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Near-infrared spectroscopy enables quantitative evaluation of human
cartilage biomechanical properties during arthroscopy
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Objective: To investigate the feasibility of near-infrared (NIR) spectroscopy (NIRS) for evaluation of hu-
man articular cartilage biomechanical properties during arthroscopy.
Design: A novel arthroscopic NIRS probe designed in our research group was utilized by an experienced
orthopedic surgeon to measure NIR spectra from articular cartilage of human cadaver knee joints (ex
vivo, n ¼ 18) at several measurement locations during an arthroscopic surgery. Osteochondral samples
(n ¼ 265) were extracted from the measurement sites for reference analysis. NIR spectra were
remeasured in a controlled laboratory environment (in vitro), after which the corresponding cartilage
thickness and biomechanical properties were determined. Hybrid multivariate regression models based
on principal component analysis and linear mixed effects modeling (PCA-LME) were utilized to relate
cartilage in vitro spectra and biomechanical properties, as well as to account for the spatial dependency.
Additionally, a k-nearest neighbors (kNN) classifier was employed to reject outlying ex vivo NIR spectra
resulting from a non-optimal probe-cartilage contact. Model performance was evaluated for both in vitro
and ex vivo NIR spectra via Spearman's rank correlation (r) and the ratio of performance to interquartile
range (RPIQ).
Results: Regression models accurately predicted cartilage thickness and biomechanical properties from
in vitro NIR spectra (Model: 0.77 � r � 0.87, 2.03 � RPIQ � 3.0; Validation: 0.74 � r � 0.84, 1.87 � RPIQ
� 2.90). When predicting cartilage properties from ex vivo NIR spectra (0.33 � r � 0.57 and 1.02 � RPIQ
� 2.14), a kNN classifier enhanced the accuracy of predictions (0.52 � r � 0.87 and 1.06 � RPIQ � 1.88).
Conclusion: Arthroscopic NIRS could substantially enhance identification of damaged cartilage by
enabling quantitative evaluation of cartilage biomechanical properties. The results demonstrate the
capacity of NIRS in clinical applications.
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Introduction

Articular cartilage is a thin layer of connective tissue lining the
ends of articulating bones. This specialized tissue enables near-
frictionless movement of the joint and distributes stress to the
underlying bones. Mature articular cartilage can be divided into
three layers, namely, superficial, middle, and deep zones. Collagen
type II, proteoglycans (PGs), chondrocytes, and water are the pri-
mary constituents of cartilage and the amount of these constituents
varies between zones1. Cartilage biomechanical properties are
primarily influenced by the interplay of collagen orientation, PG
td. All rights reserved.
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distribution, and cartilage permeability2,3. Collagen network is
mainly responsible for dynamic compressive stiffness while the
PGs control static mechanical properties4e6. The mechanical
properties of articular cartilage can be experimentally determined
with indentation testing which measures the load response of the
tissue7,8. Alterations in any of cartilage constituents can lead to its
mechanical failure and in turn, lead to impaired joint function or
even osteoarthritis (OA).

Post-traumatic osteoarthritis (PTOA) is a joint disease often
initiated by excessive loading conditions, such as accidental falls or
sports injuries9. Unlike other joint tissues, articular cartilage is
avascular and aneural; hence, it has limited self-healing proper-
ties10,11. Biomechanical properties of healthy and damaged cartilage
differ substantially and are therefore good indicators of tissue
health3. Currently, arthroscopic diagnostics of cartilage injuries and
degeneration relies on visual evaluation andmanual palpation of the
cartilage surface with a metallic hook12. These methods are highly
subjective and only enable evaluation of cartilage surface13, thus
necessitating more robust, quantitative, and reliable alternatives14,15.

Analytical vibrational spectroscopy methods, such as Raman,
mid-infrared (MIR), and near-infrared (NIR) spectroscopy, have
been utilized to quantify the properties of cartilage16. These
methods are used to study the molecular vibrations of samples. NIR
spectroscopy (NIRS) has been successfully applied for the evalua-
tion of cartilage properties in animal models by providing a rapid
characterization (i.e., between healthy and damaged) and mapping
of tissue properties17,18. To relate complex NIR spectra and tissue
properties, multivariate analysis is required19.

Conventional multivariate regression techniques, such as partial
least squares (PLS), have been successful in relating optical data to
cartilage properties but face limitations and are potentially unreli-
able in experimental scenarios19, such as mapping tissue properties
in arthroscopy, where adjacent measurement locations (repeated
measures) violate the assumption of independent observations20,21.
These limitations of the conventional regression techniques were
Fig. 1. A: Arthroscopic acquisition of near-infrared (NIR) spectral data from articular cartilag
probe-cartilage contact as observed on the video feed. B: Osteochondral plugs (~19)
measurements.
addressed by Prakash et al.22, where a viable solution based on a
hybridmultivariate regression techniquewas proposed to overcome
these limitations. Another limitation to the arthroscopic application
of NIRS is associated with the poor accessibility to cartilage surfaces
due to the narrow joint space23. This limited access may result in
suboptimal probe alignment and, thus, impact the spectral acquisi-
tion. This limitation needs to be addressed during the analysis.

We hypothesize that by employing hybrid statistical regression
models, we can reliably predict cartilage biomechanical properties
from NIR spectra during knee arthroscopy. To test this hypothesis,
NIR spectra were first collected from cadaveric human knee joints
(ex vivo) arthroscopically and later in a controlled laboratory
environment (in vitro). Regression models were developed to pre-
dict tissue properties from in vitro NIR spectra and subsequently
validated using the arthroscopically acquired ex vivo data. In
addition, a classifier was trained to efficiently detect noisy spectra
during arthroscopy. This process will both validate the application
of NIRS for clinical evaluations and result in a prediction model
applicable for further in vivo clinical testing.

Material and methods

In this study, tibial, femoral, and patellar surfaces of both knee
joints of human cadavers (n ¼ 8 males and 1 female,
Age ¼ 68.4 ± 7.45) were arthroscopically examined by an experi-
enced orthopedic surgeon at Kuopio University Hospital, Kuopio,
Finland. First, cartilage integrity was assessed with a conventional
arthroscope (4 mm, 30� inclination Karl Storz GmbH & Co, Tut-
tlingen, Germany) in accordance with the International Cartilage
Repair Society (ICRS) grading system24. Next, NIR spectra (n ¼ 15
per location, each spectrum was an average of ten successive
spectra, t15 spectra ¼ 2.4 s) were acquired using a novel NIRS probe
(Fig. 1). During the measurements, knee joints were distended with
saline solution (25 �C, 0.9% NaCl concentration). Subsequently,
osteochondral blocks were harvested and frozen (�20�C) in
e (ex vivo). The inset figures show (i) sub-optimal (not perpendicular) and (ii) optimal
were extracted from osteochondral blocks at locations corresponding to the NIRS
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phosphate-buffered saline (PBS). To preserve the sample, PBS was
complemented with proteolytic enzyme inhibitors, namely ethyl-
enediaminetetraacetic acid disodium salt (1.86 g/L, EDTA VWR In-
ternational, Radnor, PA, USA) and benzamidine hydrochloride
hydrate (0.78 g/L, SigmaeAldrich Co., St. Louis, MO, USA). During
arthroscopic spectral measurements, the ICRS knee cartilage lesion
mapping system, described by Brittberg et al.24, was utilized to
mark the measurement and sample extraction locations (Fig. 1(B)).
Additionally, arthroscopic videos were recorded with an endo-
scopic camera to ensure that the extracted locations and measured
locations coincided. The study was approved by the local research
ethics committee (Decision number 150/2016, Research Ethics
Committee of the Northern Savo Hospital District, Kuopio Univer-
sity Hospital, Kuopio, Finland).

Prior to performing NIRS measurements in a controlled envi-
ronment (in vitro), osteochondral plugs (d ¼ 8 mm, n ¼ 265) were
extracted after thawing the osteochondral blocks. During the NIRS
measurements, the osteochondral plugs were placed on a black
rubber sample holder and immersed in a saline solution. NIR
spectra were acquired at the same temperature (25 �C) as the
ex vivo measurements were conducted. After establishing optimal
(perpendicular) probe contact with cartilage surface, spectral data
(average of three spectra per location) was acquired.
Near-infrared spectroscopy

The main instrumentation (Fig. 1(A)) consisted of a light
source (AvaLight-HAL-(S)-Mini, l ¼ 360e2,500 nm, Avantes BV),
two spectrometers (AvaSpec-ULS2048L, l ¼ 350e1,100 nm,
resolution ¼ 0.6 nm and AvaSpec-NIR256-2.5-HSC,
l ¼ 1,000e2,500 nm, resolution ¼ 6.4 nm, Avantes BV, Apeldoorn,
Netherlands), and a customized optical probe. The design of the
stainless-steel probe resembles a conventional arthroscopic hook,
and it can withstand autoclave sterilization process (Fig. 2). The
probe (d ¼ 2 mm, inner diameter) houses 114 fiber optical strands
(d ¼ 100 mm), with 100 strands for illuminating the sample and
seven for each spectrometer to collect the diffusely reflected light
Fig. 2. A conventional arthroscopic hook (A) used by orthopedic surgeons and the NIRS p
Finland). A schematic diagram (C) of the probe tip and the arrangement of optical fibers is
from the sample (Fig. 2). During spectral measurements, perpen-
dicular orientation between probe tip (plane-ended) and cartilage
surface is required. This is to prevent spectral saturation due to
absorption of NIR light in saline, which is necessary for joint irri-
gation. The probe was designed to collect the spectra with short
acquisition time and to provide surgeons with a familiar looking
tool that can be used similarly as the palpation hook (Fig. 2(A)).
Further research on probe design is ongoing to ensure optimal
probe-cartilage contact.
Measurements of cartilage thickness and biomechanical properties

Cartilage thickness was determined using a Vernier caliper
(resolution¼ 0.01mm). The thickness was estimated as the average
of four longitudinal measurements equidistant around the perim-
eter of the plugs. Biomechanical properties of the osteochondral
plugs were determined via indentation testing using a custom
material testing device5.

The material testing device consisted of a plane-ended indenter
(d ¼ 667 or 728 mm), a load cell (1,000 g, accuracy ± 0.25%, Model
303 31, Honeywell Sensotec Sensors, Columbus, OH, USA), and an
actuator (displacement resolution 0.1 mm, PM500-1 A, Newport,
Irvine, CA, USA). The osteochondral plugs were kept immersed in
PBS containing inhibitors of proteolytic enzymes throughout the
biomechanical measurements.

The biomechanical protocol consisted of stressestrain relaxa-
tion and sinusoidal measurements. To ensure good contact be-
tween cartilage and indenter, 12.5 kPa pre-stress was established,
followed by five preconditioning cycles (2% strain)8. Subsequently,
a 3-step mechanical testing protocol (5% of remaining cartilage
thickness at each step with 100%/s ramp rate) was applied with the
relaxation time between each step being 900 s. Instantaneous
modulus (Eins) was determined at the ramp phase of the 3rd step
and equilibrium modulus (Eeq) from the fit to the last three equi-
librium points. Subsequently, sinusoidal loading (4 cycles, 1 Hz, 2%
strain amplitude) was applied to determine dynamic modulus
(Edyn ¼ ratio of the stress and strain amplitudes). Moduli were
robe (B) designed by our research group (Biophysics of Bone and Cartilage, Kuopio,
provided.
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computed using the Hayes solution assuming Poisson ratio of
n ¼ 0.5, 0.1, and 0.5 for Eins, Eeq, and Edyn, respectively25. During the
measurements, two indenters were used as one got damaged. The
effect of using two slightly different indenters on the measured
biomechanical response of the tissue is minimal, as this was taken
into account during the calculation of the biomechanical
parameters.

Spectral preprocessing

A 3rd order SavitzkyeGolay filter was utilized for smoothing the
spectral data. The spectral data from both spectrometers (AvaSpec-
ULS2048L and AvaSpec-NIR256-2.5-HSC) were processed sepa-
rately with different smoothing window sizes (29 data points
[17.40 nm], 17 data points [108.8 nm]) due to different resolu-
tions25. Spectral data covering the region 710e1,850 nm was uti-
lized in the analysis as the visible spectral region (400e710 nm)
had contributions from the light source of conventional arthro-
scope. Additionally, spectral regions 1,350e1,450 nm and
1,850e2,500 nm were excluded from analysis due to the pro-
nounced effect of water (saturation of the signal). The mean coef-
ficient of variation of NIR signal acquired during arthroscopies was
2.35 ± 2.94%.

Regression analysis

Adjacent measurement locations (Fig. 1) are spatially dependent
and hence, we employed principal component analysis-based
linear mixed effects regression (PCA-LME) to predict cartilage
biomechanical properties from its NIR spectral data22. PCA reduces
the high dimensionality of the NIR spectra and provides scores as
input to the regression model, while LME accommodates the nes-
ted data, e.g., samples from each knee and knees from each subject
(Fig. 3). PCA-LME was chosen for its computational simplicity and
performance consistency over LASSO (least absolute shrinkage and
selection operator)-LME22. In model calibration, PCA-LME can
accommodate dependency levels which include grouping infor-
mation of the measurement locations. These dependency levels
Fig. 3. A schematic showing the process flow of the
need to be accounted for in order to fulfill the assumptions of in-
dependent observations21.

The measurement locations (n ¼ 19, Fig. 1), bones of the knee
joint (n¼ 3, tibia, femur and patella), joint level grouping (n¼ 2, left
or right knee), and cadaver level grouping (n ¼ 9) are identified as
the most relevant dependency levels26. Design matrix (number of
samples � number of levels) was created to hold the grouping in-
formation needed for PCA-LME. The resulting LME equation
(Equation (1)) consists of accommodated dependency levels (1j
dependency level) as mixed effects and dimension reduced NIR
spectra via PCA scores as fixed effects.

Tissue property � PCA scores þ ð1jLocation 1�19Þ
þ ð1��Bones Tibia; Femur& PatellaÞ
þ ð1

�
�
� Joints Left; RightÞ þ ð1j Cadaver 1�9Þ

(1)

In vitro models were calibrated and optimized (for details
readers are referred to Prakash et al.22) on data from 16 joints (8
cadavers) by utilizing 10-fold cross-validation. The performance of
the calibrated models was validated using the remaining cadaver
(test group). The calibration and test groups were cycled through
nine iterations with each cadaver used once as a test group. Hence,
PCA-LME prediction models were calibrated on a wide range of
tissue properties covering both healthy (ICRS 0 and 1, Table I) and
degraded locations (ICRS 2 and 3, Table I).
The kNN classifier for rejecting spectra with bad probe-cartilage
contact

During arthroscopic NIR spectral acquisition, optimal contact
between the probe and cartilage surface may not always be
possible (Fig. 1(i)). As a non-optimal probe-cartilage contact may
result in the unreliable spectral acquisition and hence poor pre-
diction performance, it is necessary to exclude the spectral outliers.
Therefore, a classifier is required to retain (‘good’) spectra with
optimal contact and reject (‘bad’) spectra with poor contact.
PCA-LME regression modeling and a kNN filter.



Table I
A summary of tissue properties of both knees of each cadaver. The mean (range) values of International Cartilage Repair Society (ICRS) grade, thickness, and biomechanical
parameters are presented.

Cadaver number Number of
measurement locations

ICRS grade Thickness (mm) Instantaneous
modulus (MPa)

Equilibrium
modulus (MPa)

Dynamic
modulus (MPa)

1 30 1.04 (0e3) 2.94 (1.86e5.90) 15.27 (1.08e41.98) 1.10 (0.09e3.23) 6.39 (0.62e16.08)
2 29 1.04 (0e2) 2.67 (1.46e4.69) 12.64 (0.39e30.91) 1.12 (0.04e3.68) 5.77 (0.24e13.57)
3 25 2.45 (1e4) 2.29 (1.33e3.31) 11.57 (0.52e51.82) 0.61 (0.03e2.03) 4.90 (0.34e18.00)
4 25 1.97 (0e4) 2.55 (1.23e4.59) 11.77 (0.20e33.77) 0.58 (0.03e1.55) 4.38 (0.14e10.36)
5 32 1.77 (0e3) 2.59 (1.24e3.90) 12.04 (0.13e32.48) 0.80 (0.02e2.31) 4.84 (0.10e12.55)
6 30 1.14 (0e3) 2.51 (1.52e3.58) 10.67 (1.04e30.16) 0.42 (0.04e1.14) 3.64 (0.49e09.07)
7 24 0.73 (0e3) 2.51 (1.76e4.62) 16.38 (0.24e48.40) 1.24 (0.02e2.88) 6.79 (0.14e19.76)
8 33 1.54 (0e4) 2.36 (1.35e4.04) 13.24 (1.05e34.78) 0.85 (0.04e3.12) 5.29 (0.58e14.12)
9 33 1.00 (0e3) 2.78 (1.75e4.01) 20.04 (0.96e44.82) 1.25 (0.06e2.68) 7.63 (0.48e16.76)
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First, the trained in vitro PCA-LME model was used to predict
cartilage properties from ex vivo spectra (Fig. 3). Next, the de-
viations between the predicted and measured values were calcu-
lated. If the deviation was higher than the calibration error (mean
squared error) of the in vitro PCA-LME model, the spectrum was
rejected and labeled as ‘bad’. Subsequently, a k-nearest neighbors
(kNN) classifier was trained using PCA scores of ex vivo spectra from
the calibration dataset (16 joints, same as used for the in vitromodel
training) and their corresponding labels27. The classifier was opti-
mized through a 25% holdout. Finally, the trained kNN classifier was
utilized to retain or reject arthroscopic spectra from the indepen-
dent testing group (2 joints). The retained (‘good’) spectra from
each location were averaged and the tissue properties predicted
using the in vitro model.

Statistical analyses

The usage of coefficients of determinations (R2) for linear
mixed effects models is unclear and hence Spearman's rank cor-
relation (r) was chosen as a distribution independent and a
nonparametric statistic22,28,29. Additionally, to evaluate model
performance and reliability, the ratio of performance to inter-
quartile range (RPIQ) was computed30. RPIQ is computed as a
ratio of root mean square error (RMSE) to interquartile range.
RPIQ was chosen due to non-normal data distribution. Based on
previous studies for an acceptable model, the RPIQ value should
fall between 1.5 to 3.023,31. MATLAB R2018b (The Mathworks Inc,
Natick, MA) was utilized for implementing algorithms and
analysis.

Results

Hybrid regression models (PCA-LME) predicted cartilage
thickness and biomechanical properties (Table I) from in vitro NIR
spectra with good accuracy (Model: 0.77 � r � 0.87, 2.03 � RPIQ �
3.0; Validation: 0.74 � r � 0.84, 1.87 � RPIQ � 2.90, Figs. 4 and 5).
Predictions of cartilage properties with in vitromodels from ex vivo
NIR spectra (0.52 � r � 0.87 and 1.06 � RPIQ � 1.88) were aided by
a kNN classifier (accuracy: 50e70% in identifying the labels of the
holdout data). Without the classifier rejecting ‘bad’ spectra, the
performance was poor (0.33 � r � 0.57 and 1.02 � RPIQ � 2.14). In
the test set, the classifier sometimes retained or rejected all 15
spectra but on an average 5 out of 15 spectra were rejected (Fig. 6).
Comparison of val.2 and val.3 (Fig. 4) shows that the classifier is
effective for rejecting acquisitions involving probe misalignment
and ‘bad’ spectrum. Due to the nonparametric classification nature
of the kNN filter, the features of excluded spectra are not easily
identified. However, observations (Fig. 6) on the mean spectra
suggest that the mean of rejected spectra has a larger deviation
from the mean in vitro spectra in comparison to the deviation from
the mean of selected spectra. The possible influence of detector
saturation in the 1,350e1,450 nm and 1,850e2,500 nm regions due
to water between probe and cartilage was minimized by excluding
these water peaks from the analysis.

Discussion

In this study, for the first time, human cartilage thickness and
biomechanical properties were predicted from NIR spectra ac-
quired during ex vivo arthroscopy. Furthermore, no previous study
has utilized a combination of a spectral classifier and a hybrid
regression technique to reject spectral outliers and to account for
sample dependency, respectively. In practice, surgeons rely on
manual palpation and visual evaluation of cartilage to assess its
condition during arthroscopy12. These methods only enable sub-
jective and superficial evaluation32. Furthermore, existing under-
lying chondral damage may go undetected as the surface appears
intact. Our study demonstrates the applicability of NIRS for ar-
throscopies and that the technique could substantially enhance the
detection of cartilage degeneration.

Although NIRS has been previously applied for arthroscopic
evaluation of human joints33,34, these studies employed univariate
regressionmethods based on absorptions of two spectral peaks (i.e.,
1,150e1,220 nm and 1,340e1,475 nm) for diagnostic assessment of
cartilage condition. In the present study, a hybrid multivariate
technique was utilized, taking advantage of the multi-wavelength
relationship with cartilage properties accessible from broadband
spectra19. Furthermore, spatial dependency, which is a common
limitation of clinical studies due to multiple adjacent measurement
locations, was accounted for via the hybrid regression models21,22.

Several studies have demonstrated the relationship between
absorption spectra and cartilage biomechanical properties and
thickness23,35e37. These studies are mostly based on animal models,
except for Afara et al.37, that utilized cadaveric tissue in vitro.
However, they acquired no arthroscopic spectra and they also uti-
lized a narrower spectral region (750 to 1,100 nm) compared to this
study37. The arthroscopic approach provides more information for
in vivo NIRS assessment of cartilage properties in human patients,
specifically in identification of the extent of post-traumatic
degeneration around the chondral lesion, similar to a recent
application in equine samples23. The in vitro PCA-LME model's
correlations (thickness ¼ 0.80, Eeq ¼ 0.70, Edyn ¼ 0.78) are similar or
higher when compared to previously reported findings (Afara
et al.35: thickness ¼ ~0.84; Marticke et al.36, Eeq ¼ 0.53). Similarly,
our arthroscopic results (Eeq ¼ 0.70, Edyn ¼ 0.65) agrees with the
findings of Sarin et al. (Eeq ¼ 0.59, Edyn ¼ 0.61)23.



Fig. 4. Boxplots of PCA-LME model performance in terms of Spearman's correlation
coefficient (r), ratio of performance to interquartile range (RPIQ), and root mean square
error (RMSE) of cross-validation (RMSECV) and prediction (RMSEP) of all model iter-
ations (n ¼ 9). The calibration (cal.) and validation (val.) for in vitro, and validation
performance of the arthroscopies (ex vivo) without classifier (val. 1) and with classifier
(val. 3) are shown. In group val. 2, the locations with all ‘bad’ spectra were excluded
from val. 1; thus, groups val. 2 and val. 3 had the same number of measurement lo-
cations. The horizontal line on the quartiles (25e75%) indicates the median of the
distribution.
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The correlations observed in our models arise from overtone
vibrations of OeH, NeH and CeH chemical bonds which are the
most abundant bonds of cartilage constituents (i.e., water, PGs, and
type II collagen)38. The strong correlation between NIR absorbance
values and cartilage thickness was observed with the in vitromodel
due to the contribution of path length on light absorption and the
reflection from the interface of cartilage and subchondral bone35,39.
However, predicting cartilage thickness from ex vivo spectra had
higher errors, arguably due to variation in the quantity of reflected
light from the cartilageebone interface and possibly due to the
variation in contact pressure of the probe on cartilage surface
which could potentially alter the optical properties of the tissue and
thus the spectra35,40e42. Furthermore, spectra acquired with wider
spectral region (400-1,900 nm) may include interactions from the
subchondral bone39. This constraint could affect the prediction of
cartilage thickness but is outside the scope of the current study.
Thus, arthroscopic measurement protocol requires further optimi-
zation to improve the prediction of cartilage thickness. The pre-
diction of biomechanical parameters was more reliable than
predicting cartilage thickness. Most probably the spectral response
from the superficial cartilage layer, which substantially contributes
to cartilage biomechanical capacity, is sufficient for accurate pre-
diction of biomechanical properties. Although spectral region could
be restricted to 1,400e2,500 nm, as per Padalkar et al.39, to limit the
effects of subchondral bone43, the benefits of utilizing wider
spectral region in terms of improved correlation with biomechan-
ical properties and compositional properties outweigh its cons23,44.

In an earlier comparative study, PLS regression (PLSR) was found
to be an optimal regression method for NIRS-based characteriza-
tion of cartilage properties19. However, for experimental designs in
arthroscopic characterization, where adjacent measurement loca-
tions create spatially dependent datasets, PLSR is limited due to
assumptions on the independence of observations20,21. Conforti
et al. have presented a similar hybrid method based on PLS with
LME for assessing spatial variations in soil organic matter45. How-
ever, since PLS requires both predictors (spectra) and responses
(values of tissue properties), it is unsuitable in independent testing
scenarios, such as in clinical settings. Hence, PCA-LME was chosen
as a regression technique for the present arthroscopic study22. The
correlations in the independent in vitro group for biomechanical
properties outperformed the correlations reported in previous
study22, possibly due to a wider spectral region utilized in the
current study.

Arthroscopic evaluation of cartilage properties with NIRS has
several challenges. Narrow joint spaces restrict access to cartilage
surfaces during arthroscopy, potentially explaining the consistent
decrease in arthroscopic correlations when compared to in vitro
results23. The main limitation identified in this study was the
noisy arthroscopic spectra due to non-optimal probe-cartilage
contact. Predicted tissue properties with unclassified spectra
resulted in poor correlations, necessitating the application of the
kNN classifier to statistically identify and exclude outlying spectra
resulting from non-optimal probe contact. This novel application
of a classifier-based selection of optimal spectra enhanced the
prediction accuracy (Figs. 4 and 5). Furthermore, possible
mismatch (despite due diligence) with locations of spectral
acquisition during arthroscopy locations and biomechanical mea-
surements may have contributed to weaker correlations. Future
studies should focus on improving the arthroscopic spectral
acquisition and testing the current prediction models in vivo. We
acknowledge that the prediction model in this proof-of-concept
study would be more generalizable with more diversity in terms
of in age and gender. Future studies could employ the protocols
developed in Prakash et al.22 and this study to develop a more
general cartilage prediction model.

Arthroscopic NIRS could substantially enhance the identification
of damaged cartilage by enabling quantitative evaluation of cartilage
biomechanical properties. The results advocate employing hybrid
multivariate regression models and NIRS in clinical applications.
Importantly, the techniques described in the current study can be
extended to other spectroscopic evaluations of tissue properties.



Fig. 5. Predicted vs reference values of cartilage thickness (A) and equilibrium modulus (B) are presented with the Spearman's rank correlation (r) and root mean squared error
(RMSE) of cross-validation (RMSECV) and prediction (RMSEP). Calibration data (blue, unfilled) and test set (red, filled) are displayed in all subplots (representative data for 1
iteration). In vitro model performance (i), the effect of not using the classifier on ex vivo spectra (ii), and using the classifier ex vivo spectra (iii) are shown.

Fig. 6. NIR spectra showing the role of kNN classifier in discriminating ex vivo spectra. The inset figures with magnified areas of selected spectral regions show the deviation of
spectra relative to the mean in vitro spectra.
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