associated with
lower knee joint contact forces*?. Wellstandt et al.*> determined
that hip joint biomechanics early after ACL injury and reconstruc-
tion differ between those with and without OA. Specifically, this
study determined that patients with knee OA 5 years after recon-
struction walked with smaller sagittal plane hip angles and lower
sagittal and frontal plane external hip moments both before and
after reconstruction than those who did not develop OA within the
5 year time frame. Kim et al.** identified regions of increased T2

relaxation times in the patellofemoral cartilage, particularly in the
medial trochlear region, 3 years post-ACLR even when re-
constructions were clinically successful. The authors suggest that
the abnormal patellofemoral cartilage loading after reconstruction
likely leads to these changes in cartilage composition, which are
detected by increased T2 relaxation times. Together, these studies
suggest that early changes in gait biomechanics following ACL
injury and ACLR may be associated with changes in joint tissue
metabolism and cartilage composition, potentially leading to OA
development.

Several recent studies in the literature have attempted to
quantify the effects of ACL injury on cartilage function and health.
One in vivo study® compared cartilage mechanics and thickness
between ACL deficient and intact knees using MRI based 3D surface
models of the knee joint. ACL deficiency was associated with
decreased patellar cartilage thickness and increased exercise-
induced patellar cartilage strain as compared to ACL intact knees.
The authors suggest that this is representative of altered patello-
femoral joint loading and possible degeneration of the patellar
cartilage. Another study?® found that knees with single-bundle
hamstring ACLR without meniscal injury had thinner cartilage as
compared to healthy knees 2—3 years post reconstruction.
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Furthermore, subjects with both ACLR and meniscal injury expe-
rienced greater contact forces, which were associated with
increased lateral cartilage volume and thickness. Finally, a study by
Chen et al.*’ examined changes in dynamic contact stress profiles in
the tibial plateau after ACL transection using cadaveric models. This
study identified differences in the locations of the stress profiles on
the tibial plateaus between the intact and ACL transected knees,
although the magnitude and shape of the stress profiles remained
the same. Together, these findings provide evidence that altered
loading associated with ACL injury results in changes in the loading
experienced by the cartilage, which may ultimately lead to cartilage
degradation.

Furthermore, the relationships between altered biomechanics
and cartilage health following ACL injury have been investigated
using quantitative MRI in recent studies. Teng et al.*® assessed gait
and tibiofemoral joint cartilage properties via T1rho and T2 relax-
ometry in subjects before ACLR, 6 months after surgery, 1 year after
surgery, and 2 years after surgery. This study found that higher
knee flexion moments, knee flexion angles and ground reaction
forces were associated with increases in T1rho and T2 relaxation
times at later time points post-surgery. Thus, this study demon-
strates a link between altered gait mechanics after ACL injury and
changes in cartilage composition within a relatively short time
frame from reconstruction®. Similarly, the use of quantitative ul-
trashort echo time enhanced T2* mapping (UTE-T2*) for early
detection of OA was investigated*>>°. Increased UTE-T2* values of
the medial knee cartilage correlated with increased varus align-
ment and knee adduction moment. Together, these studies suggest
that altered gait mechanics are related to degradative changes in
the cartilage after ACL injury.

Given the high likelihood of OA development following ACL
injury, several studies have investigated factors related to
improving post-ACL injury outcomes and reducing the risk of
further injury. Interestingly, Filbay et al.>' found that delaying ACLR
and managing ACL rupture with exercise therapy alone may shift
prognostic factors for 5 year clinical outcomes in a positive direc-
tion. A FEM was utilized to optimize graft placement in ACLR sur-
gery>. This study found that ACL graft placement had a significant
influence on cartilage contact pressures and meniscal stresses. This
information may guide surgeons to optimize ACLR surgery to
minimize deleterious alterations in biomechanics that may be
related to OA development. In a randomized control trial of the
efficacy of 10 post-operative gait training sessions in individuals
with gait asymmetries following ACLR®?, it was determined that the
gait training programs tested were not able to alter gait mechanics
in male athletes in the short term. However, meaningful gait
asymmetries were mostly resolved 2 years after ACLR. Finally, a
study by Levins et al.>* concluded that the geometry of the femoral
notch and tibial spine of the contralateral knee at the time of ACL
injury are associated with the risk of suffering a contralateral ACL
injury in female athletes. This information has the potential to
identify individuals at increased risk for ACL injury, who might
benefit from targeted risk-reduction interventions. Together, these
recent studies have investigated means to avoid the negative effects
of ACL injury on long-term joint health.

Meniscus injury and OA development

The meniscus is known to be a critical stabilizer of the knee
joint. Often, those with meniscal injury or degeneration subse-
quently develop OA. In order to understand the development of OA
following meniscus injury, it is imperative to understand its me-
chanical and structural properties. A recent study by Luczkiewicz
et al> used a FEM of the knee based on MRI to model varying
heights, and thus cross-sectional shapes, of the meniscus with a

compressive load of 1,000 N. They found that the changes in
meniscal cross-section affected the meniscal external shift, medio-
lateral translation, and congruency of the knee. In addition to
studying the shapes and heights of the meniscus, Shriram et al.*®
used FEM to study the effects of stiffness variations in poly-
carbonate urethane artificial meniscal implants. The model showed
that the artificial menisci exhibited lower peak cartilage contact
pressure compared to the meniscectomized knee and that the
implant with a stiffness of 11 MPa restores the intact knee contact
mechanics®®. These studies highlight important parameters for
consideration in predicting the susceptibility of different shaped
menisci to lead to cartilage degeneration and considerations to
allow optimization of meniscal implants for knees that have
already suffered from catastrophic meniscus degeneration.

To assess meniscal lesion effects on cartilage in vivo, Russell
et al°” MR imaged healthy and posterior horn meniscus-injured
human subjects both cross-sectionally and longitudinally over 3
years. At baseline, there were elevated T1rho relaxation times in
the lateral tibia adjacent to the meniscus lesions, despite the fact
that the subjects were not diagnosed with OA by radiograph. After
2 years, T2 relaxation times were elevated in both the medial and
lateral tibia in the meniscus-injured group and overall these sub-
jects had lower quality of life, as measured by the Knee Injury and
Osteoarthritis Outcome Score (KOOS). Despite these findings, at
baseline there was no difference in gait biomechanics between the
healthy and injured group. This study points to the use of T1rho and
T2 as noninvasive tools, which are sensitive to early changes in
cartilage composition following meniscus injury. Jacobs et al.>®
assessed differences in gait profiles of rats with medial meniscus
transection (MMT) and monoiodoacetate (MIA) injection to simu-
late OA. The combined analysis of dynamic gait data with spatio-
temporal data increased the sensitivity of detecting differences
between the two OA models (Fig. 3). Specifically, a shuffling gait
was observed in the MMT model and an antalgic gait in the MIA
model. Thus, this methodology may provide valuable data on gait
characteristics in response to different joint injuries in rodent
models.

Due to the lack of clear guidance on when to perform a partial
meniscectomy in patients with an MRI verified meniscus tear, Hare
et al.>® investigated whether symptoms related to medial meniscal
injuries in middle-aged patients are distinct or similar to those with
early radiographic knee OA. Over 80% of the patients had moderate
severity for self-reported knee pain, pain during stair walking and
when twisting the knee, and lack of confidence in their knee. These
symptoms are indistinguishable from symptoms reported in pa-
tients with early radiographic knee OA>’, leading the authors to
infer that these degenerative meniscal tears are early signs of knee
OA.

Toward OA prevention, treatment, and management

Slowing the progression of OA is of utmost importance. Thus,
several studies have focused on treatment strategies for improving
gait biomechanics in individuals with OA. For example, a study by
Brenneman et al.?° investigated a lower limb strengthening pro-
tocol for its effect on improving gait biomechanics in women, and
found only subtle differences in gait biomechanics after the inter-
vention, despite improved self-reported strength. Another notable
study®! used biofeedback assisted gait training to reduce medial
tibiofemoral contact force (MTFF) during gait. This study demon-
strated that subjects were able to successfully increase their MTFF
by modifying their gait, although they had more difficulty
decreasing their MTFF using the biofeedback protocol. Finally,
another study® examined the effect of a gait treatment program
using a biomechanical device (APOS System) in hip OA patients.
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Fig. 3. The Experimental Dynamic Gait Arena for Rodents (EDGAR) was used to obtain
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Sagittal-plane hip joint kinematics and kinetics improved
throughout the study, suggesting improvement of gait with the
intervention. These studies highlight the recent challenges, as well
as successes, in working toward the development of training pro-
tocols aimed at reducing the effects of OA.

Furthermore, recent studies have focused on methods for
unloading the cartilage in an effort to prevent disease progression.
Trad et al.%® used a FEM to investigate the effect of varying the high
tibial osteotomy correction angle on the stress distribution in both
compartments of the human knee joint, and to determine the
optimal correction angle necessary to achieve a balanced loading
between the medial and lateral compartments. This study found
that shifting the correction angle to a valgus alignment of 0—10°
shifted the mechanical load from the medial to the Ilateral
compartment, and that a balanced stress distribution was achieved
by 4.5° of valgus correction. This balanced stress distribution un-
loads the medial compartment, which may slow the progression of
OA. Furthermore, Birmingham et al.%* found that, in patients with
knee OA and varus alignment, a medial opening wedge high tibial
osteotomy improved their KOOS scores by an average of 14.2 points
at 5 years after surgery. Thus, this surgery may influence symptoms
of OA. Goodwin et al.® investigated the effects of orthotic devices
that are meant to limit cartilage loading after trauma in young
healthy individuals. Subjects completed above ground walking
using a medial unloader brace and a lateral heel wedge. These
devices did not significantly affect gait mechanics in young healthy

individuals. Kluge et al.%® investigated the interaction between gait

speed and lateral wedge insole on gait biomechanics in an attempt
to identify whether walking speed can influence the effectiveness
of lateral wedges in reducing knee adduction moment. This study
determined that different walking speeds did not confound the
effect of lateral wedge insoles in healthy individuals, and that the
insoles were successful in reducing the external knee adduction
moment and angular impulse. Finally, another study®’ investigated
the effect of a hip brace on unloading the cartilage in patients with
hip OA. Using gait analysis, this study determined that peak hip
abduction moment was decreased on the OA side with use of the
brace, which was associated with decreased pain. These recent
studies have assessed a variety of treatment options, ranging from
surgical techniques to braces, and have shown the beneficial effects
of these treatments on biomechanics and cartilage loading.

Conclusion

Over the past year, biomechanical studies have provided new
and exciting advances in elucidating the relationships between
biomechanics, cartilage properties, and OA development. Notably,
studies have indicated that biomechanical measurements may
potentially serve as both predictors and early indicators of joint
degeneration. Earlier detection of OA development may in the
future allow for earlier intervention and disease prevention.
Notably, several non-invasive imaging methods of probing joint
health have been examined® 81423-2>4448=5057.68 ~ additionally,
correlating biomechanical measurements with serum or synovial
fluid biomarkers has also been on the rise in orthopedics, with the
hopes of linking the biological and biomechanical changes in OA.
Importantly, recent biomechanical studies have further confirmed
that cartilage is adapted to physiologic in vivo joint loading and
disruption of this balance may contribute to joint degeneration. To
this point, several studies have assessed the effects of knee injuries
on both biomechanics and cartilage health. Furthermore, a signif-
icant effort has also been made towards researching ways to stall
the progression of OA. Overall, significant strides have been made
in investigating biomechanics in various OA populations, including
primary OA and ACL and meniscus-injured subjects at the molec-
ular and whole-body scale to better understand the mechanical and
biological relationship affecting the pathogenesis and progression
of OA. While much progress has been made in the field, there is still
much work to be done in order to prevent the development and
progression of OA.
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