

NGF increases FGF2 expression and promotes endothelial cell migration and tube formation through PI3K/Akt and ERK/MAPK pathways in human chondrocytes

X. Yu ^{†‡§}^a, Y. Qi ^{†‡}^a, T. Zhao ^{†‡}, J. Fang ^{†‡§}, X. Liu ^{†‡}, T. Xu ^{†‡}, Q. Yang ^{†‡}, X. Dai ^{†‡}^{*}

[†] Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88#, Hangzhou 310009, PR China

[‡] Orthopaedics Research Institute, Zhejiang University, Jiefang Road 88#, Hangzhou, 310009, PR China

[§] Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Shixin Road 590#, Hangzhou 311215, PR China

ARTICLE INFO

Article history:

Received 22 June 2018

Accepted 5 December 2018

Keywords:

Nerve growth factor

Chondrocyte

Human

Osteoarthritis

SUMMARY

Objective: Vascular invasion is observed at the osteochondral junction in osteoarthritis (OA). Nerve growth factor (NGF) as an angiogenic factor is expressed in OA. This study is to investigate the effects of NGF on angiogenesis *in vitro* in human chondrocytes.

Design: Articular cartilages of knee joints were harvested from healthy and OA patients. Expressions of NGF and tropomyosin-related kinase A (TrkA) were detected by western blot, Safranin-O and fast green staining and immunohistochemistry in cartilage. Expression of fibroblast growth factor 2 (FGF2) was detected by western blot in cultured chondrocytes. Chondrocytes were transfected by lentiviral vectors to knock down TrkA. Migration and tube formation of human microvascular endothelial cell (HMVEC) were assessed by using transwell co-culture with chondrocyte after treatment of NGF.

Results: We confirmed expressions of NGF and TrkA were significantly up-regulated in OA. NGF induced expression of FGF2 in a time- and dose-dependent manner. Angiogenic activities of endothelial cells were greatly enhanced after co-cultured with NGF pre-treated chondrocytes, while knock-down of TrkA significantly abolished the above effects. We further found that NGF-induced expression of FGF2 promoted angiogenic activities of endothelial cells through PI3K/Akt and ERK/MAPK signaling pathways.

Conclusions: NGF promotes expression of FGF2 *in vitro* via PI3K/Akt and ERK/MAPK signaling pathways in human chondrocytes and it increases angiogenesis, which is mediated by TrkA. NGF could be responsible for vascular up-growth from subchondral bone in OA.

© 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Knee osteoarthritis (OA) is a degenerative disease mainly characterized by loss of articular cartilage, which is a source of pain and disability in elderly population¹. Patients also suffer from swelling and stiffness of knee joint. Several factors including aging, obesity and trauma are associated with OA. But so far, the real underlying mechanisms of OA remain elusive.

* Address correspondence and reprint requests to: X. Dai, Department of Orthopaedic Surgery, Second Affiliated Hospital School of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, PR China.

E-mail address: daixshz@zju.edu.cn (X. Dai).

^a Both authors contributed equally to this work.

Nerve growth factor (NGF), a classic member of the family of neurotrophic factors, was first isolated in nerve tissue². It is a mediator regulating nerve growth as well as regulation of proliferation, differentiation, repair and survival³. However, recent studies showed that NGF is also potential in inducing angiogenesis in several physiological and pathological conditions^{4–6}. Normal articular cartilage is avascular and aneural, but angiogenesis at the osteochondral junction and in non-calcified cartilage was observed in OA^{7,8}. Previous studies further showed that expressions of NGF and its high affinity receptor, p140 tropomyosin receptor kinase A (TrkA), were both up-regulated in blood, synovial fluid and chondrocytes in OA^{9,10}. Walsh *et al.* observed increased endothelial cell proliferation and vascular density in non-calcified articular cartilage with

increased NGF expression within vascular channels in OA¹¹. Cantarella *et al.* unraveled the NGF and its receptor TrkA dependent angiogenesis *in vitro* and *in vivo*¹². These findings indicated that NGF is a pro-angiogenic factor mediated by TrkA and angiogenesis is a key process in OA. Research efforts have identified several promising inhibitors targeting NGF and the related pain mechanisms as well as their therapeutic effects^{13–15}, among which Tanezumab provided significant improvement in pain in many clinical OA studies¹⁶. However, so far few investigations have been carried out to elucidate the regulatory mechanism of NGF-induced angiogenesis in OA.

Fibroblast growth factor 2 (FGF2) is a member of the FGF family with mitogenic properties as well as an inducer of angiogenesis¹⁷. It is also involved in the regulation of articular cartilage homeostasis. Signaling molecules containing Src homology 2 or phosphotyrosine-binding domains, such as phosphatidylinositol 3-kinase (PI3K), are necessary to NGF signals¹⁸. NGF also transmits its signal to endothelial cells through the TrkA receptor. Stimulation of TrkA activity by NGF leads to activation of ERK1/2, PI3K, and Akt in endothelial cells, which is possibly responsible for their proliferation and migration *in vitro*¹⁹.

In this study, we focus on the roles of NGF in FGF2 expression and migration of endothelial cell mediated by TrkA, with involvement of PI3K/Akt and ERK/MAPK signaling pathways in human chondrocytes.

Materials and methods

Patients selection and informed consent

Cartilage specimens were collected from patients with knee OA undergoing total knee arthroplasty ($n = 20$) and patients without knee arthropathy undergoing amputation of lower limbs due to trauma ($n = 14$) after written informed consent at The Second Affiliated Hospital of Zhejiang University School of Medicine. The stage of OA was assessed using X-ray and Kellgren–Lawrence Grading Scale. All methods were carried out in accordance with the relevant guideline and regulation of the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, and all experimental protocols were approved by the 2nd Affiliated Hospital, School of Medicine, Zhejiang University Ethics Committee.

Isolation and culture of articular chondrocytes

The cartilage samples were washed under sterile conditions with PBS (Shanghai Long Island antibody diagnostic reagents company (FL-2004), Shanghai, China) after adjacent tissues were stripped off. 0.25% collagenase II (Sigma–Aldrich, St. Louis, MO, USA) was added for digestion at 37°C, 5% CO₂ for 5 h. Cells were harvested by centrifugation after 200 µm mesh strainer was used to filter the solution. The cells were cultured in DMEM (Gibco) with 15% FBS (Gibco) and 1% penicillin/streptomycin. Incubation condition is 5% CO₂ at 37°C. The medium was changed every 2–3 days. When cultured primary cells reached 80% confluence, they were detached by treatment with 0.25% (W/V) trypsin and 0.1% (W/V) ethylenediaminetetraacetic acid (Gibco) and subcultured at a density of 1×10^4 cells/cm². Cultured cells before passage 2 were used for experiments. To establish OA chondrocyte model, healthy chondrocytes were treated with 5, 10 and 20 ng/ml IL-1β for 24 h. In control group, the chondrocytes were non-treated with IL-1β. The concentration of NGF was 5, 10 and 20 ng/ml and chondrocytes were treated for 0, 12, 24 and 36 h.

Construction, production of lentivirus

The lentiviral short-hairpin RNA (shRNA) expressing constructs were purchased from Invitrogen (ThermoFisher Scientific, US). The target sequence for Trk-A shRNA is the following: 5'-CCAGTGACCTAACAGGAAGAttcaagagaTCTTCCTGTTGAGGTC-CTGG-3'. The constructs were transfected into 293T packaging cells along with the packaging plasmids using LipofectamineTM 2000 (Invitrogen, US) and the lentivirus containing supernatants were used to transduce chondrocytes.

Cell transfection

The chondrocytes were cultured in complete DMEM medium (Gibco, US) supplemented with 10% FBS at 37 °C with 5% CO₂. Prior to viral infection, cells were seeded in 6-wells plate at the density of 0.5×10^6 cells per well and grown until the cells at high confluence (>50%). Then, the cells were added into viral stock at a multiplicity of infection (MOI) of 100. 48 h after incubation, the RNA interference effect of Trk-A-shRNA lentivirus was determined by western blotting.

Western blot analysis

Total proteins from human cartilages or chondrocytes were extracted. Equal amounts of protein were separated by SDS-PAGE and then transferred onto a poly-vinylidene (PVDF) membranes (Millipore, USA). The membranes were incubated overnight at 4 °C with anti-NGF, TrkA, pAkt, Akt, pERK1/2, ERK1/2 and FGF2 antibodies. The membranes were then incubated with secondary antibody for 1 h. Finally, the quantification of western blot was determined using Quantity One software (Bio-Rad, Munich, Germany).

Migration and tube formation of HMVEC

The human microvascular endothelial cell (HMVEC) migration assay was performed using Transwell inserts (8.0 µm pore size; Costar) in 24-multiwell plates. HMVECs (10^5 cells in 200 µl of medium with 10% FBS) were then seeded into the upper chamber, and 300 µl of chondrocyte CM (culture medium) was placed in the lower chamber. Cells on the upper side of the Transwell membrane were examined and counted under a microscope.

Matrigel (BD Biosciences) was melted at 4 °C, added to 48 multiwell plates (Corning) at 100 µl/well, and then incubated at 37 °C for 30 min. HMVECs (1×10^5 cells) were resuspended in a 1:1 mixture of MV2 serum-free medium and chondrocytes (total 200 µl), and added to the wells. After 12 h of incubation at 37 °C, HMVECs tube formation was assessed by microscopy, and each well was photographed under a light microscope. The numbers of branches were calculated and quantified using Mac Biophotonics ImageJ software (NIH).

Statistical analysis

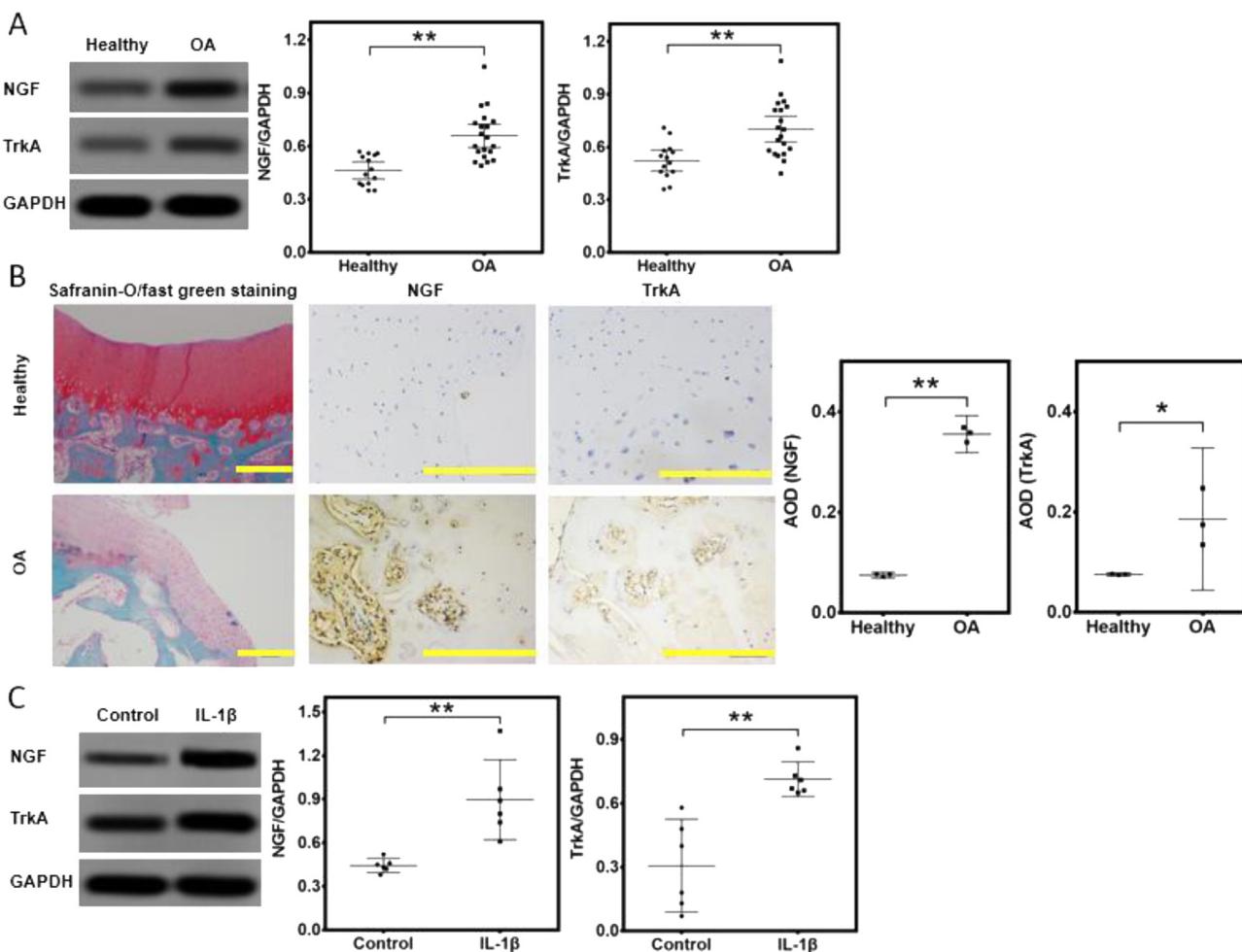
All numerical data were expressed as the mean value \pm 95% confidence intervals (CI), with n equals to the number of samples analyzed. Statistical analysis was performed with Student's *t*-test and one-way analysis of variance (one-way ANOVA), and $p < 0.05$ was considered to be significant. The Tukey HSD/Dunnett T3 post hoc test was used for all pairwise comparisons, and significance was attained at $p < 0.05$. All statistical analyses were performed using the SPSS 20.0 software (SPSS, Chicago, IL, USA). For all experiments, $p < 0.05$ was considered to be significant and is

indicated by *. $p < 0.01$ is indicated by **. $p < 0.01$ vs NGF group is indicated by #.

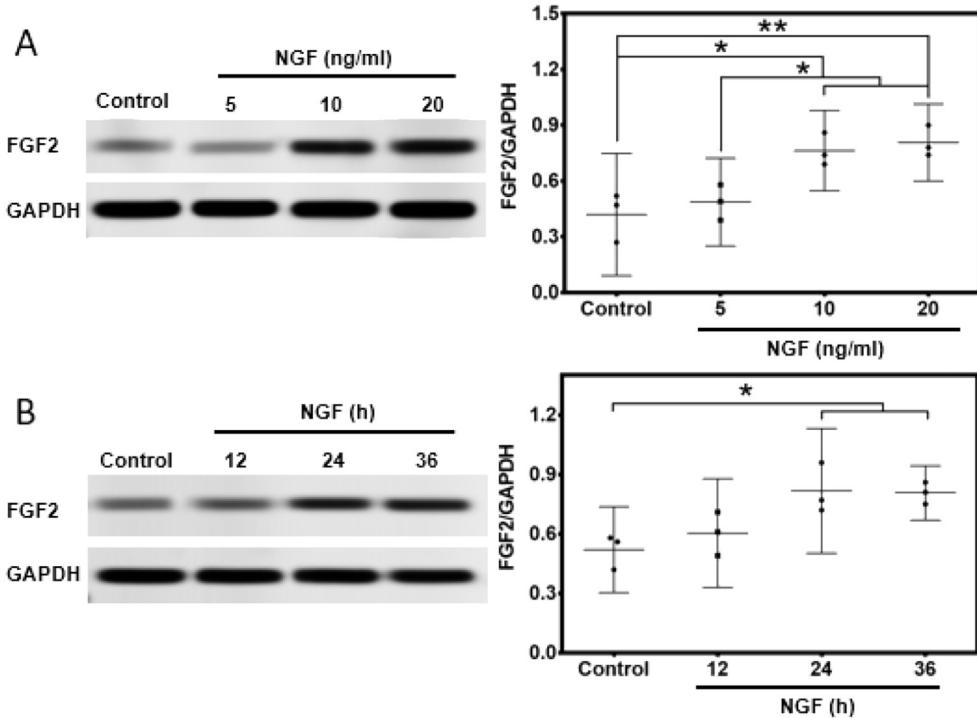
Results

Expressions of NGF and TrkA are up-regulated in OA

Expressions of NGF and TrkA in human cartilages and chondrocytes were evaluated by western blot and immunohistochemistry. In OA samples from patients undergoing total knee arthroplasty, expressions of NGF and its high affinity receptor, TrkA, were both up-regulated with significant difference detected by western blot compared with healthy group (Fig. 1(A), CI: (0.11, 0.28), $p < 0.0001$; CI: (0.08, 0.27), $p = 0.001$). The main clinical features of patients were shown in Table 1. In Fig. 1(B), safranin-O and fast green staining showed a significant reduction of Safranin O-positive proteoglycan and chondrocytes and absence of tide mark in OA cartilages compared with healthy ones. According to immunohistochemistry, an increase in expressions of NGF as well as TrkA was observed in OA cartilages. After healthy human chondrocytes were stimulated by IL-1 β , expressions of NGF and TrkA were significantly up-regulated according to western blot (Fig. 1(C), CI: (0.21, 0.70), $p = 0.002$; CI: (0.19, 0.63), $p = 0.004$), which is in accordance with


Table 1
Clinical characteristics compared between healthy ($n = 14$) and OA ($n = 20$) patients

	Healthy ($n = 14$)	OA ($n = 20$)
Age, years	70.9 ± 18.2	67.2 ± 5.2
Gender		
Male	6	6
Female	8	14
Height, m	1.62 ± 0.094	1.60 ± 0.068
Weight, kg	65.5 ± 8.0	67.1 ± 7.7
BMI, $\text{kg} \cdot \text{m}^{-2}$	23.9 ± 3.2	27.3 ± 2.3
Side		
Right	6	10
Left	8	10
Kellgren–Lawrence	0 (65%) I (35%)	III (25%) IV (75%)


the result that expressions of NGF and TrkA are up-regulated in OA clinical samples.

Effects of dose and treatment time of NGF on expression of FGF2 are in a time- and dose-dependent manner

We observed that after healthy human chondrocytes were treated by NGF, expression of FGF2 was up-regulated in a time- and

Fig. 1. Expressions of NGF and its receptor TrkA are up-regulated in OA. (A) Western blot and quantitative analysis showed expressions of NGF and TrkA are up-regulated in human OA cartilages ($n = 20$) compared with healthy ones ($n = 14$). (B) Safranin-O and fast green staining showed loss of proteoglycan and chondrocytes, as well as absence of tide mark in human OA cartilages compared with healthy ones. Immunohistochemistry of human cartilages and quantitative analysis showed increased expressions of NGF and TrkA. (C) Western blot and quantitative analysis showed up-regulated expressions of NGF and TrkA in IL-1 β stimulated human healthy chondrocytes compared with healthy ones ($n = 6$). ** $p < 0.01$. * $p < 0.05$. Scale bar = 300 μm . Data are represented as individual data points with 95% CI.

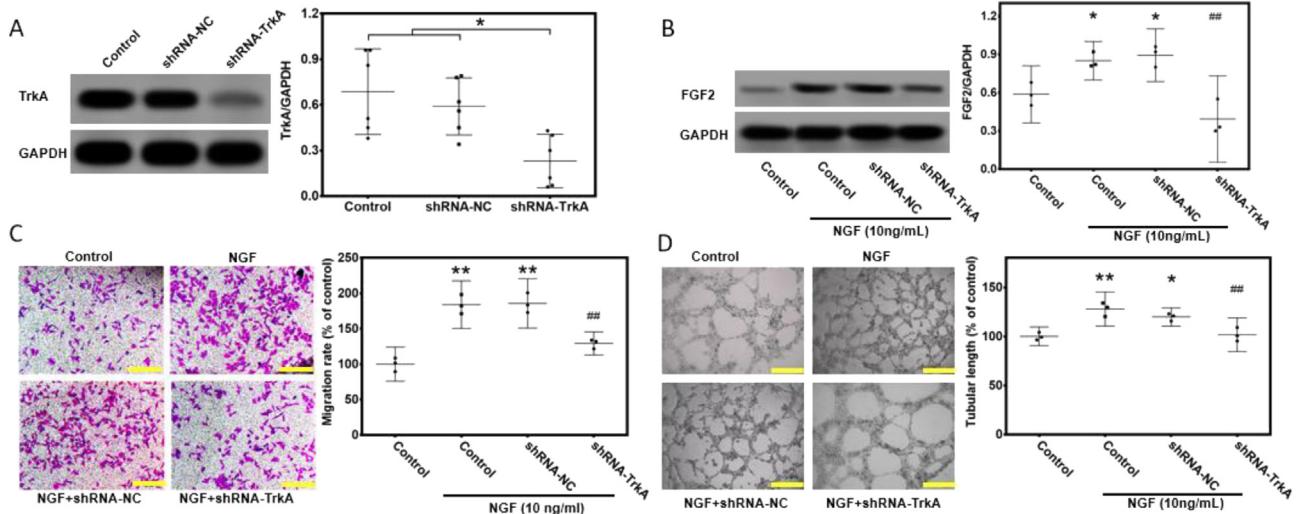


Fig. 2. Effect of dose (A) and treatment time (B) of NGF on expression of FGF2. Healthy human chondrocytes were treated by NGF with different doses. Western blot and quantitative analysis were performed to examine expression of FGF2 at different time points. Expression of FGF2 is generally dependent on dose and treatment time of NGF. Moreover, with review of previous studies, 10 ng/ml and 24 h were chosen for subsequent experiments. $n = 3$. * $p < 0.05$, ** $p < 0.01$. Data are represented as individual data points with 95% CI.

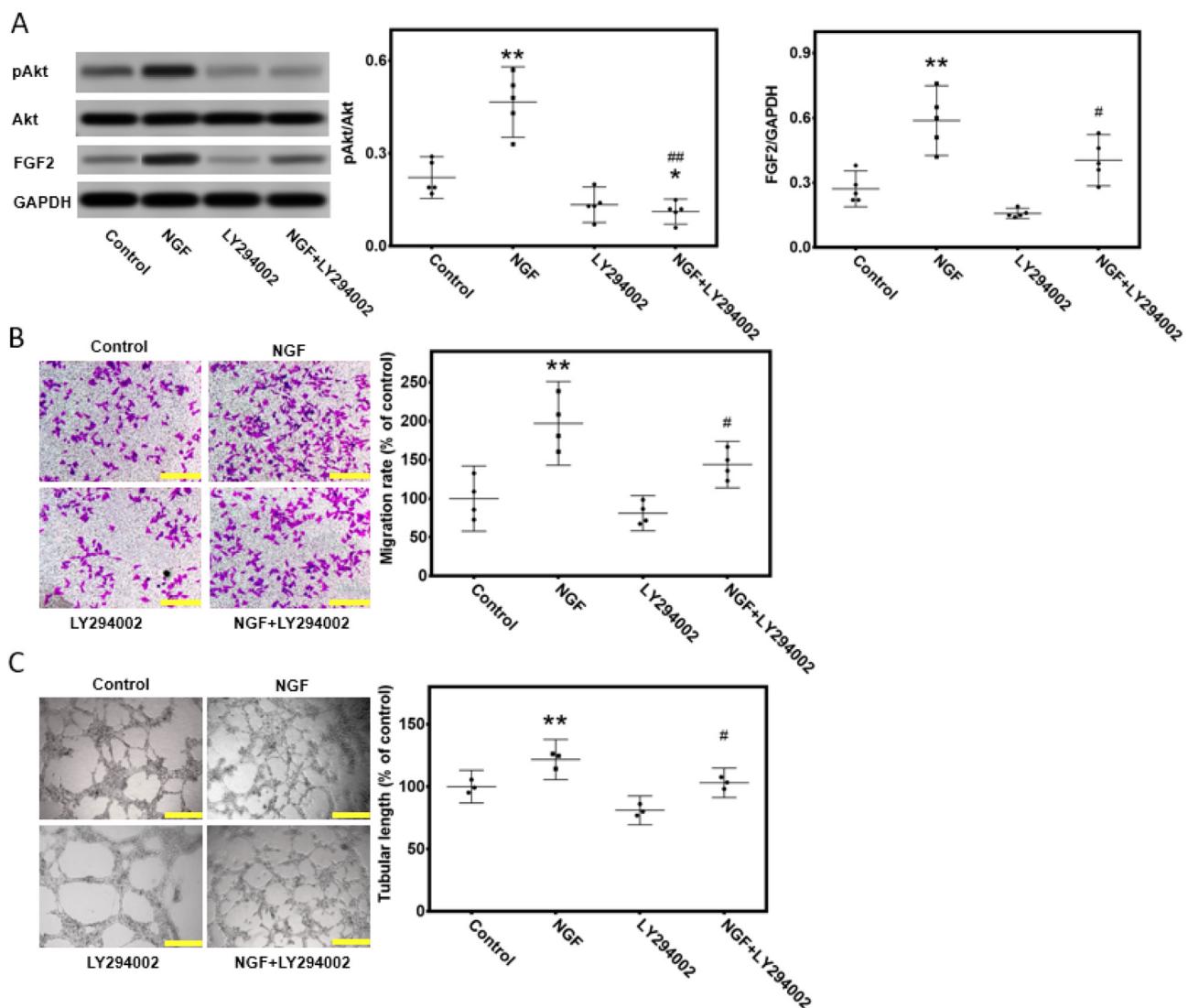
dose-dependent manner according to western blot. Expression of FGF2 in 5 ng/ml group was significantly lower than that of 10 ng/ml group (Fig. 2(A), CI: $(-0.54, -0.01)$, $p = 0.041$). Expression of FGF2 in control group was significantly lower than that of 24 h group (Fig. 2(B), CI: $(-0.55, -0.04)$, $p = 0.025$). Moreover, with review of previous studies, treatment of NGF for 24 h with a dose of 10 ng/ml was decided as the treatment time and dose of NGF in our study.

Effects of NGF on expression of FGF2, migration and tube formation of endothelial cells are mediated by TrkA in chondrocytes

The RNA interference (RNAi) lentiviral vector particles targeting TrkA gene was constructed and evaluated. As is shown in Fig. 3(A), relative protein expression of TrkA in shRNA-TrkA group was significantly down-regulated comparing with control according to

Fig. 3. Effects of NGF on expression of FGF2, migration and tube formation of endothelial cells are mediated by TrkA in human healthy chondrocytes. (A) Western blot and quantitative analysis showed expression of TrkA in human chondrocytes was down-regulated after knock-down of TrkA by transfection of lentiviral vector ($n = 6$). (B) Western blot and quantitative analysis showed up-regulated expression of FGF2 in human chondrocytes in NGF group compared with control group and down-regulated expression of FGF2 in NGF + shRNA-TrkA group compared with NGF group ($n = 3$). (C) Migration and quantitative analysis showed an increase after endothelial cells were co-cultured with NGF-treated human chondrocytes. Migration was decreased in shRNA-TrkA + NGF group compared with NGF group ($n = 3$). (D) Tube formation and quantitative analysis showed an increase in NGF group. Tube formation was decreased in shRNA-TrkA + NGF group compared with NGF group ($n = 3$). * $p < 0.05$ vs control, ** $p < 0.01$ vs control, ## $p < 0.01$ vs NGF group. Scale bar = 150 μ m. Data are represented as individual data points with 95% CI.

western blot (CI: (-0.84, -0.08), $p = 0.02$) and negative control (CI: (-0.64, -0.07), $p = 0.014$) groups. As expected, no difference between control group and negative control group was statistically insignificant. These results confirmed that TrkA was successfully knocked down.


To further investigate the role of NGF on chondrocytes, western blot, migration and tube formation assays were used. As is shown in Fig. 3(B), expression of FGF2 was evidently up-regulated in NGF and NGF + shRNA-NC groups compared with the control group (CI: (0.01, 0.52), $p = 0.044$; CI: (0.05, 0.56), $p = 0.021$), while NGF + shRNA-TrkA group showed down-regulated expression of FGF2 (CI: (-0.71, -0.20), $p = 0.002$) comparing with NGF group.

Angiogenic activities of endothelial cells (migration and tube formation) as shown in Fig. 3(C) and (D) were enhanced after co-culture with human chondrocytes in NGF and NGF + shRNA-NC groups comparing with control group (migration: CI: (54.3, 113.8), $p < 0.0001$; CI: (56.0, 115.6), $p < 0.0001$; tube formation: CI: (13.3, 42.7), $p = 0.001$; CI: (5.2, 34.6), $p = 0.011$). Migration rate and

tubular length were both abolished in NGF + shRNA-TrkA group comparing with NGF group (CI: (-84.5, -25.0), $p = 0.002$; CI: (-41.0, -11.6), $p = 0.002$). These results showed that NGF induces angiogenesis *in vitro* via its receptor TrkA in human chondrocytes.

PI3K/Akt signaling pathway is partially involved in NGF-induced expression of FGF2, migration and tube formation of endothelial cells

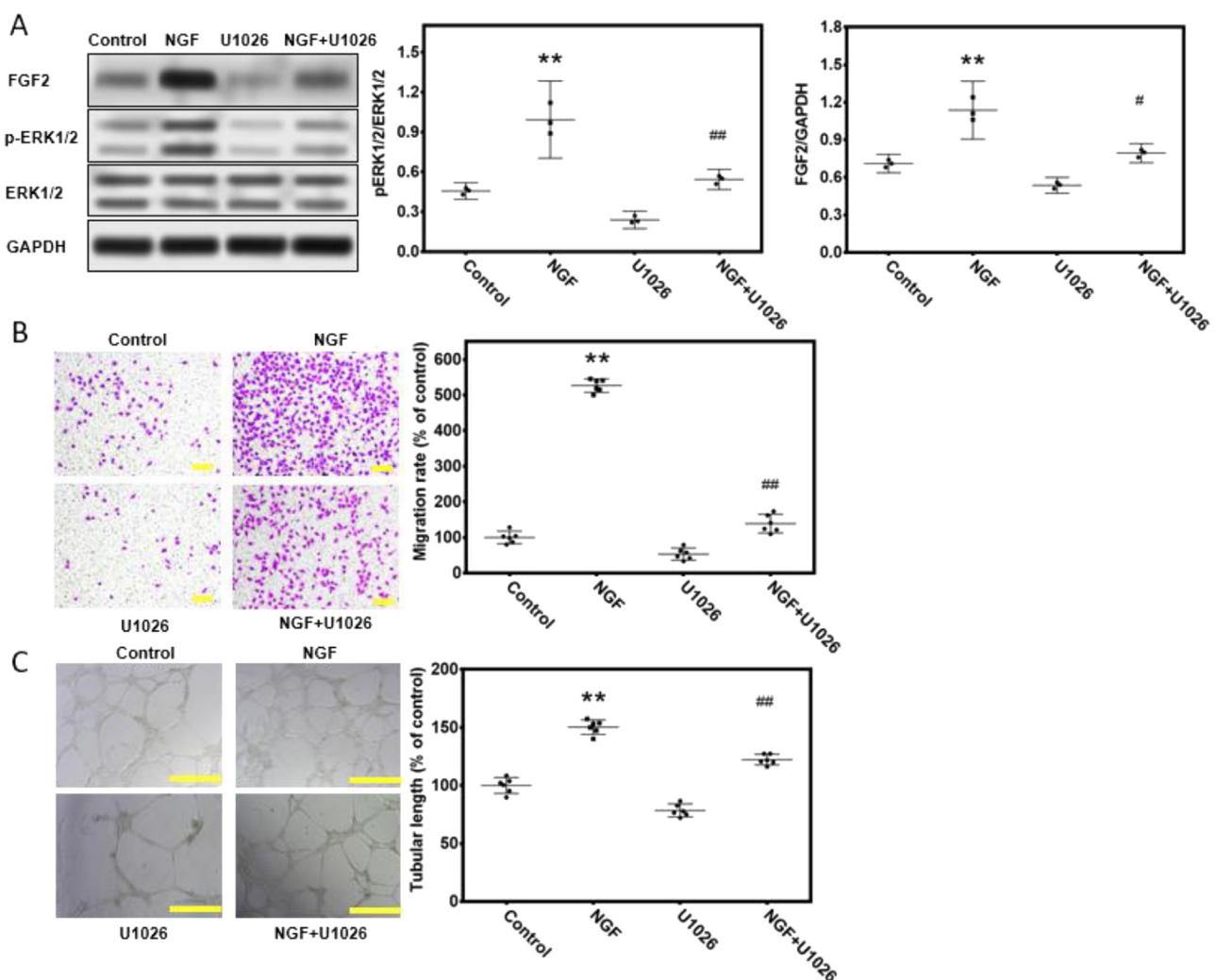
To detect whether PI3K/Akt signaling is involved in NGF-induced expression of FGF2, migration and tube formation of endothelial cells, the human chondrocytes were treated with NGF in the presence or absence of LY294002, the PI3K inhibitor. As is shown in Fig. 4(A), the results showed that NGF promoted the phosphorylation of Akt compared with the control group (CI: (0.14, 0.35), $p < 0.0001$). According to western blot, NGF increased the expression of FGF2 in chondrocytes significantly (CI: (0.16, 0.48), $p < 0.0001$). However, the LY294002 + NGF combined treatment

Fig. 4. PI3K/Akt signaling pathway is partially involved in NGF-induced increased expression of FGF2, migration and tube formation of endothelial cells. (A) Western blot and quantitative analysis showed up-regulated expressions of pAkt/Akt and FGF2 in human chondrocytes in NGF group compared with control group and down-regulated expressions of pAkt/Akt and FGF2 in NGF + LY294002 (a PI3K inhibitor) group compared with NGF group ($n = 5$). (B) Migration and quantitative analysis showed an increase after endothelial cells were co-cultured with NGF-treated human chondrocytes. Migration was decreased in NGF + LY294002 group compared with NGF group ($n = 4$). (C) Tube formation and quantitative analysis showed an increase in NGF group. Tube formation was decreased in NGF + LY294002 group compared with NGF group ($n = 3$). * $p < 0.05$ vs control, ** $p < 0.01$ vs control, # $p < 0.05$ vs NGF group, ## $p < 0.01$ vs NGF group. Scale bar = 150 μ m. Data are represented as individual data points with 95% CI.

partially decreased the NGF-induced FGF2 expression (CI: $(-0.34, -0.02)$, $p = 0.021$) and markedly decreased the phosphorylation of Akt (CI: $(-0.46, -0.25)$, $p < 0.0001$).

Similarly, NGF enhanced angiogenic activities of endothelial cells and it was blocked with the addition of LY294002 as shown in Fig. 4(B) and (C). Migration rate and tubular length were both reduced in NGF + LY294002 group comparing with NGF group (CI: $(-104.7, -1.7)$, $p = 0.042$; CI: $(-32.6, -4.7)$, $p = 0.011$). These results showed that NGF induces angiogenesis and expression of FGF2 *in vitro* via PI3K/Akt signaling pathway in human chondrocytes.

ERK/MAPK signaling pathway is involved in NGF-induced expression of FGF2, migration and tube formation of endothelial cell


To detect whether ERK/MAPK signaling is involved in NGF-induced expression of FGF2, migration and tube formation of endothelial cells, the human chondrocytes were treated with NGF in the presence or absence of U1026, the ERK inhibitor. As is shown in Fig. 5(A), the results showed that NGF promoted the

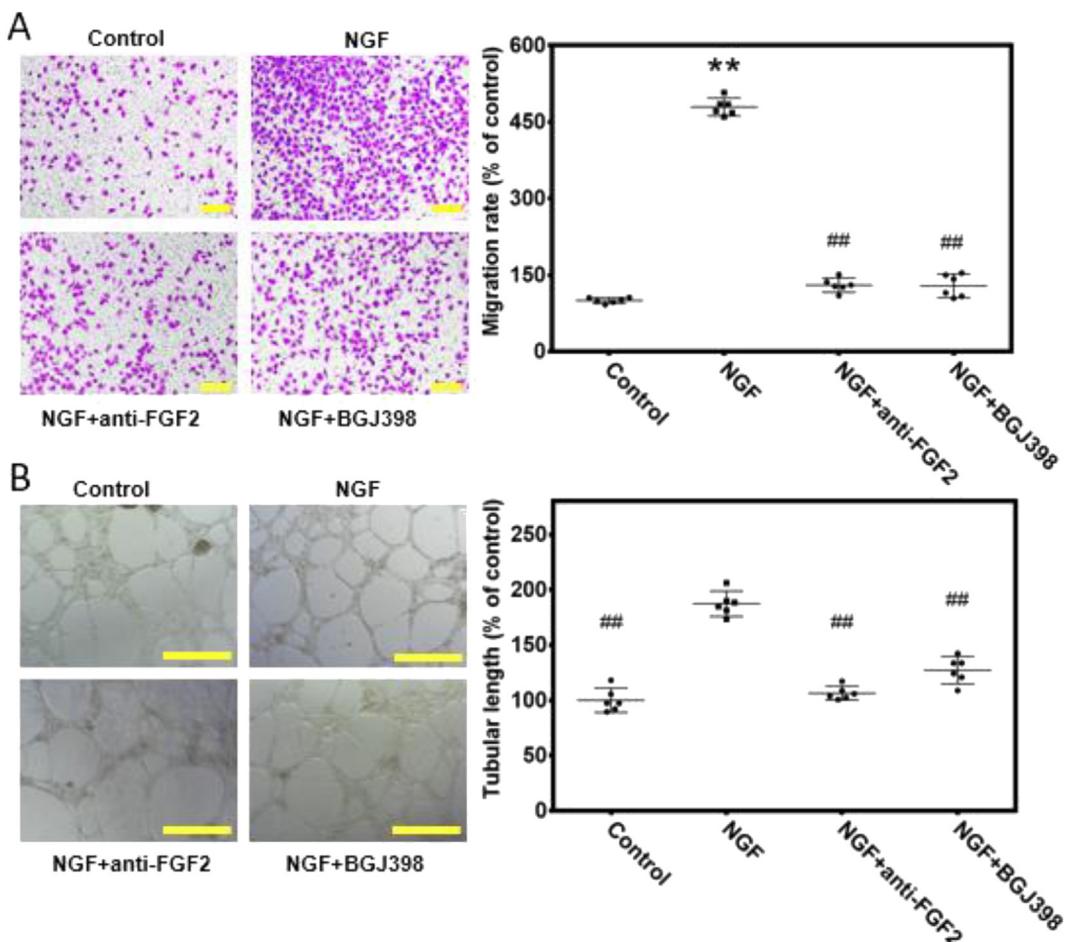
phosphorylation of ERK compared with the control group (CI: $(0.37, 0.70)$, $p < 0.0001$). The U1026 + NGF combined treatment decreased the NGF-induced FGF2 expression (CI: $(-0.48, -0.21)$, $p < 0.0001$) and markedly decreased the phosphorylation of ERK (CI: $(-0.62, -0.29)$, $p < 0.0001$).

Similarly, NGF enhanced angiogenic activities of endothelial cells and it was blocked with the addition of U1026. Migration rate and tubular length were both reduced in NGF + U1026 group comparing with NGF group (CI: $(-419.3, -356.9)$, $p < 0.0001$; CI: $(-37.1, -18.9)$, $p < 0.0001$). These results showed that NGF induces angiogenesis and expression of FGF2 *in vitro* via ERK/MAPK signaling pathway in human chondrocytes.

NGF-induced FGF2 expression promotes migration and tube formation of endothelial cells

To detect whether NGF-induced expression of FGF2 is related to migration and tube formation of endothelial cells, the human chondrocytes were treated with NGF in the presence of antibody to FGF2 and BGJ398 (an FGFR inhibitor).

Fig. 5. ERK/MAPK signaling pathway is partially involved in NGF-induced increased expression of FGF2, migration and tube formation of endothelial cells. (A) Western blot and quantitative analysis showed up-regulated expressions of pERK1/2/ERK and FGF2 in human chondrocytes in NGF group compared with control group and down-regulated expressions of pERK1/2/ERK and FGF2 in NGF + U1026 (an ERK inhibitor, 10 μ M) group compared with NGF group ($n = 3$). (B) Migration and quantitative analysis showed an increase after endothelial cells were co-cultured with NGF-treated human chondrocytes. Migration was decreased in NGF + U1026 group compared with NGF group ($n = 6$). (C) Tube formation and quantitative analysis showed an increase in NGF group. Tube formation was decreased in NGF + U1026 group compared with NGF group ($n = 6$). * $p < 0.05$ vs control, ** $p < 0.01$ vs control; # $p < 0.05$ vs NGF group, ## $p < 0.01$ vs NGF group. Scale bar = 150 μ m. Data are represented as individual data points with 95% CI.


As is shown in Fig. 6(A), migration of endothelial cells was reduced in NGF + anti-FGF2 and NGF + BGJ398 groups compared with control group (CI: (−377.7, −321.2), $p < 0.0001$; CI: (−387.4, −314.0), $p < 0.0001$). In Fig. 6(B), tube formation assay showed significantly reduction in NGF + anti-FGF2 and NGF + BGJ398 groups compared with control group (CI: (−97.2, −64.7), $p < 0.0001$; CI: (−76.3, −43.8), $p < 0.0001$).

Discussion

In this study, we confirmed that OA resulted in up-regulated expressions of NGF and its high affinity receptor, TrkA, in human cartilages and chondrocytes. Furthermore, we demonstrated that NGF-induced expression of FGF2 in chondrocytes was mediated by TrkA recognition through activating PI3K/Akt and ERK/MAPK signaling pathways and promoted angiogenesis *in vitro*, which may lead to vascular up-growth from subchondral bone in OA.

OA is a complex disease, in which angiogenesis plays an important role. Angiogenic effect of NGF has been previously found in different *in vitro* and *in vivo* models, such as chick embryo chorioallantoic membrane (CAM)²⁰, mice²¹ and rats²². Angiogenesis is well regulated and organized and is a process induced by angiogenic factor and receptors. In fact, the role that NGF plays in cartilage repair during OA was not much studied before researchers

paid attention to insulin-like growth factor (IGF)-1, FGF2, transforming growth factor (TGF)- β and bone morphogenetic protein (BMP) family members^{23,24}. NGF binds to TrkA and it is important for the formation of nociceptive sensory neurons during development²⁵. *In vitro*, β -NGF increases the proliferation of human dermal, umbilical vein and choroidal cells, and rat brain endothelial cells. β -NGF also increases migration of human choroidal and pig aortic endothelial cells^{19,26}, and promotes capillary tube formation by human umbilical vein endothelial cells. Park *et al.* found that invasion and cord formation were strongly enhanced via PI3K/Akt signaling pathway by adding NGF, while migration of endothelial cells was not as enhanced²¹. It is reported that distinct steps stimulated by FGF2 are all the steps in angiogenesis, including proliferation of endothelial cell, cord formation, invasion and migration²⁷. According to our data, significant increase in migration and tube formation of endothelial cells were observed after co-culture with NGF-treated chondrocytes. This difference may be attributed to the chondrocytes involved in our study. Also, chondrocytes in NGF + shRNA-TrkA group were shown to suppress angiogenic activities of endothelial cells and expression of FGF2. Previous studies have shown that the effects of NGF are mainly attributed to TrkA^{18,28}. Upon NGF binding, TrkA dimerizes and autophosphorylates multiple tyrosines within its cytoplasmic domain¹⁸. Accordingly, we believe that NGF receptor TrkA

Fig. 6. NGF-induced FGF2 expression promoted migration and tube formation of endothelial cells. (A) Migration and quantitative analysis showed an increase after endothelial cells were co-cultured with NGF-treated human chondrocytes. Migration was decreased in NGF + anti-FGF2 (an antibody to FGF2, 1:500) and NGF + BGJ398 (an FGFR inhibitor, 1 μ M) groups compared with NGF group ($n = 6$). (B) Tube formation and quantitative analysis showed an increase in NGF group. Tube formation was decreased in control, NGF + anti-FGF2 and NGF + BGJ398 groups compared with NGF group ($n = 6$). * $p < 0.05$ vs control, ** $p < 0.01$ vs control; # $p < 0.05$ vs NGF group, ## $p < 0.01$ vs NGF group. Scale bar = 150 μ m. Data are represented as individual data points with 95% CI.

participates in functions of NGF in chondrocytes. Furthermore, this is probably a reason for up-growth of vessels from subchondral bone impairing cartilage repair.

The PI3K/Akt signaling pathway is one of the most important downstream targets of receptor tyrosine kinases, integrin receptors, and the Ras pathway²⁹. It plays an important role in the physiological effect of NGF, especially in the angiogenesis process³⁰. Previous studies have not only reported PI3K/Akt as a critical signaling pathway for cell proliferation, anti-apoptosis and migration, but also as a pathway for promotion of angiogenesis through specific stimulations^{31,32}. Activating PI3K could induce the assembly of receptor-PI3K complexes, after which Akt is activated. Through phosphorylation, activated Akt mediated the activation and inhibition of several targets, resulting in cellular growth, survival and proliferation through various mechanisms²⁹. Our results showed that PI3K/Akt pathway was activated by NGF and moreover, activation of PI3K/Akt, up-regulated expression of FGF2 and angiogenic activities of endothelial cells were blocked by inhibitor LY294002. These results indicated that PI3K/Akt activation plays an important role in NGF-induced angiogenesis *in vitro* in chondrocytes.

NGF and FGF2 are both important neurotrophic factors. Several studies have demonstrated that FGF2 can promote mitosis in the early phase of neural stem cells proliferation, while NGF supports their survival. NGF accelerates the proliferation of neural progenitor cells in conjunction with FGF2³³. Noureddini *et al.* reported that NGF and FGF2 could induce cholinergic neuron differentiation³⁴. Davidson *et al.* found that NGF colocalized with FGF2 protein and mRNA in effusions and solid tumors. In that study, Davidson *et al.* further concluded that coexpression of NGF with molecules involved in angiogenesis suggest that the proangiogenic role attributed to NGF *in vitro* and *in vivo* may be relevant in clinical cancer³⁵. However, the relationship between NGF and FGF2 in chondrocytes is scarcely documented. In our study, data showed that NGF leads to up-regulation of FGF2, which is mediated by TrkA and is via PI3K/Akt and ERK/MAPK. Accordingly, it is suggested that NGF-induced angiogenesis in chondrocytes is related to FGF2 expression. Vascular endothelial growth factor (VEGF) as another well known angiogenic factor in OA was also examined in our study. However, we found that PI3K/Akt signaling pathway was not involved in NGF-induced expression of VEGF. According to Walsh *et al.*, chondrocyte expression of VEGF is a particular feature in OA and is associated with vascular growth at osteochondral junction¹¹. Further investigation is needed to explore the underlying mechanism of VEGF.

Monoclonal antibodies to NGF including tanezumab and fulranumab were used as treatments for pain, for example, osteoarthritis³⁶. However, US FDA put anti-NGF trials on hold because of reports of osteonecrosis and rapid progression of OA which needed arthroplasty. The trials for tanezumab and fulranumab resumed after FDA lifted its hold in 2015. To date, the mechanism remains unknown. One possible explanation for progressive OA is nerve damage leading to loss of ability to feel pain in joint with reduced joint proprioception³⁷. Another possible explanation for the apparent role of NSAIDs is that inhibited bone healing capacity caused by this class of drugs^{38–40}. The most consistent and convincing results were seen in patients with symptomatic OA of knee or hip and low-dose anti-body may have a favourable risk–benefit profile in OA patients without related predisposing factors.

There are limitations in this study that should be noted. First, the major steps of angiogenesis *in vitro* include endothelial cell proliferation, migration, invasion, and tube formation, while in our study, only migration and tube formation were evaluated. Second, this study focused on only knee joint, whether the mechanism applies to other osteoarthritic joint needs more investigations. Finally,

according to Vincent *et al.* perlecan and FGF2 co-localised within pericellular matrix of chondrocytes and pericellular FGF2 mediates activation of ERK pathway upon loading of cartilage⁴¹. Our data only showed that FGF2 participated in promotion of angiogenesis *in vitro* through co-culture of chondrocytes and endothelial cells. However, the real process *in vivo* is different from that of our experiment. Therefore, whether FGF2 secreted by chondrocytes has the same effect in cartilage still needs confirmation of further experiments. Our future work will further investigate the angiogenic effect of NGF *in vivo* via PI3K/Akt and ERK/MAPK signaling pathways in chondrocytes.

Conclusion

In summary, our results confirmed that expressions of NGF and TrkA are up-regulated in OA. NGF induces expression of FGF2 and results in angiogenesis *in vitro* in human chondrocytes. Further mechanistic analyses disclosed that PI3K/Akt and ERK/MAPK signaling pathways are involved. Collectively, these findings provided a better understanding of the mechanism of NGF induced angiogenesis *in vitro* underlying OA.

Author contributions statement

X.D, X.Y, Y.Q and T.Z contributed to the conception and design of the study. X.Y, Y.Q, T.Z, J.F, X.L, T.X, X.D and Q.Y performed the experiments and contributed to the analysis and interpretation of data. X.Y and Y.Q contributed to draft manuscript. All approved the submitted manuscript.

Competing interests statement

The authors declare no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81472063, 81772340, 81772325, 81401011), the Natural Science Foundation of Zhejiang, China (Grant No. LY15H060004), and the Medical Science and Technology Project of Zhejiang, China (Grant No. 2015KYB185, 2017KY364).

Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.joca.2018.12.007>.

References

1. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, *et al.* Osteoarthritis. Lancet 2015;386:376–87.
2. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987;237:1154–62.
3. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24: 677–736.
4. Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R. Nerve growth factor control of neuronal expression of angiogenic and vasoactive factors. Proc Natl Acad Sci U S A 2001;98: 4160–5.
5. Emanueli C, Salis MB, Pinna A, Graiani G, Manni L, Madeddu P. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002;106:2257–62.
6. Graiani G, Emanueli C, Desortes E, Van Linthout S, Pinna A, Figueroa CD, *et al.* Nerve growth factor promotes reparative

angiogenesis and inhibits endothelial apoptosis in cutaneous wounds of Type 1 diabetic mice. *Diabetologia* 2004;47:1047–54.

7. Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF. Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. *Osteoarthritis Cartilage* 2007;15:743–51.
8. Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, Walsh DA. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. *Ann Rheum Dis* 2007;66:1423–8.
9. Iannone F, De Bari C, Dell'Accio F, Covelli M, Patella V, Lo Bianco G, et al. Increased expression of nerve growth factor (NGF) and high affinity NGF receptor (p140 TrkA) in human osteoarthritic chondrocytes. *Rheumatology (Oxford)* 2002;41:1413–8.
10. Montagnoli C, Tiribuzi R, Crispoltini L, Pistilli A, Stabile AM, Manfreda F, et al. beta-NGF and beta-NGF receptor upregulation in blood and synovial fluid in osteoarthritis. *Biol Chem* 2017;398:1045–54.
11. Walsh DA, McWilliams DF, Turley MJ, Dixon MR, Franses RE, Mapp PI, et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. *Rheumatology (Oxford)* 2010;49:1852–61.
12. Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. *Faseb J* 2002;16:1307–9.
13. Hefti FF, Rosenthal A, Walicke PA, Wyatt S, Vergara G, Shelton DL, et al. Novel class of pain drugs based on antagonism of NGF. *Trends Pharmacol Sci* 2006;27:85–91.
14. Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. *Anesthesiology* 2011;115:189–204.
15. Watson JJ, Allen SJ, Dawbarn D. Targeting nerve growth factor in pain: what is the therapeutic potential? *BioDrugs* 2008;22:349–59.
16. Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. *Annu Rev Neurosci* 2017;40:307–25.
17. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. *Proc Natl Acad Sci U S A* 1986;83:7297–301.
18. Jing S, Tapley P, Barbacid M. Nerve growth factor mediates signal transduction through trk homodimer receptors. *Neuron* 1992;9:1067–79.
19. Rahbek UL, Dissing S, Thomassen C, Hansen AJ, Tritsaris K. Nerve growth factor activates aorta endothelial cells causing PI3K/Akt- and ERK-dependent migration. *Pflügers Archiv* 2005;450:355–61.
20. Lazarovici P, Marcinkiewicz C, Lelkes PI. Cross talk between the cardiovascular and nervous systems: neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)-implications in drug development. *Curr Pharmaceut Des* 2006;12:2609–22.
21. Park MJ, Kwak HJ, Lee HC, Yoo DH, Park IC, Kim MS, et al. Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway and AP-2 transcription factor. *J Biol Chem* 2007;282:30485–96.
22. Seo K, Choi J, Park M, Rhee C. Angiogenesis effects of nerve growth factor (NGF) on rat corneas. *J Vet Sci* 2001;2:125–30.
23. Erlacher L, Ng CK, Ullrich R, Krieger S, Luyten FP. Presence of cartilage-derived morphogenetic proteins in articular cartilage and enhancement of matrix replacement in vitro. *Arthritis Rheum* 1998;41:263–73.
24. Trippel SB. Growth factor actions on articular cartilage. *J Rheumatol Suppl* 1995;43:129–32.
25. Nwosu LN, Mapp PI, Chapman V, Walsh DA. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. *Ann Rheum Dis* 2016;75:1246–54.
26. Tanaka A, Wakita U, Kambe N, Iwasaki T, Matsuda H. An autocrine function of nerve growth factor for cell cycle regulation of vascular endothelial cells. *Biochem Biophys Res Commun* 2004;313:1009–14.
27. Kumar R, Yoneda J, Bucana CD, Fidler IJ. Regulation of distinct steps of angiogenesis by different angiogenic molecules. *Int J Oncol* 1998;12:749–57.
28. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. *Annu Rev Biochem* 2003;72:609–42.
29. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. *Nat Rev Cancer* 2002;2:489–501.
30. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. *Lab Invest* 1990;63:115–22.
31. Wang ZJ, Zhang FM, Wang LS, Yao YW, Zhao Q, Gao X. Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via Toll-like receptor(TLR)-4 and PI3K/Akt. *Cell Biol Int* 2009;33:665–74.
32. Ryu CH, Park SA, Kim SM, Lim JY, Jeong CH, Jun JA, et al. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. *Biochem Biophys Res Commun* 2010;398:105–10.
33. Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. *Science* 1994;263:1618–23.
34. Noureddini M, Verdi J, Mortazavi-Tabatabaei SA, Sharif S, Azimi A, Keyhanvar P, et al. Human endometrial stem cell neurogenesis in response to NGF and FGF2. *Cell Biol Int* 2012;36:961–6.
35. Davidson B, Reich R, Lazarovici P, Nesland JM, Skrede M, Risberg B, et al. Expression and activation of the nerve growth factor receptor TrkA in serous ovarian carcinoma. *Clin Cancer Res* 2003;9:2248–59.
36. Lane NE, Schnitzer TJ, Birbara CA, Mokhtarani M, Shelton DL, Smith MD, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. *N Engl J Med* 2010;363:1521–31.
37. Chisholm KA, Gilchrist JM. The Charcot joint: a modern neurologic perspective. *J Clin Neuromuscul Dis* 2011;13:1–13.
38. Harder AT, An YH. The mechanisms of the inhibitory effects of nonsteroidal anti-inflammatory drugs on bone healing: a concise review. *J Clin Pharmacol* 2003;43:807–15.
39. Chen MR, Dragoo JL. The effect of nonsteroidal anti-inflammatory drugs on tissue healing. *Knee Surg Sports Traumatol Arthrosc* 2013;21:540–9.
40. Vuolteenaho K, Moilanen T, Moilanen E. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. *Basic Clin Pharmacol Toxicol* 2008;102:10–4.
41. Vincent TL, McLean CJ, Full LE, Peston D, Saklatvala J. FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. *Osteoarthritis Cartilage* 2007;15:752–63.