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Machine learning (ML) algorithms have the ability to automati-
cally learn and improve from experience without being specifically
directed. There has been great optimism that such techniques may
improve scientific biomedical research in several fields'. Although
conventional statistical modeling remains the method of choice
for etiology-driven and explanatory analyses, ML consists in an
interesting approach to identify new associations and patterns in
large datasets. This is particularly important now, as it has become
possible to generate large quantities of data from each study partic-
ipant, from sources such as high-resolution MRI imaging, serum
sample analysis, genome sequencing, and electronic medical re-
cords. Big data analysis by humans be limited not only by time
availability but also often biased by a priori knowledge of the
research subject. Not surprisingly, ML algorithms have been often
perceived as the holy grail of big data analysis'?, although they still
may have some important inherent limitations, such as selection
biases regarding included studies, overfitting of the regression
models and the questionable generalizability of its findings without
external prospective validation in the target group>*. This has led
some experts to view such type of big data analysis in a more crit-
ical way, especially regarding the relevance of the obtained results.
Despite having been deemed by some as having promising pros-
pects for osteoarthritis (OA) research®, some journal reviewers
have even come up with a new term, the so-called “NSQIP fatigue”
to describe the lack of scientific relevance of “one more additional
big data analysis based on the National Surgical Quality Improve-
ment Program”.

ML approach in osteoarthritis (OA) research is a relatively new
endeavor, but it may possibly open the door to exciting new ave-
nues, especially in terms of enabling better and more clinically rele-
vant subgrouping of affected patients. Decades of OA research have
unveiled several imaging findings, serum biomarkers and symp-
toms that are now considered important for understanding in OA
progression. Determining the relative importance of such variables
can lead to identification of new phenotypes of OA that represent
different pathways. A different approach is to define clinically
important outcomes and subsequently employ ML algorithms to
identify the relative contributions of each variable for each one of
them.

In a study published in this edition of OAC’, the authors
employed this latter strategy to analyze a large and well-
recognized database: the FNIH Biomarkers Consortium®. Within
the pre-specified list of variables in that dataset the authors
compared the relative importance of those in each clinically prede-
fined progression groups. Interestingly, the authors then used clus-
tering methods based on a standard score for each variables to
define disease progression based on imaging and pain for knee
OA at 48 months of follow-up.

https://doi.org/10.1016/j.joca.2019.04.005

In this study the authors employed some innovative statistical
techniques which have been found to be particularly useful in the
analysis of high dimensional low-sample size datasets. Distance
weighted discrimination (DWD), a technique proposed by Marron
et al.? relies on the comparison between the distance of vectors
(which represent each variable) in high-dimensional data.
Direction-Projection-Permutation (DiProPerm) is a framework
which uses DWD'? and was initially employed almost exclusively
in genetic studies of single-nucleotide polymorphisms'' where it
was shown to enable simultaneous analysis of several thousands
of variables. Recently DiProPerm has been used to phenotype and
subgroup analysis in OA studies.'”

The article by Nelson et al.” demonstrates the usefulness of ML
techniques for clustering important variables in predefined clini-
cally relevant subgroups with knee OA. Osteoarthritis is a heteroge-
neous disease, and selected biomarkers might help to identify high-
risk individuals and will potentially make interventional trials in
well profiled subgroups feasible. The horizon of such type of ana-
lyses, tend to keep on broadening. So far most studies have been
focusing on phenotyping biologically relevant subgroups and ML
has been employed to define biomarker panels from ‘omics’ and
imaging data'>'“. In the future, it is expected that such type of anal-
ysis would enable the identification of specific phenotypes with a
higher likelihood of improvement with specific treatment.

Ultimately, more than the direct impact of the specific results
which were obtained in this commendable study by Nelson et al.
(such as the observed influence of bone marrow lesions, osteo-
phytes, medial meniscal extrusion, and urine CTX-II upon knee
OA progression at 48 months), we believe the main value of this
article consists in its successful use of machine-learning tech-
niques. It is also reassuring for the OA research community to see
ML algorithms confirming the findings of previous studies. The ho-
rizon of this type of analysis, in terms of its dedicated hardware and
software platforms, will keep on broadening. As demonstrated by
the obtained results, such type of approach might be the key in
future research employing big data analysis to identify new and
clinically meaningful osteoarthritis patterns. Understanding pat-
terns of symptoms and trajectories of pain and functional decline
in OA is of paramount importance, especially in diseases in which
fluctuations of symptoms are common. With methods that are
now able to handle multivariate time series data sets this has po-
tential to identify variables which are important for each patient-
group in a specific time scale. This will hopefully support robust
study design and have a potential to make a step-change in
improving patients outcomes by distinguishing the responders
from the non-responders to a given therapy. With hypothesis
driven analyses it may be feasible to investigate overlap between
different known phenotypes based on suggested
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pathophysiological mechanisms, for example the potential overlap
between inflammatory and metabolic OA phenotypes. With more
unbiased data gathering and novel algorithms, including the recent
emergence of quantum ML algorithms'”, we might be able in the
near future to successfully define unexpected patient's phenotypes
linked with responsiveness to specific treatments. Such type of
research is highly relevant as currently available tools for clinical
and imaging diagnostics are still somewhat unsatisfactory, ulti-
mately leading to a delay in the development and testing of effec-
tive new OA modifying agents.
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