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ARTICLE INFO ABSTRACT

Keywords: Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary ef-
KSHV fusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have dis-
Entry cerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic
miRNA and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are
Egl\gé contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV

also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key
players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained con-
siderable attention as of late. This innovative approach relies on either mimicking miRNA species by identical
oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an
overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play

during virus infection.

1. A brief introduction to Kaposi's sarcoma-associated herpesvirus

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as
human herpesvirus 8 (HHV-8), is an enveloped, double-stranded DNA
virus originally discovered by Chang and Moore at Columbia University
in Kaposi's Sarcoma (KS) tissues that were taken from acquired im-
munodeficiency syndrome (AIDS) patients (Bechtel et al., 2005; Chang
et al., 1994; Jenner and Boshoff, 2002).

KSHV belongs to Gammaherpesvirinae, a sub-family of the
Herpesviridae family, and the genus rhadinovirus, which is also known as
Rhadinoviridae or gamma-2 herpesviruses (Taylor and Blackbourn, 2011;
West and Damania, 2010; Zhu et al., 1999). KSHV is closely related to
the primate gamma-2 herpesvirus, herpesvirus saimiri (HVS) and the
human gamma-1 herpesvirus, Epstein-Barr virus (EBV; HHV-4) (Taylor
and Blackbourn, 2011; Westmoreland and Mansfield, 2008). KSHV
consists of ~165 kb dsDNA genome that encodes for more than 90 open
reading frames (ORFs) as well as 25 microRNAs (miRNAs) (Arias et al.,
2014; Bai et al., 2014). The majority of KSHV ORFs are conserved
herpesvirus genes expressed by many other members of the family
(Dourmishev et al., 2003). Additionally, the KSHV genome has its un-
ique ORFs, known as K genes, that are specific to KSHV (Bai et al.,
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2014; Sharma-Walia et al., 2006). Both KSHV and EBV are oncoviruses,
distinguished by their ability to establish a lifelong persistent infection
in lymphocytes.

Owing to the absence of an appropriate experimental model for
human y-herpesviruses, in vivo studies on KSHV and EBV are limited
(Cho et al., 2013). The murine gammaherpesvirus 68 (MHV-68), a
member of the subfamily of Gammaherpesvirinae from wild rodents, has
been developed as an experimental model for these studies (Simas and
Efstathiou, 1998). Similar to KSHV and EBV, MHV-68 exhibits two
distinct phases of life cycle; latent and lytic replication (Flano et al.,
2000). Thus, MHV-68 is regarded as a substitute for the human y-her-
pesvirus and has been widely used for in vitro and in vivo studies on
KSHV and EBV (Cipkova-Jarcuskova et al., 2013; Wu et al., 2012).

KSHYV is an oncogenic virus able to induce cellular transformation
(Ganem, 2010; Jones et al., 2012). In vitro and in vivo studies have
demonstrated that KSHV has a broad tropism and is able to infect a
variety of cell types (Hertel, 2011). In vivo, KSHV can infect a variety of
cell lineages including macrophages, keratinocytes, endothelial cells,
and B-cells; the latter serving as its main reservoir (Ganem, 1998;
Renwick et al., 2002). In vitro, KSHV can establish infection in a much
broader range of cells, including human B cells, endothelial cells,
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epithelial cells, fibroblasts, mesenchymal stem cells, dendritic cells, and
macrophages (Mesri et al., 1996; Rappocciolo et al., 2006; Wu et al.,
2006).

2. KSHV pathogenesis: associated-diseases, epidemiology, and
treatment

Studies strongly implicate KSHV as an etiological agent of KS and
two other lymphoproliferative disorders: primary effusion lymphoma
(PEL) and KSHV-associated Castleman Disease (KSHV-MCD) (Calabro
and Sarid, 2018).

KSHYV infection affects a wide range of the population with different
geographical distributions; however, the prevalence of infection follows
a very unusual geographical distribution (Mariggio et al., 2017). Sub-
Saharan Africa has the greatest percentage of KSHV infection (ser-
opositivity rates > 50%), where KSHV transmission is linked to hor-
izontal transmission & intrafamilial/community spread via saliva
(Cesarman et al., 2019). Such transmission modes have led KS to be-
come the most prevalent cancer among men in Africa (Cao et al., 2014;
Dedicoat et al., 2004; Mbulaiteye et al., 2004). Mediterranean, Middle
Eastern, and Caribbean countries have intermediate prevalence (ser-
opositivity 20-30%), while KSHV infection is less common in Europe,
Asia, and the United States (seropositivity < 9%) (Dukers and Rezza,
2003; Uldrick and Whitby, 2011).

Therapeutic options include surgical excision, chemotherapy,
radiotherapy, antiviral therapy, antibodies specific to cytokine re-
ceptors, or elimination of immunosuppressive therapy in case of
transplant-associated KS (Hengge et al., 2002; Schwartz, 2004; Szajerka
and Jablecki, 2007). Since the advent of the highly active antiretroviral
therapy (HAART), there has been a sharp decline in the incidence of KS
in AIDS patients (Franceschi et al., 2010; Gabarre and Bossi, 2003;
Gantt et al., 2014). Other drugs that are commonly being used to treat
KSHV-associated disease are ganciclovir (GCV) (Ocwieja et al., 2019)
and foscarnet (Bossini et al., 2005).

3. KS: disease forms and geographic variation

KS is a multifocal malignancy originally described by Hungarian
dermatologist Moritz Kaposi in 1872 (Stanescu et al., 2007). KS is the
most prevalent cancer in HIV-infected patients, mainly affecting en-
dothelial cells and manifesting as skin lesions (Park et al., 2019; Zhang
et al., 2019). KS is characterized by three histological features: angio-
genesis, inflammation, and proliferation (Li et al., 2019a; Thakker
et al., 2018). KSHV DNA has been shown to be present in all four forms
of KS: classical KS (CKS), epidemic KS (AIDS-KS), endemic-KS (EKS),
and transplantation-associated KS (TKS) (Cesarman et al., 2019;
Pugalagiri et al., 2013; Steuer et al., 2018).

4. KSHV has a biphasic life cycle

The KSHYV life cycle is biphasic comprising two sequential phases of
replication: latent and lytic (Li et al., 2019b; Zhang et al., 2019). Each
phase of KSHV replication is characterized by its unique gene expres-
sion profile (Uppal et al., 2015). Shortly after KSHV infection, the virus
replication switches to the latent phase with only a small percentage
(< 3%) of infected cells supporting lytic replication (Steitz et al., 2011).
A dynamic balance between latent and lytic phases of KSHV replication
is critical to a successful virus infection, establishment of latency, and
tumorigenesis (Frappier, 2015).

The KSHV latent phase of replication is characterized by a persistent
virus infection with a restricted expression of viral genes. The key role
of the latent phase is to keep the virus dormant to evade the immune
system, yet maintaining replication of the viral genome (Nakayama
et al., 2019). The few KSHV genes that are expressed during the latent
phase are latency-associated nuclear antigen (LANA), vCyclin, vFLIP,
and vIL-6. These genes are oncogenes and essential to maintaining the
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viral episome, promoting cell survival, and inhibiting apoptosis; all of
which are a necessity to KSHV-induced pathogenesis (Choi et al., 2018;
Li et al., 2019a; Zhi et al., 2015).

The molecular mechanisms by which KSHV reactivates from the
latent phase and enters lytic replication are largely un-known (Traylen
et al., 2011). However, a crucial role has been described for mitogen-
activated protein kinase (MAPK) signaling in KSHV reactivation (Cohen
et al., 2006; Ford et al., 2006). Recent studies determined retinoic acid-
inducible gene (RIG)-I like receptors (RLRs) to restrict KSHV lytic re-
activation and that this restriction was facilitated by the recognition of
host-derived RNAs (Zhao et al., 2018). The authors concluded the ex-
istence of a direct correlation between RNA processing and virus re-
activation. During the lytic phase, virus actively replicates with full
viral gene expression and production of progeny virions (Toth et al.,
2013). Once KSHV is reactivated, expression of lytic genes occurs in a
sequential manner. Lytic genes can be divided into three groups: im-
mediate early (IE), early (E), and late (L) genes (Uppal et al., 2014).
Expression of IE genes occur immediately after reactivation and mainly
encode transcription factors that are essential for the expression of viral
and cellular genes. E genes encode for proteins that are required for
viral DNA replication (viral polymerases, helicase, and primase)
(Curreli et al., 2002). L genes encode for viral structural proteins and
are expressed at the end of lytic replication. The final steps in the lytic
phase are virus assembly and the release of mature virions (Chang and
Kung, 2014). In summary, the presence of lytic cells is required for the
production of angiogenic and anti-apoptotic viral products, which are
essential to the tumorigenesis (Dunker et al., 2018; Staudt et al., 2004).

5. Virus entry: KSHV utilizes distinct receptors to successfully
infect target cells

KSHV infects target cells in sequential steps (Akula et al., 2003;
Kaleeba and Berger, 2006). Initially, the virus attaches to the host cell
surface molecule, heparan sulfate (HS) (Bryan et al., 2005). Attachment
of KSHV to target cells is critical for a successful virus infection as it
allows envelope-associated proteins to make meaningful interactions
with other cell surface receptor molecules which trigger the actual
entry of the virus. The internalization of the virus is either by fusion or
receptor-mediated endocytosis (Spear and Longnecker, 2003).

KSHV infects cells by different entry mechanisms in a cell type-de-
pendent manner. Clathrin-mediated endocytosis seems to be one of the
common mechanisms that KSHV utilizes to enter cells (Akula et al.,
2003; Greene et al., 2007; Walker et al., 2016). KSHV utilizes different
cell surface receptor molecules including Ephrin Receptor Tyrosine
Kinase A2 (EphA2), dendritic cell-specific ICAM-3 grabbing nonintegrin
(DC-SIGN), and different combinations of integrins such as a331, aVp3,
aVp5, and a9fB1 (Chakraborty et al., 2012; Chandran, 2010; Hensler
et al., 2014; Hussein et al., 2015). Recent studies defined EphA4 as a
novel entry receptor for KSHV in epithelial cells (Chen et al., 2019).
These cell surface molecules are collectively referred to as entry re-
ceptors. Numerous studies have deemed a combination of these re-
ceptor molecules to be valuable for KSHV infection of cells (Akula et al.,
2002; Hensler et al., 2014; Rappocciolo et al., 2008).

6. miRNAs: biogenesis and mechanism of action

MicroRNAs (miRNAs) are a class of highly conserved small non-
coding RNAs of ~ 22 nucleotides in length. The first discovered miRNA
is lin-4 which was identified by Ambros and Ruvkun labs in 1993 from
Caenorhabditis elegans (C. elegans) (Lee et al., 1993; Wightman et al.,
1993). miRNA lin-4 was described to regulate lin-14 mRNA translation
during the early larval stage of the worm (Lee et al., 1993; Rougvie,
2001; Wightman et al., 1993). Subsequent studies revealed that the
miRNAs act as post-transcriptional regulators of gene expression in
many organisms (Chen, 2005; Cock et al., 2010; Cuperus et al., 2011;
Ninova et al., 2016; Wienholds and Plasterk, 2005). The current release
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Table 1
Numbers of pre-miRNA hairpins and mature miRNAs encoded by human herpesviruses.
Sub-Family Viruses Number of pre-miR Number of mature References
Hairpins miRNAs
a-Herpesviruses  HSV-1 (Herpes simplex virus 1) 18 27 (Cui et al., 2006; Jurak et al., 2010)
HSV-2 (Herpes simplex virus 2) 18 24 (Jurak et al., 2010; Tang et al., 2009; Umbach et al., 2010)
B-Herpesviruses CMV (cytomegalovirus) 15 26 (Meshesha et al., 2012; Stark et al., 2012)

Human herpesvirus 6B 4
v-Herpesviruse EBV (Epstein Barr virus) 25
KSHV (Kaposi's sarcoma-associated 13

herpesvirus)

8 (Tuddenham et al., 2012)

44 (Cai et al., 2006; Cosmopoulos et al., 2009; Landgraf et al.,
2007; Pfeffer et al., 2004)
25 (Cai et al., 2005; Lin et al., 2010; Qin et al., 2017; Umbach

and Cullen, 2010)

* Numbers of viral pre-miRNAs and mature RNAs based on the most recent release of miRBase (miRBase 21: http://www.mirbase.org/index.shtml).

of the miRBase database (miRBase release 21) contains 28,645 mi-
croRNA loci from 223 species which produce 35,828 mature micro-
RNAs (Kozomara and Griffiths-Jones, 2014; Van Peer et al., 2014). The
miRBase database is gradually increasing with over 2000 human
miRNA sequences currently deposited in the most recent release of the
mirBAse database (miRBAse 21) (Hammond, 2015; Kozomara and
Griffiths-Jones, 2014).

Transcription of miRNA genes is mainly mediated by RNA poly-
merase II and to a lesser extent by RNA polymerase III (Ha and Kim,
2014; Ketting, 2010; Lee et al., 2004; Macfarlane and Murphy, 2010).
In general, miRNA genes are transcribed as several kilobase long
transcripts called primary miRNAs (Pri-miRNAs) (Cai et al., 2004). Pri-
miRNAs are processed in the nucleus to ~60-70-nucleotide long
miRNAs precursors (Pre-miRNAs) by the microprocessor, a complex of
proteins composed of the RNAs III enzyme Drosha and its binding
protein DGCR8 (Han et al., 2006). Subsequently, Pre-miRNAs are
transported by Exportin-5 from the nucleus to the cytoplasm where
they are trimmed by Dicer, another RNase III enzyme (Chendrimada
et al., 2005; Okada et al., 2009). Dicer products are 19-25 nt long RNA
duplexes with a 3’ 2-nt overhang. These miRNA duplexes are then
loaded into the RNA-induced silencing complex (RISC) which includes
the Ago proteins. The majority of miRNAs are produced by the cano-
nical method described above, however, there are many alternative
pathways for miRNAs biogenesis (Havens et al., 2012; Sibley et al.,
2012; Yang and Lai, 2011). These include miRNAs that are generated in
a microprocessor, or Dicer independent-ways (Coll et al., 2010;
Eckenfelder et al., 2017; Herrera-Carrillo and Berkhout, 2017; Shapiro
et al., 2010).

Once loaded to RISC, one strand of the miRNAs duplexes called the
passenger strand gets ejected, while the other strand referred to as the
guide strand directs the Ago proteins to the respective mRNA target(s)
(Hutvagner and Zamore, 2002a,b; Khvorova et al., 2003). The seed
region, positions 2-8 from the 5’ end of the guide strand is critical for
miRNA binding to its target (Bartel, 2009). Mutations in the seed region
of miRNAs have been shown to strongly impact the ability of miRNA to
bind its targets (Kertesz et al., 2007; Mencia et al., 2009). The majority
of miRNAs bind to 3’-UTR of mRNA targets, however, miRNAs can also
bind to the coding region of a gene (CDS) and 5’-UTR of their targets
(Gu et al., 2009).

The fate of miRNA targets depend on the level of complementarity
between the miRNA and mRNA target. Low complementarity induces
translational silencing, while high complementarity triggers degrada-
tion of mRNA (Bartel, 2004; Lewis et al., 2005). In both cases, miRNAs
lead to a decrease in expression of respective proteins. A single miRNA
can regulate hundreds of targets in an efficient way, conversely, mul-
tiple miRNAs can cooperatively regulate a single target (Zhou et al.,
2013). Besides their role in the suppression of gene expression, miRNAs
can also activate gene expression. The liver-specific miRNA, miR-122,
has been shown to significantly enhance hepatitis C virus (HCV) in-
fection and gene expression via binding to the 5-UTR of the viral RNA
and protecting it from exonuclease activity (Li et al., 2013). Similarly,
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miR-10a and miR-369-3p bind and activate expression of the ribosomal
protein and TNF-a mRNAs respectively (Orom et al., 2008; Vasudevan
and Steitz, 2007).

The accumulated evidence implicate miRNAs as gene regulators for
about 60% of protein-coding genes. miRNA regulations have been
shown to be critical for many vital mechanisms including maintenance
of homeostasis, disease pathogenesis, and immunological responses to
infection (Fulalio et al., 2012).

7. KSHV encodes miRNAs

Viruses have no miRNA processing machinery, yet many viruses
encode miRNAs in their genomes including viruses from herpesviruses,
adenovirus, polyomavirus, and retrovirus families (Cullen, 2011;
Gourzones et al., 2012; Kincaid and Sullivan, 2012; Lieber and Haas,
2011; Nourse et al., 2012; Zhang et al., 2014). The first virus that was
described to encode its own miRNA was Epstein-Barr virus (Pfeffer
et al., 2004). In fact, majority of herpesviruses that infect humans en-
code their own miRNAs including viruses from Table 1 (Kincaid and
Sullivan, 2012; Pfeffer et al., 2005; Wong et al., 2012).

One of the best examples of viruses that encode their own miRNA is
KSHV. KSHV-encoded miRNAs have been described independently by
several groups as early as 2005 (Cai et al., 2005; Pfeffer et al., 2005;
Samols et al., 2005). Subsequent work revealed that the KSHV genome
encodes 13 pre-miRNAs which are processed by cellular machinery to
yield 25 mature miRNAs (Table 1) (Gottwein et al., 2011; Guo et al.,
2017; Qin et al., 2017). The names, sequences, and locations of KSHV
encoded miRNAs and their precursors are provided in Table 2 (Lin
et al., 2010). Interestingly, KSHV-miRNAs have been shown to dom-
inate the small RNA sequencing data generated from KSHV infected B-
cell line BC-3 (Umbach and Cullen, 2010).

The majority of known KSHV-miRNAs are located in the latent locus
and expressed during the latent phase of virus infection (Cai et al.,
2005; Samols et al., 2005). KSHV-miR-K12-10 and KSHV-miR-K12-12
are expressed more during the lytic phase and located within ORF and
3’UTR of kaposin, respectively (Lin et al., 2010). The rest of KSHV-
miRNAs are expressed strictly during the latent phase from a ~4-kb
noncoding sequence located between the kaposin and ORF71 (v-FLIP)
genes (Cai et al., 2005; Gottwein et al., 2006; Qin et al., 2017).

8. KSHV-encoded miRNAs promote virus latency and
pathogenesis

Upon the discovery that KSHV encodes a considerable number of
miRNAs, the initial focus has been to study the contributions of these
miRNAs to KSHV infection and pathogenesis (Samols et al., 2007).
Subsequent work revealed that KSHV-encoded miRNAs are able to
regulate the expression of both viral and cellular genes that are essen-
tial to virus infection and the associated diseases (Dolken et al., 2010;
Guo et al., 2017; Happel et al., 2016; Li et al., 2016a; Qin et al., 2017;
Samols et al., 2007).
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KSHV-encoded miRNAs are expressed abundantly during the latent
phase of virus infection (Ueda, 2018). As latency is the default phase of
KSHV infection, several studies have focussed their interests in de-
termining the functions of these miRNAs in supporting viral latency
(Chen et al., 2013; Gottwein, 2012; Lei et al., 2010). In 2009, Bellare
and Ganem reported that the KSHV-miR-K12-9-5p inhibits virus re-
activation by targeting the expression of replication and transcription
activator (RTA), a KSHV immediate early gene, which is crucial for viral
reactivation from latency (Bellare and Ganem, 2009). Moreover, ele-
vated expression of RTA has been reported in cells infected with a
mutant KSHV lacking 14 of the virus-encoded miRNAs (Lei et al.,
2010). Similar studies conducted by Lu et al., using a mutant virus
indicated that the KSHV miRNAs maintain virus latency via targeting
many genes including RTA and cellular retinoblastoma (Rb)-like pro-
tein 2 (Rbl2) gene which regulate epigenetic reprogramming (Lu et al.,
2010).

KSHV miRNAs inhibit apoptosis of latently-infected cells via tar-
geting of apoptotic genes (Cai et al., 2005; Guo et al., 2017; Qin et al.,
2017). Suffert et al., reported that the HEK293 epithelial cells and DG75
cells expressing KSHV miRNAs were protected from apoptosis (Suffert
et al., 2011). Subsequently, they determined KSHV miRNAs, miR-K12-
1, -3 and -4-3p targeted Casp3 and block apoptosis. Inhibition of these
miRNAs with specific oligonucleotides directed to the seed regions
enhances apoptosis of KSHV-infected cells (Suffert et al., 2011).
Moreover, KSHV miRNAs modulate angiogenesis, signaling pathways,
cell cycle, cell migration, and adhesion which are critical to KSHV
dissemination and pathogenesis (Gallaher et al., 2013; Li et al.,
2016a,b; Liu et al., 2017; Samols et al., 2007). By this way, KSHV
miRNAs promote tumorigenesis.

KSHV miRNAs also enhance immune evasion and viral pathogenesis
by regulating host immune responses. Several groups independently
reported that the KSHV miRNAs impact the functions of immune ef-
fector cells and thus alter the secretion pattern of many cytokines in-
cluding IL-6, IL-8, and IL-10 (Boss and Renne, 2010; Gallaher et al.,
2013; Nachmani et al., 2009; Qin et al., 2010). The aberrent expression
of these cytokines is a necessity for KSHV-associated diseases
(Polizzotto et al., 2012; Tamburro et al., 2012).

9. Roles of cellular miRNAs in KSHV entry, replication, and
pathogenesis

Beside encoding its own miRNAs, KSHV infection has been shown to
significantly alter the expression of many cellular miRNAs. These
miRNAs, in turn, regulate KSHV entry, replication, pathogenesis, and
immune evasion (Choi et al., 2015; Qin et al., 2014). A miRNA mi-
croarray profiling of six paired KS and matched adjacent healthy tissues
revealed that 170 cellular miRNAs that were differentially expressed in
KS tissues compared to healthy tissues (Wu et al., 2015). A large
number (n = 101) of these miRNAs including miR-125b-1-3p and miR-
1183 were downregulated, while the rest (69 miRNAs) were upregu-
lated and that included miR-126-3p, miR-199a-3p, and miR-16-5p (Wu
et al.,, 2015). In a similar study, Catrina Ene et al., reported 185 dif-
ferentially expressed miRNAs (76 were upregulated and 109 were
downregulated) in KS tissues versus normal skin. The most significantly
downregulated miRNAs in this study were cellular miRNAs: miR-99a,
miR-200 family, miR-199b-5p, miR-100, and miR-335 (Catrina Ene
et al., 2014). Similar studies reporting profiling of cellular miRNAs in
KSHV-associated diseases has been conducted by several independent
groups (Chugh et al., 2013; Lagos et al., 2010; O’Hara et al., 2008,
2009).

Similar to KSHV-encoded miRNAs, cellular miRNAs can also pro-
mote viral latency by inhibiting reactivation (Frappier, 2015). Many of
the cellular miRNAs such as miR-498, miR-320d, miR-557, miR-766,
miR-1227, miR-1258, and miR-1301 have been shown to target mRNA
of viral lytic activator RTA (Murphy et al., 2008; Yan et al., 2013,
2014). HIV-1 viral protein R (Vpr) inhibits KSHV lytic cycle of
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replication via upregualting miR-942-5p and associated signaling that
targets IkBa (Yan et al., 2016). Recent studies by the same group de-
termined HIV-1 Vpr to upregulate another cellular miR-711 (Yan et al.,
2018). Vpr targets Notchl and thus inhibits NF-kB signaling which is
required to support KSHV lytic replication. Such a Vpr-induced decline
in NK-xB sinaling promotes expression of survival cytokines and pro-
liferation. KSHV-induced cellular miRNAs are also involved in KSHV-
induced angiogenesis. KSHV-K15, a viral oncoprotein has been shown
to induce cell migration and angiogenesis via upregulation of cellular
miR-21 and miR-31 (Tsai et al., 2009). Similarly, downregulation of
miR-221/miR-222 cluster by KSHV infection has been reported to en-
hance the migration pattern of endothelial cells (Wu et al., 2011). Thus,
KSHV-induced cellular miRNAs may function in unison with the KSHV-
encoded miRNAs to promote latency and tumorigenesis.

The majority of the preceeding studies have investigated the in-
duction and functions of miRNAs after KSHV has successfully estab-
lished latency. For the first time, studies from our lab explored the
ability of KSHV to alter expression of cellular miRNAs during early
stages of infection; as early as 15 min post infection (PI) (Hussein and
Akula, 2017b). We identified several cellular novel miRNAs which are
upregulated during the initial stages of KSHV entry. One of these
miRNAs, miR-36, was able to inhibit the entry of not only KSHV but
also related viruses, EBV and HSV-2 (Hussein and Akula, 2017a). miR-
36 inhibits virus entry via targeting the expression of interferon-in-
ducible transmembrane 1 (IFITM1), that functions as non-specific an-
tiviral protein. IFITM1 is a member of interferon-induced protein family
including IFITM1, IFITM2, IFITM3, IFITM5, and IFITM10. Human
IFITMs genes are located on chromosome 11 and are highly inducible
by type I and II interferons (IFNs) (Friedman et al., 1984; Hickford
et al., 2012; Reid et al., 1989). Based on IFITMs topologies, several
mechanisms have been proposed to explain their role(s) in virus entry.
However, the exact molecular mechanisms by which IFITMs inhibit or
enhance virus entry remain to be determined.

10. Cellular miRNAs mediate immunity against viral pathogens

Several viruses have been shown to significantly alter the expression
of cellular miRNAs in infected cells (Bruscella et al., 2017; Skalsky and
Cullen, 2010). This could be in part due to the mechanism by which
cells mount antiviral responses, or viral factors that inhibit cellular
responses and change the intracellular milieu to support virus replica-
tion and infection (Bruscella et al., 2017; Cullen, 2013; Gottwein, 2013;
Swaminathan et al., 2013; Trobaugh et al., 2014).

In general, the contributions of small RNAs to the antiviral response
in chordates remains elusive compared to plants, arthropods, and ne-
matodes (Cullen, 2010; tenOever, 2013). However, accumulating evi-
dence indicates a crucial role for cellular miRNAs in antiviral immunity
(Gantier et al., 2007; Skalsky and Cullen, 2010). Levels of miRNAs have
been shown to correlate with the expression of interferons during virus
infection (Lindsay, 2008; Pedersen et al., 2007). Pederson et al., have
shown that interferon B induced by HCV rapidly modulates the ex-
pression of numerous cellular miRNAs. In turn, several of these miRNAs
have been shown to target the HCV genome (Pedersen et al., 2007).
Similarly, dicer-deficient mice are more susceptible to infection with
cytomegalovirus and vesicular stomatitis virus (VSV) (Ostermann et al.,
2012; Otsuka et al., 2007). These studies demonstrate that the miRNAs
are critical to mounting rapid antiviral responses such as interferon and
interferon-inducing genes.

Cellular miRNAs have been shown to directly target the genome and
transcripts of many viruses including HIV, HCV, HBV, VSV, and KSHV
viruses (Chen et al., 2011; Forster et al., 2015; Jopling et al., 2005;
Nathans et al., 2009; Skalsky and Cullen, 2010). Kang et al., reported
cellular miR-1293 to target KSHV encoded IL-6, an essential protein for
KSHV-mediated diseases, especially in the inflammatory cytokine syn-
drome associated with KSHV infection in AIDS patients (Kang et al.,
2011). Interestingly, KSHV has also evolved mechanisms to use cellular
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miRNAs to evade antiviral innate immune responses. miR-123, a cel-
lular miRNA induced by KSHV in endothelial cells target the p300
transcriptional co-activator which negatively regulate the expression of
interferon-stimulated genes and enhance virus replication (Lagos et al.,
2010; Qin et al., 2014).

Studies from our laboratory described a crucial role for the KSHV-
induced cellular miR-36 to inhibit virus infection in both B and en-
dothelial cells which are the main targets of KSHV infection in vivo
(Hussein and Akula, 2017a). Interestingly, miR-36 was able to inhibit
infection of not only KSHV, but also EBV, and HSV-2 viruses. We were
able to detect up-regulation of miR-36 as early as 15 min post-KSHV
infection (Hussein and Akula, 2017b). Subsequently, we found that
miR-36 inhibits virus infection by targeting the expression of IFITM1
protein (Hussein and Akula, 2017a).

11. Targeting miRNAs for anti-viral and anti-cancer therapies

Cellular and viral miRNAs are attractive targets to design pathogen-
specific antiviral therapies (Bofill-De Ros et al., 2017; Bruscella et al.,
2017; Skalsky and Cullen, 2010). miRNA-based therapies could be
formulated in two different forms: mimicking miRNA functions using
miRNA-specific oligonucleotide mimics or silencing miRNA functions
by miRNA-specific antisense oligonucleotide inhibitors (anti-miRNA)
(Baigude and Rana, 2014; Reid et al., 2016; Tang and Tang, 2013).

There are several miRNA-based therapies currently being tested in
human clinical trials (Christopher et al., 2016; Titze-de-Almeida et al.,
2017). One of the most common examples of miRNA-based antiviral
therapy is miR-122 antisense oligonucleotide inhibitor (miravirsen,
Santaris Pharma, Hgrsholm, Denmark). Miravirsen has been shown to
be promising for treatment of HCV infection (de Jong and Jacobson,
2014; Janssen et al., 2013a,b). Interestingly, Miravirsen administration
to 36 patients with chronic HCV genotype 1 infection resulted in a re-
duction of 1.2 to 3.0 log international units (IUs)/mL in HCV RNA le-
vels in a dose-dependent manner without induction of virus resistance
(Janssen et al., 2013b). In a recent and more promising study, Van der
Ree et al., reported that the administration of 2 mg/kg or 4 mg/kg RG-
101, a hepatocyte targeted N-acetylgalactosamine conjugated anti-miR-
122 oligonucleotide, induced a significant reduction in HCV RNA levels
(van der Ree et al., 2017).

As discussed above, miRNAs are able to directly target the viral
genome, thus ubiquitously expressed miRNA can be harnessed to gen-
erate safe and effective live-attenuated vaccines (tenOever, 2013). In-
corporation of tissue-specific miRNA target sequences into attenuated
vaccines prevent the virus from replicating in this tissue (Drury et al.,
2017; tenOever, 2013). Insertion of neuronal-specific miR-124 target
sites into poliovirus genome inhibits the replication of the virus in the
central nervous system. The engineered virus strain was able to elicit a
strong protective immunity without producing neurovirulence in in-
fected animals (Barnes et al., 2008). A similar approach has been ap-
plied to engineer safe and effective live attenuated vaccine strains for
West Nile virus, dengue virus, influenza virus, VSV, and measles virus
(Brostoff et al., 2016; Drury et al., 2017; Heiss et al., 2011; Kelly et al.,
2010; Leber et al., 2011; Perez et al., 2009).

Similar to treating viral infections, miRNA-based therapies to treat
for many cancers including that of lung cancer, pancreatic cancer,
prostate cancer, colon cancer, ovarian cancer, and breast cancer are
currently at preclinical and clinical phases of development (Christopher
et al., 2016; Henry et al., 2011; Ibrahim et al., 2011; Liu et al., 2011;
Pecot et al., 2013; Pramanik et al., 2011; Trang et al., 2011). miR-221
silencing using chol-anti-miR-221 blocks hepatocellular carcinoma and
promote mouse survival. Chol-anti-miR-221 was able to inhibit tumor
cell proliferation and increase the markers of apoptosis and cell-cycle
arrest (Park et al., 2011). Targeting IFITM1 by employing mi-36-spe-
cific oligonucleotide mimics may yield anti-viral therapy to prevent
KSHV and associated herpesvirus infections.
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12. Conclusions

Modulation of gene expression is an integral part of the virus-host
relationship. KSHV exploits the cellular transcriptional machinery to
facilitate tissue invasion, establishment of infection, and maintenance
of latency. Among the molecular targets of KSHV are small, noncoding
miRNAs. These regulatory molecules are efficiently manipulated by
KSHV to evade immune surveillance and promote virus survival.
Accordingly, miRNAs have recently emerged as an attractive ther-
apeutic alternative for KSHV as well as other infectious agents and
diseases. Identification of the miRNA fingerprints of disease states and
elucidating their various roles in pathogenesis is therefore of con-
siderable interest. Our recent efforts have demonstrated that inhibiton
of miR-36 effectively prevents KSHV lytic replication by down-
regulating IFITM1; both in vitro and in vivo. Similarly, miRNA-based
interventions have successfully been employed against HCV, poliovirus,
and hepatocellular carcinoma with exceedingly encouraging results.
Hence, targeting miRNAs holds great promise to expand on the scope of
our existing arsenal of antiviral/cancer therapy and disease combating
strategies.
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