Mysterious effects of olfactory pathway lesions on intestinal immunodeficiency targeting Peyer’s patches: The first experimental study

Binali Firinci, Ozgur Caglar, Erdem Karadeniz, Ali Ahiskalioglu, Tuba Demirci, Mehmet Dumlu Aydin

ARTICLE INFO

Keywords: Peyer’s patches Olfactory bulb lesion Intestinal immunity

ABSTRACT

Background: Although olfaction has been considered as important neuroimmunomodulatory foundation, there is no satisfying analytical information between neurohistomorphological features olfactory networks and intestinal immune system hardwares. We studied if the olfactory bulb lesions (OBL) may rely on histopathological features of intestinal lymphatic Peyer’s patches in an animal model.

Methods: Thirty-two rats were grouped as control (Group I, n = 8), SHAM (Group II, n = 7) and OBL (Group III, n = 17) respectively; and followed eight weeks and animals were decapitated. The olfactory bulbs and intestines were extracted. Specimens stained with hematoxylin/eosin and GFAP methods and analyzed Stereologically to evaluate volume loss of olfactory bulbs and Peyer’s patches volumes (PV) of intestines per cubic millimeter and compared with each other’s statistically.

Results: The mean olfactory bulbs volumes were estimated as 3.65 ± 0.32/mm³ in group I, 3.12 ± 0.20/mm³ in group II and 2.21 ± 0.15/mm³ in group III (p < 0.0005 Group III vs. I and II). The mean of PV were estimated as; (9 ± 2)×10⁶µm³/cm³ in Group-I, (12 ± 3)×10⁶µm³/cm³ in Group-II; and (23 ± 4)×10⁶µm³/cm³ in group-III (p < 0.005 Group II vs. I, p < 0.0005 Group III vs. I–II).

Conclusions: OBL could rely on intestinal immunodeficiency causing by olfaction loss induced denervation injury of Peyer’s patches.

Introduction

Intestinal immune functions are regulated by autonomic nervous system represented by the sympathetic splanchnic nerves, the parasympathetic S2–4 roots and especially vagus nerve in women [1]. The mucosal surface is the first barrier to pathogens [2]. Intestinal immunization are augmented by the olfactory informations [3]. Neuroenteric disorders seen in frequent in vagal insufficiency, but mostly ignored in clinical practice. Vagal nerve innervate small intestines and only proximal parts of bowels in man; and, all abdominopelvic organs in women [4]. Myenteric ganglia modulate the parasympathetic innervation by the vagal and sacral roots S2-S4. Interestingly, urogenital organs of women are also innervated by vagal nerves, not men. Peyer's patches located on the mucosal surfaces and maintain intestinal immunity. Lymphoid tissue are more abundant in the lamina propria and submucosa of the ileocecal orifice [5]. The Peyer's patches are mainly found in the jejunum and in the terminal ileum. Macrophages are common in the germinal centres of Peyer's patches [6]. Lymph nodes and Peyer's patches play in humoral and cell-mediated immune functions [7]. Phagocytes such as dendritic cells play a crucial role intestinal immunity [8]. Olfactory impulses mediate general immunity [9]. Dopaminergic inputs of olfactory nerves are essential for the intestinal immunity. Decreased sense of smell and taste reduce immune power of the intestines [10]. Vagal/sacral parasympathetic devervation may cause intestinal immunodeficiency [11]. Vagal nerves innervate faringeal and intestinal lymph nodes [12]. Caudal lumbosacral (L6-S1) roots have parasympathetic and caudal thoracicostral lumbar (T13-L2) spinal segments have sympathetics fibers that innervate gut, intestines and urogenital organs [13]. The sacral parasympathetic outflow to the large intestines come from Onuf's nucleus [14]. The Meissner's network

⁎ Corresponding author.

E-mail address: mdumlu.aydin@atauni.edu.tr (M.D. Aydin).

https://doi.org/10.1016/j.mehy.2019.02.032
Received 5 November 2018; Accepted 9 February 2019
consists of small ganglia associated with the vascular submucosal plexus [15]. Although olfactory network stimulation induced vagal and sacral parasympathetics has been responsible for intestinal immunity, neither olfactory nerves nor its functions adequately mentioned in the literature. In this study, it is examined if there is any relation between olfactory bulb lesion and denervation injury of intestinal Peyer’s patches.

Hypothesis

Olfaction have a potential role on immunity. Olfaction loss affect especially Peyer’s patches. Olfaction loss causes intestinal immune failure. Although it is well known that there is a strong link between olfaction-vagal network-intestinal complexes there is no information what is the essential role of neural complex on immunological events. We hypothesized that olfactory informations play essential role on the development of intestinal immunity via vagal network. Because olfaction provide a wireless communication between external milieu and animal body. Olfactory impulses have potent affect on vagal network; and, vagal nerve is an important neuromodulator on the intestinal immunity.

Materials and methods

The study protocol and permissions were reviewed and approved by the Ethics Committee for Animal Experiments, Faculty of Medicine, Ataturk University. The animals were managed and the experiments conducted according to the guidelines prescribed by the Committee.

This study was conducted on 32 (n = 32) rats, with 8 rats (n = 8) in the control group, 7 rats (n = 7) in the sham group, and 17 rats (n = 17) in the OBL group. The animals were divided to three groups. A balanced, injectable anesthetics was preferred to reduce pain. Anesthesia induced by isoflurane 0.2 mL/kg with subcutaneous (Ketamine HCL, 150 mg/1.5 mL; Xylazine HCL, 30 mg/1.5 mL; and distilled water, 1 mL). Frontal bone was shaved and an interpupillar midline Burr hole was done. In GII, only Burr hole was done and OBL not applied; but, bilaterally OBL was done in Group III. All animals observed eight weeks. Olfactory functions, appetite status and weights of animals were reported. After eight weeks, animals were decapitated under general anesthesia. Tissues of all animals were stored in 10% formalin solution for seven days and then embedded in liquid paraffin. Both the olfactory bulbs and intestinal sections were stained with haematoxylin-eosin and GFAP method were used for histological examination. Peyer’s patches volumes per cubic centimeter and olfactory bulb volume values compared with statistically.

Histopathological procedures

The intestines sectioned 5 μm at the distances of 30 μm. Every 30th and 31st sections were sampled for PV calculation. The total numbers of Peyer’s patches studied by the fractionator method [16,17]. Each tissue sections were put on glass-slides and stained with haematoxylin-eosin (H&E), and GFAP method and examined with light microscope. The photographs were taken of the different growth between 40× and 20× magnifications. Brain materials were also stained with same methods. The following procedures were done as same as the Karadeniz et al. methods [18].

Stereology analysis

Stereology has become the most efficient method [19] that provide simple and reliable parameters, such as the total volume, number and size of cells or particles. We used paired-sampled sections chosen by randomly a starting point within the first 30-section interval and every neighbor of 30th section was sampled. The sampling fraction sections (f1) were fused with another sections and proportional values estimated with f1 = 1/30 formula. We decided to use physical dissector method to evaluate the numbers of Peyer’s patches. The dissector pairs named as eference and look-up sections to calculate double number of dissector pairs without taking new sections. The number of calculated Peyer's patches was designated ΣQ. The total numbers of Peyer’s patches (N), in intestines were calculated from the equation $N = \Sigma Q^- \times 1/f1 \times 1/f2$. Kolmogorov-Smirnov and Shapiro-Wilk methods used to test our parameters (p < 0.05). Before scoring of datas, Mann-Whitney-U test was applied for the groups, and then analyzed with Kruskal-Wallis test. The p values were thought statistically significant for ≤ 0.0098. The p value was accepted significant at the level of 0.05 (Confidence interval 95%).

After calculating procedure, Total PV (TPV) was estimated via summation of each PV volumes. Peyer’s patches was thought as a ellipsoid shape, and the a, b, and c are half of the ellipsoid axis in x, y, and z apsis and their volumes was calculated at the following formula:

$$\sum_{i=1}^{n} TPV = \sum_{i=1}^{n} \frac{4}{3} \pi \left(\frac{a + b + c}{3} \right)^{3}$$

The physical dissector method was preferred to evaluate the numbers of Peyer’s patches. The mean numerical density of the Peyer’s patches per/cm³ intestinal tissue (N/Gr) per/mm³ was calculated using the following formula that used for breast tissue in our former study by Karadeniz et al. [18].

$$Nt/Gr = \frac{\sum Q^-}{\sum A} / xd$$

where ΣQ is the total number of Peyer’s patch existing only in the reference sections, d is the section thickness, and A is the area of the counting frame. The most useful method to calculate of ΣA is: $\Sigma A = \Sigma Pa. \Sigma P$. The Cavalieri used to obtain the total number of Peyer’s patches. The total number of Peyer’s patches calculated by multiplication of the volume (mm³) and the numerical density of Peyer’s patches. The differences between the TPV and olfactory bulb volume values were compared statistically by software package (SPSS® for Windows v. 12.0, Chicago, USA). The data analysis consisted of the Kruskal-Wallis and Mann-Whitney U test. Differences were accepted to be significant at p < 0.05.

Results

Neck stiffness, unconsciousness, convulsive attacks, fever, apnea, cardiac arrhythmia, and breathing disturbances were reported in study group especially dead animals (n = 3).

Histopathological Results

Fig. 1 show olfactory bulb and small intestines with Peyer’s patches. Small intestines with Peyer’s patches and volume value estimation formula is seen in GI in Fig 2. Fig. 3 shows small intestine with Peyer’s patches and total volume value estimation formula is seen by a cubic centimeter. In Fig. 4, partially swollen Peyer’s patches are seen in GII. Swollen Peyer’s patches and destructed intestinal structures in GIII (Fig. 5). Histological appearances of normal intestines with myenteric plexuses with swollen Peyer’s patches and destructed intestinal structures are seen in GIII (Fig. 6).

Numerical results

Anosmia and memory loss were observed in OBL applied animals. The mean olfactory bulbs volumes were estimated as 3.65 ± 0.32/mm³ in group I, 3.12 ± 0.20/mm³ in group II and 2.21 ± 0.15/mm³ in group III (p < 0.0005 Group III vs. I and II). The mean of PV were...
estimated as; (9 ± 2) × 106 µm3/cm3 in Group-I, (12 ± 3) × 106 µm3/cm3 in Group-II; and (23 ± 4) × 106 µm3/cm3 in group-III (p < 0.005 Group II vs. I, p < 0.0005 Group III vs. I-II). Results were summarised in table 1.

Discussion

Intestinal immunity is regulated by Peyer’s patches innervated by myenteric ganglia managed with vagal and sacral parasympathetic networks. Intestinal immunization are augmented by the conscious/
immature Peyer’s patch cells. Peyer’s patch shows unusual vessels in granulomas of the munitoglobulins. T-lymphocytes predominant among the lymphoid macrophages and B-cells of intestines secrete various im-
and matured at about 4 weeks after birth. Peripartum nutrition is cru-
Compartmentalization of primary lymphoid follicles started about
ches consist of numerous secondary follicles in the lamina propria. Macrophages are common in the germinal centres. Caecal Peyer’s pat-
villi in villi. The lymphoid follicles express clear germinal centers.
bb

unconscious stimulations of olfactory nerves.

Histology of Peyer’s patches

Lymph nodes and Peyer’s patches play in humoral and cell-mediated immune functions of intestines. Peyer’s patches frequently located submucosal surfaces of the cecum and the 1/3 of the colon. Whereas, lymphoid tissues are located under lamina propria and submucosal regions. The mucosa-associated lymphoid tissues consist of higher number of lymphoid follicles than that of the larger bowel. Each patch is formed by many elongated dome regions flanked by intestinal villi in villi. The lymphoid follicles express clear germinal centers. Macrophages are common in the germinal centres. Caecal Peyer’s patches consist of numerous secondary follicles in the lamina propria. Compartmentalization of primary lymphoid follicles started about 14 days after birth and secondary follicles are seen from about 18 days and matured at about 4 weeks after birth. Peripartum nutrition is cru-
ical for developing the immune system of neonates. Dendritic cells, macrophages and B-cells cells of intestines secrete various immunoglobulins. T-lymphocytes predominant among the lymphoid cells. Peyer’s patch shows unusual vessels in granulomas of the immature Peyer’s patch.

Peyer’s patches located in the small intestine. The Peyer’s patches plays an essential role as a barrier of the gastrointestinal immu-
This mucus layer not only prevents inflammation but also plays an essential role in microbiota colonization. Phagocytes such as dendritic cells and macrophages play a crucial role in maintaining intestinal immunity. Immunoglobulin A induce primary stimulus of intestinal Peyer’s patches. Dendritic cells play a central role in immune responses of intestines.

Peyer’s patches are immune sensors in intestines. The dist-
ution, size, and appearance of Peyer’s patches vary according to species. Peyer’s patches are nodules that play a central role in intestinal immunity. Immune responses against to the enteric microflora may change olfactory nerve impulses. Intra-uterine growth restriction effect on Peyer’s patches maturity. Ischemic stroke significantly damage intestinal immunity.

Myenteric plexus and intestinal relations

The plexus of Meissner have a closely relation to the external sur-
face of intestines and located in submucosa and smooth muscle cells. Meissner’s plexus consists of the more small ganglia under submucosal plexus, Peyer’s patches, blood vessels of intestines. The majority of the lymphoid organs are richly innervated by submucosal plexus. Auerbach plexus is a network as small meshes of intestines and stimulate Peyer’s patches. At the presented study, it was shown that myenteric network is innervated by Onuf’s nucleus centralized S2-4 nerve roots; and any lesion of that network may induce Hirschsprung/Ogilvie mimicking pathologies and intestinal immunodeficiency.

Nerves of Peyer’s patches

Innervation Peyer’s patch have important roles on intestinal immunity. Peyer’s patches are innervated various autonomic nerves such as vagus, Onuf nucleus centralized sacral parasympathetics, myenteric plexus and sympathetics. Trigeminal and vagal nerves innervate faringeal and intestinal lymph nodes. Peyer’s patches are the first colonization sites for infectious prions. Dendritic cells include valuable antigen-producing cells opposed to some nerves and formed membrane-membrane contact with synaptic clefts. Lymphoid nodules in the Peyer’s patches make important networks among nerve fibres, follicular dendritic cells and macrophages. Dopaminergic nerve endings are observed in the fibers around and within Peyer’s patches, trigeminal, glossopharyngeal, vagal, sympathetic ganglia. Peyer’s patches inflammation firstly seen in the enteric ganglia such as Peyer’s patches, lymphoid centers, Meissner’s and Auerbach’s networks, solar trunk and spinal ganglia.

Inflammation of Peyer’s patches

The mucosal surface of the intestine is the first barrier to pathogens. Gastrointestinal microbiota may influence local and systemic in-
flammation. In the small intestine, Peyer’s patches are the most important of these mucosal immune response inductive sites with their T follicular helper cells in Peyer’s patches promote high-affinity IgA responses. Visceral lymph node drains adipose tissue and ex-
cerbrate systemic pro-inflammation. Visceral lymph nodes plays a fundamental role in exacerbation of systemic pro-inflammation in obese persons. Lymphoid organ hypertrophy is a hallmark of localized infection. Salmonella and non-pathogenic E. coli cause intestinal Peyer’s patches inflammation.

Hyperplasia of Peyer’s patches

Mucosa-associated lymphomas usually arise at sites of Peyer’s patches. Rotaviruses cause lymphoid hypertrophy and hyperplasia of Peyer’s patches. Brucella abortus and the germinal center response in draining brachial lymph nodes located around Peyer’s patches. Common variable immunodeficiency with hypogammaglobulinemia is often complicated by nodular lymphoid hyperplasia of the intestine. Giardia muri were surrounded by rosettes of lymphoblasts in the epithelium deficient in lymphocytes into Peyer’s patch lymphoid follicles.

Olfaction and intestinal immunological functions

Olfactory impulses are a wireless communication web between an-
imals and the environment. Olfactory bulb stimulate the other brain centers to start neuroimmunological activity. Olfactory dysfunctions appears at early stages of neuropsychiatric disease and neuroautoimmune conditions. HIV infection is frequently seen in olfaction deficient patients. Intestinal immunodeficiency are frequently seen in neurodegenerative disease associated with olfaction disorders. Psychiatric diseases are often associated with mild alterations in immune functions together with olfaction disorders. Smell loss has been considered a less important sense for neuroimmunity and neurodegenerative-neuropsychiatric-collagen tissue diseases. Decreased sense of smell and taste cause decreased intestinal metabolism. The piriform cortex has been the focus of the regulation of intestinal functions. Mucosal immunity are augmented by the olfactory

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olfactory bulb volume (mm³)</td>
<td>3.65 ± 0.32</td>
<td>3.12 ± 0.20</td>
<td>2.21 ± 0.15</td>
</tr>
<tr>
<td>Peyer’s Patches volume (× 10⁶ µm³/cm³)</td>
<td>9 ± 2</td>
<td>12 ± 3</td>
<td>23 ± 4</td>
</tr>
</tbody>
</table>

The values represent the mean ± standard deviation. Group I: Control Group (n = 8), Group II (n = 7): SHAM group, Group III (n = 17): study group. β p < 0.0005 Group III vs. I–II. α p < 0.005 Group II vs. I.
impulses [3]. Olfactory impulses regulate intestinal immunologic functions [9]. Dopaminergic impulses of olfactory bulbs reach to substantia nigra, ventral tegmental area and manage gastrointestinal immune functions. For decreased intestinal immunity develops such as Parkinson’s disease, schizophrenia and depression [69]. Olfaction disorders could cause depression [70], mammary gland degeneration [18] and hypothyroidism [17] that these pathological problems should be accepted as an important causes of neuroimmunological and intestinal immunological deficiencies which has not been extensively studied so far.

Olfaction and microbiota

If olfaction disorders could cause intestinal immunodeficiency and peyer’s patches degeneration, easily hypothesized that olfaction disorders may affect intestinal microbiota species and floral changes. This situation may have major clinical importance. For example, the intestinal microbiota affects all physiologic, endocrine, immunologic, metabolic functions and social interactions [71]. Some neurodegenerative disorders such as Parkinson’s disease [72], inflammatory bowel disease [73] could be attributed to microbiota changes. Interestingly the microbiota-gut-brain axis line explains why alterations in microbiota alters nervous system functions and pathological behaviors such as autism [74] and obsessive-compulsive disorders [75]. Intestinal microbiota may change blood-brain barrier and cerebrospinal fluid content [76].

Conclusion

Although there is a wide relations between olfactory impulses and body immunity, it is very interesting that there is no enough information. Also, olfactory impulses are necessary for the nutrition and propulsion requirements regulated by especially autonomic and some voluntary nervous system. The effect of olfactory network pagination requiring behaviors regulated by especially autonomic and digestive functions. For decreased intestinal immunity develops such as Parkinson’s disease, schizophrenia and depression [69]. Olfaction disorders could cause depression [70], mammary gland degeneration [18] and hypothyroidism [17] that these pathological problems should be accepted as an important causes of neuroimmunological and intestinal immunological deficiencies which has not been extensively studied so far.

Funding statement

Support was provided solely from institutional and/or departmental sources.

Conflicts of interest

The authors declare no competing interests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mehy.2019.02.032.

References

