On infusion of high-dose ascorbate in treating cancer: Is it time for N-acetylcysteine pretreatment to enhance susceptibility and to lower side effects?

ABSTRACT

Ascorbate administered intravenously gives a high plasma concentration of this drug. Clinical trials with pancreatic carcinoma patients revealed their prolonged survival if treated with intravenous ascorbate. On the other hand, high plasma ascorbate concentration leads to severe side effects, such as nephrotoxicity. In the present paper, we advocate to lower intravenous ascorbate dosage along with monothiol N-acetylcysteine pretreatment due to anticipation of the same therapeutic effect but less or none of side effects. We describe in detail molecular mechanism of ascorbate action to be potentiated by N-acetylcysteine, as observed under in vitro conditions. Providing further arguments, we believe that the same mechanism may be employed in vivo.

Letter to the editor of journal Medical Hypotheses

Cieslak and Cullen [1] focused on the treatment of pancreatic carcinoma (PaC) with intravenous dose of ascorbate (Asc) at millimolar concentrations. PaC incidence gradually increases with current 5-year survival less than 25%. The Asc-mediated inhibition of PaC viability was found to correlate with the dose-dependent $H_2O_2$ production.

We wish to suggest another mechanism, which allows administration of ascorbate at markedly lower concentration to prevent its nephrotoxic effects with the addition of a thiol agent N-acetylcysteine.

Tumor cells overexpress on their surface the CD44 antigen, which can anchor high-molar-mass hyaluronan (HMM HA), and thus makes tumor cells invisible for the immune system. Our group has focused on degradation of HMM HA by 'OH radicals generated by Asc and Cu(II) ions, which produce $H_2O_2$ under aerobic conditions, whereas Cu(I)—complex is simultaneously formed. This complex decomposes $H_2O_2$ to highly-reactive 'OH radicals: $H_2O_2 + Cu(I)—complex \rightarrow \ 'OH + HO^− + \{Cu(II)—complex\}$. Moreover, redox cycling of copper ions has been indicated to be a basis of copper cytotoxicity towards tumor cells [2,3].

The formed low molar mass HA fragments are immunogenic and may be involved in the immune system reactivation. We believe that the same mechanism of HMM HA degradation happens in vivo. As a result, uncovering “the cape of invisibility” of tumor cells and exposing their aberrant glyocalyx to the immune system may contribute to effective tumor treatment.

By means of electron paramagnetic resonance (EPR) and spectrophotometry we observed that NAC was particularly effective in producing Cu(I)—complex (Fig. 1A and B).

Fig. 1, panel C illustrates that addition of NAC at micromolar concentration remarkably potentiated peroxidative degradation of HMM HA initiated by 'OH radicals (green curve). In conclusion, we emphasize that the described mechanism may be of clinical significance, in particular for treating PaC. We believe that to maintain Asc therapeutic effect, the pretreatment with a low dose of non-toxic NAC will allow to decrease the intravenous dosage of Asc substantially and thus enable to minimize the undesired effects of Asc, including nephrotoxicity.

https://doi.org/10.1016/j.mehy.2018.10.006
Received 21 June 2018; Accepted 10 October 2018
0306-9877/ © 2018 Published by Elsevier Ltd.
Acknowledgements

The study was supported by the grants VEGA 2/0065/15, VEGA 2/0155/16 and APVV-15-0308. We thank Dr. Ján Lakota for critical reviewing the manuscript.

Conflict of interest

The authors report no conflict of interest.

References


K. Valachová⁎,⁎, I. Juránek⁎, P. Rapta⁎, I. Valent, L. Šoltés⁎

⁎ Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, SK-84104 Bratislava, Slovakia
⁎ Institute of Physical Chemistry and Chemical Physics, SK-81237 Bratislava, Slovakia
⁎ Comenius University, Department of Physical and Theoretical Chemistry, SK-84215 Bratislava, Slovakia

E-mail address: katarina.valachova@savba.sk (K. Valachová)

⁎ Corresponding author.