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Low-level cyclic tibial compression attenuates early osteoarthritis
progression after joint injury in mice
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Objective: Mechanical loading and joint health have a unique relationship in osteoarthritis (OA) onset
and progression. Although high load levels adversely affect cartilage health, exercise that involves low to
moderate load levels can alleviate OA symptoms. We sought to isolate the beneficial effects of me-
chanical loading using controlled in vivo cyclic tibial compression. We hypothesized that low-level cyclic
compression would attenuate post-traumatic OA symptoms induced by destabilization of the medial
meniscus (DMM).
Methods: 10-week-old C57Bl/6J male mice underwent DMM surgery (n ¼ 51). After a 5-day post-
operative recovery period, we applied daily cyclic tibial compression to the operated limbs at low
(1.0N or 2.0N) or moderate (4.5N) magnitudes for 2 or 6 weeks. At the completion of loading, we
compared cartilage and peri-articular bone features of mice that underwent DMM and loading to mice
that only underwent DMM.
Results: Compared to DMM alone, low-level cyclic compression for 6 weeks attenuated DMM-induced
cartilage degradation (OARSI score, P ¼ 0.008, 95% confidence interval (CI): 0.093 to 0.949). Low-level
loading attenuated DMM-induced osteophyte formation after 2 weeks (osteophyte size, P ¼ 0.033,
95% CI: 3.27e114.45 mm), and moderate loading attenuated subchondral bone sclerosis after 6 weeks
(tissue mineral density (TMD), P ¼ 0.011, 95% CI: 6.32e70.60 mg HA/ccm) compared to limbs that only
underwent DMM. Finally, loading had subtle beneficial effects on cartilage cellularity and aggrecanase
activity after DMM.
Conclusion: Low-level cyclic compression is beneficial to joint health after an injury. Therefore, the
progression of early OA may be attenuated by applying well controlled, low-level loading shortly
following joint trauma.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Osteoarthritis (OA) is a degenerative joint disease that affects
millions of individuals and is the leading cause of disability in the
elderly population1e4. The three hallmarks of the end-stage disease
are cartilage degradation, osteophyte formation, and subchondral
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bone sclerosis. During the OA process, chondrocytes undergo
apoptosis5, and collagenases and aggrecanases degrade the carti-
lagematrix6,7. Post-traumatic osteoarthritis (PTOA) is a subset of OA
associated with joint injury and instability due to mechanical
trauma8. Individuals who experience a joint injury, such as anterior
cruciate ligament (ACL) rupture or meniscal tear, are at risk for
developing PTOA due to altered joint kinematics and any trauma
directly to the cartilage or adjacent bone9,10. Providing in-
terventions following joint injury may be beneficial to attenuate
PTOA.

Mechanical loading, exercise, and joint health have a unique
relationship in OA onset and progression. Excessive mechanical
loading is a primary risk factor for OA11. Loading at high levels can
td. All rights reserved.
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decrease aggrecan synthesis and induce chondrocyte apoptosis12,13.
Furthermore, high loads can rupture stabilizing ligaments or
damage joint tissue, such as themeniscus or cartilage14. Conversely,
mild exercise is a recommended intervention for early-stage OA15.
Mild exercise involving low-level loading can increase aggrecan
synthesis in vitro and maintain thicker cartilage in vivo16,17. In ro-
dents, treadmill running slowed the progression of injury-induced
cartilage degradation18. Although low-level mechanical loading has
potential to attenuate OA16e19, most experiments investigating the
effects of beneficial loading have been either in vitro or involved
exercise. In vitro studies using cartilage explants and/or chon-
drocyte culture do not recapitulate the response of the entire
joint12,20. In addition, exercise leads to systemic effects, including
peri-articular muscular strengthening, improvements in proprio-
ception, and weight reduction21,22. These multiple effects obscure
the contribution of factors that specifically benefit the joint22. Here,
we sought to isolate the beneficial effects of low-level loading using
in vivo cyclic tibial compression.

To date, in vivo cyclic tibial compression has been an effective
approach to study the initiation and progression of load-induced
OA14,23,24. Cyclic compression at moderate (4.5N) and high (9.0N)
load magnitudes induced OA-like pathology, including cartilage
degradation, osteophyte formation, and subchondral bone changes,
in young (10-week) and adult (26-week) mice23e26. This same
approach has the potential to benefit cartilage health at lower load
levels that occur during normal gait27. Thus, we sought to deter-
mine whether daily cyclic compression at low load magnitudes
(1.0N and 2.0N) would attenuate PTOA. To accomplish this objec-
tive, we used low-level cyclic compression combined with
surgically-induced PTOA, using the destabilization of the medial
meniscus (DMM) model28. DMM-operated limbs maintain normal
kinematics during tibial loading, whereas joint subluxation occurs
with ACL transection, another PTOA model29. Following DMM and
loading, we assessed tissue-level changes in the cartilage, peri-
articular bone, and menisci. In addition, we analyzed chondrocyte
apoptosis, aggrecanase activity, and surface collagen loss. We
Fig. 1. Experimental design. 10wk C57Bl/6 male mice underwent destabilization of the m
operated limbs were either subjected to no loading (DMM-only),1.0N-loading (DMMþ1.0N
lateral limbs served as controls at each time point. n ¼ 7e8 mice per group. Arrows connectin
timepoints.
hypothesized that cyclic compression at low load magnitudes
would attenuate DMM-induced PTOA.

Methods

Animals

We used 10-week-old male C57BL/6J mice (n ¼ 51, The Jackson
Laboratory, Bar Harbor, ME, USA). DMM surgery in 10-week old male
mice leads to a robust, time-dependent progression of the dis-
ease24,28,30. 3e5micewere housedper cage. Lightingwasmaintained
at a 12-h-on-12-h-off schedule. Food and water were provided ad
libitum. All experimental techniques were approved by the Cornell
Institutional Animal Care and Use Committee (IACUC) and followed
Animal Research: Reporting of In Vivo Experiments (ARRIVE) guide-
lines31. Briefly, animals underwent DMMsurgery28. Starting at 5 days
after surgery, cyclic tibial compression was applied to the operated
limbs for either 2 or 6weeks. Upon completion of loading, knee joints
were analyzed by histology, immunohistochemistry(IHC), and
morphology.

DMM surgeries

We performed DMM surgery on the right knee joints of all
mice28. A 3 mm skin incision was made with a #15 blade to expose
the patellar tendon. Then, a soft tissue incision was made directly
medial to the patellar tendon from the distal patella to the proximal
tibial plateau. While the patellar tendonwas pulled laterally with a
Tyrell Hook (without dislocating the patella), the fat pad was
shifted laterally with a #11 scalpel blade until the medial menis-
cotibial ligament (MMTL) was exposed. Then, we positioned the
scalpel blade inferior to the MMTL with the sharp edge facing
laterally and rotated the blade clockwise until the MMTL ruptured.
To verify each surgery, we translated the medial meniscus medially
using the blunt edge of the scalpel. We closed the soft tissue and
skin incisions with 6-0 and 7-0 prolene sutures, respectively
edial meniscus (DMM) surgery on their right limbs. 5 days later (þ0-weeks), DMM-
), 2.0N-loading (DMMþ2.0N), or 4.5N-loading (DMMþ4.5N) for 2 or 6 weeks. Contra-
g panels demonstrate the experimental design and are used in all figures with multiple
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(8706H, 8708H, Ethicon). Buprenorphine (0.1 mg/kg, Reckitt, VA)
was administered immediately post-operatively, and once daily
thereafter for 4 days.

Mechanical loading and experimental design

After a 5-day recovery period from DMM19, mice were ran-
domized into seven groups (n¼ 7e8/group) (Fig. 1). One groupwas
euthanized immediately after the recovery period to investigate
short-term damage caused by DMM (DMM-only: þ0-weeks). Two
groups were þ2-week time points (following the 5-day recovery
period). For one þ2-week group, cyclic compression was applied to
DMM-operated tibiae at peak loads of 1.0N for 2 weeks
(DMMþ1.0N:þ2-weeks). The secondþ2-week group received daily
5-min doses of anesthesia without cyclic tibial compression (DMM-
only: þ2-weeks). The remaining four groups were þ6-week time
points (following the 5-day recovery period). For three þ6-week
groups, cyclic compression was applied to the DMM-operated
right tibiae at 1.0N, 2.0N, or 4.5N peak loads for 6 weeks
(DMMþ1.0N, DMMþ2.0N, DMMþ4.5N: þ6-weeks). The final þ6-
week group received daily anesthesia without tibial compression
(DMM-only: þ6-weeks).

For all loaded groups, the right limb received cyclic
compression under general anesthesia (2% isoflurane, 1.0 L/min,
Webster) using a custom-made tibial loading device32e34.
Loading consisted of 1200 cycles/day at 4 Hz for 5 days/week.
Load waveforms were triangular with load/unload ramps for
0.075 s each and dwell times of 0.100 s. Contralateral limbs
served as controls. Mice were euthanized by CO2 inhalation. Knee
joints were harvested and fixed in 4% paraformaldehyde. After
fixation, tissues were transferred to 70% ethanol for short-term
storage for microcomputed tomography (microCT) prior to
decalcification and sectioning.

Cartilage morphological changes

Knee joints were decalcified in ethylenediaminetetraacetic acid
(EDTA) and processed for paraffin embedding. Paraffin blocks were
sectioned at a 6-mm-thickness from posterior to anterior using a
rotary microtome (Leica RM2255, Wetzlar, Germany). To assess
cartilage morphology, sections were stained with Safranin-O/Fast
Green at 90-mm intervals. Histological OARSI scoring was per-
formed blinded by two observers to examine structural cartilage
damage in the medial tibial plateau35. Average and maximum
scores of each limb were calculated independently for each
observer, and these scores were averaged over the two observers.

Osteophyte formation

We examined Safranin-O/Fast Green-stained histological sec-
tions for osteophyte formation. We analyzed osteophytes in the
medial tibial plateau from three representative sections in the joint
(anterior, middle, posterior). Osteophyte maturity was evaluated
based on the degree of calcification of the ectopic bone36. We also
measured the medial-lateral width of the osteophyte, defined as
the distance between the medial end of the epiphysis and the end
of the osteophyte25.
Fig. 2. Low-level cyclic compression attenuated post-traumatic cartilage degradation. (A) Re
focal erosion extending to the tidemark in the medial tibial plateau in the DMM-only group
cartilage surface. Loading at 2.0N had similar effects to 1.0N-loading, with an intact cartila
teoglycan loss that was not different from DMM-only. (B) Average and (C) max OARSI scores
groups at þ6-weeks. (D) 2.0N-loading also led to lower average OARSI scores than DMM-
teoglycan loss; arrow heads indicate erosion. Mean ± SD shown with individual data points
two-factor ANOVA, followed by Tukey post-hoc tests (P < 0.05).
Peri-articular bone morphological changes

Bone architecture changes at the þ6-week time point were
determined by microCT. Prior to decalcification, intact knee joints
were scanned by microCT with an isotropic voxel resolution of
10 mm (mCT35, Scanco, Bruttisellen, Switzerland; 55 kVp, 145 mA,
600ms integration time).We examined the subchondral bone plate
(SBP) and cancellous bone in the epiphysis and metaphysis of the
proximal tibia25,26. SBP parameters included plate thickness and
tissue mineral density (TMD). Cancellous bone parameters
included bone volume fraction (BV/TV), trabecular thickness
(Tb.Th), trabecular separation (Tb.Sp), and cancellous TMD.

Chondrocyte apoptosis

We assessed chondrocyte apoptosis after DMM surgery and
1.0N-loading using a TUNEL kit to detect DNA strand breaks (Sigma,
11684795910 Roche, Darmstadt, Germany). We stained represen-
tative sections from the middle region of each limb at all time
points. Sections were deparaffinized, rehydrated, and incubated
with proteinase K at 37�C. Then, samples were incubated with the
TUNEL reaction mixture for 1 h at 37�C. Finally, sections were
mounted using antifade medium containing DAPI. The total area of
DAPIþ staining was measured in the articular cartilage of the
medial tibial plateau (ImageJ software, NIH)37,38. The DAPIþ signal
was normalized to cartilage area. TUNELþ staining was measured
and normalized to the DAPIþ signal to account for cellularity.

Aggrecanase activity

Aggrecanase activity was assessed in a subset using IHC. We
stained representative sections from the middle region of control
and DMM-operated limbs from animals in the DMM-only and
DMMþ1.0N groups at the þ2-week and þ6-week time points39.
Sections were deparaffinized, rehydrated, and incubated with a
mild temperature retrieval solution at 60�C for 30 min (UNI-
TRIEVE, Innovex, Richmond, CA). Endogenous peroxidase activity
was quenched for 15min at room temperature (RT) (PEROX-BLOCK,
Innovex). Background staining was minimized for 30 min at RT
(Background Buster, Innovex). Newly generated aggrecanase-
driven neoepitopes on aggrecan were detected using an anti-
NITEGE primary antibody (ThermoFisher PA-1-1746) with 1:100
ratio of immunodiluent for 2 h at RT. Secondary linking antibody
and horseradish peroxidase-enzyme (STAT Animal IHC Kit, Inno-
vex) were used for 10 min each at RT. Fresh DAB solution was
applied for 5 min at RT, and staining intensity was enhanced for
3 min at RT (Quick DAB Enhancer, Innovex). Sections were washed
with water and mounted (Advantage Mounting Medium, Innovex).
The total area of positive immunostaining in the articular cartilage
of the medial tibial plateau was calculated and normalized to
cartilage area (ImageJ software, NIH)37,38.

Surface collagen content

We assessed surface collagen content using picrosirius red
staining. We stained representative sections from the middle re-
gion of each limb at all time points. Sections were deparaffinized,
presentative Safranin O/Fast Green histological images show that DMM surgery led to
. Loading at 1.0N attenuated DMM-induced cartilage erosion, evident from the intact
ge surface after 6 weeks. Moderate loading at 4.5N resulted in mild erosion and pro-
for cartilage damage were significantly different between the DMM-only vs DMMþ1.0N
only, (E) but not lower max OARSI scores. Scale bars ¼ 100 mm. Arrows indicate pro-
overlaid. Different letters between bars indicate significant differences in the means by
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rehydrated, and incubated with 0.1% Direct Red 80 (SigmaeAldrich,
365548) in saturated picric acid for 60 min at RT, followed by
dehydration and mounting. Using custom software (MATLAB,
MathWorks), the number of positively stained pixels in the carti-
lage surface was counted and normalized to the total number of
pixels in the surface.

Synovitis

Synovitis was evaluated in representative anterior, middle, and
posterior sections at þ6-weeks. Enlargement of the cell layer and
cell density were individually evaluated40.

Meniscal ossicle morphology

Anterior meniscal ossicle morphology was characterized using
microCT. The volume of interest (VOI) included all positive signal in
the medial joint space, excluding the fabella. We assessed meniscus
volume and density41.

Statistical analyses

For histological evaluations, we compared limbs across groups
at þ6-weeks using a one-way ANOVA with animal as a random
effect. Parameters analyzed by one-way ANOVA included OARSI
Fig. 3. Low-level cyclic compression attenuated post-traumatic osteophyte formation. (A) R
to osteophyte formation on the anteromedial aspect of the tibial plateau as quickly as 5 days
2 and 6 weeks, but was not different between the DMMþ1.0N groups and þ0-week DMM
osteophyte formation in nearly all animals. (D) Posteromedial osteophyte size in the DMMþ
shown with individual data points overlaid. Different letters between bars indicate signific
(P < 0.05).
scores, osteophytes, cellularity, apoptosis, aggrecanase activity,
surface collagen content, and synovitis. OARSI scores, osteophytes,
aggrecanase activity, and surface collagen content from DMM-only
and DMMþ1.0N groups were examined across timepoints
of þ0, þ2, and þ6-weeks using a two-way ANOVA with group and
timepoint as variables, and animal as a random effect. Contralateral
limbs from the DMM-only group were used as controls for histol-
ogy. SBP, cancellous bone, andmeniscal ossicle measurements from
microCT at þ6-weeks were analyzed using a two-way ANOVAwith
limb and group as variables and animal as a random effect.
Normality was confirmed visually using histograms and QQ plots of
the residuals. Homogenous variance was assessed visually using
plots of residuals against predicted values.

Results

Low-level cyclic compression attenuated DMM-induced cartilage
degradation

After the 5-day recovery period post-DMM surgery (þ0-weeks),
cartilage damage was minimal [Fig. 2(A),(B),(C)]. Mild localized
proteoglycan loss occurred in some limbs, but neither average nor
maximum OARSI scores were different from control limbs at þ0-
weeks. 2 weeks after the 5-day recovery (þ2-weeks), proteogly-
can loss and mild erosion were present in DMM-only limbs. In the
epresentative Safranin O/Fast Green histological images indicate that DMM surgery led
post-surgery. (B) Anteromedial osteophyte size increased in the DMM-only groups after
-only group (C) Low-level cyclic compression completely suppressed posteromedial

1.0N group was lower compared to DMM-only groups. Scale bars ¼ 100 mm. Mean ± SD
ant differences in the means by two-factor ANOVA, followed by Tukey post-hoc tests
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DMMþ1.0N group at þ2-weeks, moderate proteoglycan loss was
visible in the cartilage. At the þ6-week time point, severe cartilage
erosion occurred in DMM-only limbs. In the DMMþ1.0N group
at þ6-weeks, the cartilage surface was generally intact, and struc-
tural changes were limited to focal proteoglycan loss. Atþ6-weeks,
average, but not maximum, OARSI scores in the DMMþ1.0N group
were significantly lower than scores from the DMM-only limbs
(Table (S)-1).

Cyclic compression at 2.0N had similar effects to 1.0N-loading
at þ6-weeks [Fig. 2(A),(D),(E)]. The cartilage surface from 2.0N-
loaded limbs was generally intact, but proteoglycan loss was
evident. At þ6-weeks, average OARSI scores were significantly
lower in the DMMþ2.0N group compared to the DMM-only group.
Loading at 4.5N led to moderate cartilage erosion and proteoglycan
loss. At þ6-weeks, OARSI scores were not significantly different
between the DMM-only and DMMþ4.5N groups.
Low-level cyclic compression attenuated DMM-induced osteophyte
formation

Low-level tibial compression attenuated early osteophyte
growth on the posteromedial aspect of the tibial plateau (Fig. 3).
Posteromedial osteophytes formed in the DMM-only groups at all
time points. Growth was attenuated with 1.0N-loading at þ2-
weeks, but not at þ6-weeks [Fig. 3(A) and (B)]. In addition, osteo-
phyte maturity at þ6-weeks was lower in the DMMþ1.0N group
compared to the DMM-only group (Table (S)-2).

On the anterior portion of the tibial plateau, medial osteophyte
size increased after the 5-day recovery period in the DMM-only
group (þ0-weeks) compared to controls [Fig. 3(C) and (D)]. Ante-
romedial osteophyte size continued to increase in the DMM-only
and DMMþ1.0N groups after 2 and 6 weeks. Anteromedial osteo-
phyte maturity was not different between DMM-only and
DMMþ1.0N groups.
Fig. 4. Low-level cyclic compression attenuated post-traumatic subchondral bone
sclerosis. (A) At the þ6-week time point, subchondral bone plate (SBP) tissue mineral
density (TMD) increased in the medial tibial plateau in DMM-only limbs compared to
contralateral control limbs. TMD was not different between control and operated limbs
in the 1.0N-, 2.0N-, or 4.5N-loaded groups. (B) Mice in the DMM-only group had thicker
medial subchondral cortical bone compared to mice in the moderate load group
(DMMþ4.5N). Mean ± SD shown with individual data points overlaid. Different letters
between bars or groups indicate significant differences in the means by two-factor
ANOVA, followed by Tukey post-hoc tests (P < 0.05). Asterisk on y-axis title in-
dicates significance by post-hoc comparisons for control vs DMM-operated limbs.
Loading attenuated DMM-induced subchondral bone sclerosis but
not cancellous bone loss

At all load levels cyclic compression attenuated subchondral
bone sclerosis after DMM surgery (Fig. 4, Table (S)-2). Atþ6-weeks,
DMM led to a significant increase in TMD in the medial SBP
compared to control limbs in the DMM-only group [Fig. 4(A)]. DMM
surgery followed by 1.0N-, 2.0N-, or 4.5N-loading did not result in
increased TMD in DMM-operated limbs compared to control limbs.
However, TMD in DMM-only and DMM-loaded limbs was not
different. SBP thickness was greater in the DMM-only group than
the DMMþ4.5N group [Fig. 4(B)].

At þ6-weeks, cancellous bone volume fraction (BV/TV) in the
epiphysis decreased in DMM-operated limbs compared to control
limbs in all groups, regardless of whether the limbs underwent
loading (Fig. (S)-1(A)). The decreased BV/TV was due to increased
trabecular separation (Tb.Sp) following DMM (Fig. (S)-1(B)).
Trabecular thickness (Tb.Th) was not different among any of the
groups (Fig. (S)-1(C)). The DMM-only group had higher TMD
compared to the three loaded groups (Fig. (S)-1(D)).

Similarly, bone loss occurred in the metaphysis at þ6-weeks
after DMM surgery, regardless of whether the limbs underwent
loading (Fig. (S)-2(A)). Tb.Sp was greater in all DMM-operated
limbs compared to control limbs (Fig. (S)-2(B)). DMM surgery did
not induce any changes in metaphyseal Tb.Th (Fig. (S)-2(C)). Lastly,
TMD was lower in all DMM-operated limbs compared to control
limbs, regardless of whether the limbs underwent loading (Fig. S-
2D).
Low-level loading had subtle beneficial effects on chondrocyte loss
and apoptosis

Chondrocyte numbers decreased following DMM surgery,
indicated by a loss of DAPIþ signal [Fig. 5(A) and (B)]. At þ0-weeks,
cellularity was not different between DMM-only and control limbs.
At þ2-weeks, small localized areas of the cartilage had decreased
cellularity in the DMM-only and DMMþ1.0N groups. At þ6-weeks,
the DMM-only group had the least number of remaining cells with
large portions of the tibial plateau lacking cellularity. DAPIþ stained
cells in the þ6-week DMM-only group were lower compared to
the þ2-week DMM-operated limbs. DAPIþ stained cells in the þ6-
week DMMþ1.0N group were not significantly different from
the þ2-week groups but were lower than þ6-week controls
(Table (S)-1).



Fig. 5. Low-level cyclic compression had subtle beneficial effects on cellularity and apoptosis. (A) Representative DAPI (blue) overlaid with TUNEL (green) images show chondrocyte
loss and apoptosis following DMM surgery, with the greatest degree of cell loss in the þ6-week DMM-only group. (B) Cellularity decreased in the þ6-week DMM-only group
compared to the þ2-week DMM-only limbs, whereas cellularity in the þ6-week DMMþ1.0N group was not different from the þ2-week timepoint. However, cell loss was not
different between the and DMM-only and DMMþ1.0N groups at the þ2-week and þ6-week time points. (C) Chondrocyte apoptosis increased after DMM surgery. At þ2-weeks,
apoptosis levels in the DMM-only group were not different from þ6-week levels, whereas the increase in apoptosis in the DMMþ1.0N group was delayed. However, chondrocyte
apoptosis was not different between the DMM-only and DMMþ1.0N groups at the þ2-week and þ6-week time points. Scale bars ¼ 100 mm. Arrow heads denote apoptotic cells.
Yellow curves designate tibial cartilage surface. Mean ± SD shownwith individual data points overlaid. Different letters between bars indicate significant differences in the means by
one-factor ANOVA, followed by Tukey post-hoc tests (P < 0.05).
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Subtle differences in chondrocyte apoptosis were evident
among groups [Fig. 5(A),(C)]. Minimal apoptosis occurred in
the þ0-week DMM-only group. TUNELþ staining increased slightly
at þ2-weeks in the DMM-only group but was not significantly
different fromþ0-week levels. Atþ6-weeks, apoptosis levels in the
DMM-only and DMMþ1.0N groups were not different from each
other and were higher compared to the þ0-week timepoint.
However, at þ2-weeks, TUNELþ staining in the DMM-only group
was not different from þ6-week levels, whereas the increase in
TUNEL in the DMMþ1.0N group was delayed.

Low-level loading had subtle beneficial effects on aggrecanase
activity

NITEGE neoepitope levels in the DMM-only and DMMþ1.0N
were not significantly different from control limbs. However, DMM-
only limbs had a mean increase of 116% in aggrecanase activity
compared to control limbs, whereas DMMþ1.0N limbs had an
increase of 53% compared to control limbs. In addition, NITEGE
neoepitope levels decreased by 59% from þ2-weeks to þ6-weeks
(Fig. 6).

Loading had no effect on surface collagen content

Surface collagen content decreased with time in both DMM-only
and DMMþ1.0N groups (Fig. S-3). At þ6-weeks, limbs from the
DMM-only and DMMþ1.0N groups had lower surface staining
compared to the þ0-week DMM-only group. However, picrosirius
red staining between the DMM-only and DMMþ1.0N groups was
not different (Table (S)-1).

Synovitis scores did not change with DMM or loading

At þ6-weeks, synovial changes (cellular density and synovial
enlargement) were not different among control, DMM-only, and
loaded limbs (Fig. (S)-4).



Fig. 6. Low-level cyclic compression had subtle beneficial effects on aggrecanase activity. (A) Representative IHC images show NITEGE immunostaining in control, DMM-only, and
DMMþ1.0N at the þ2-week and þ6-week time point, with the highest levels of positive immunostaining in the DMM-only group. (B) Aggrecanase activity was 116% higher in DMM-
only limbs compared to control limbs, and only 53% higher in DMMþ1.0N limbs compared to controls. However, these changes were not significant due to small sample size. Scale
bars ¼ 100 mm. Arrow heads indicate positive signal. Mean ± SD shown with individual data points overlaid.
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Loading had no effect on DMM-induced meniscal ossicle expansion

At þ6-weeks, DMM surgery increased anteromedial meniscal
ossicle volume compared to control limbs in all groups, regardless
of whether the limbs underwent loading (Fig. (S)-5(A),(B)).
Meniscus volume in DMM-operated limbs was approximately 1.5x
the volume of control limbs. In addition, meniscal ossicle density
decreased after DMM surgery (Fig. (S)-5(C)).

Discussion

We examined whether non-invasive axial compression at low
load magnitudes could attenuate PTOA progression following
DMM. We hypothesized that low-level cyclic tibial compression
would slow DMM-induced OA-like changes. After 6 weeks, limbs
that underwent DMM surgery without additional loading had
cartilage erosion extending to the tidemark, osteophytes on the
medial tibial plateau, and sclerotic subchondral bone, consistent
with previous studies28. In addition, DMM-only limbs had
decreased cellularity, loss of surface collagen, meniscal growth,
cancellous bone loss, and a trend towards increased aggrecanase
activity. Low-level cyclic compression initiated 5 days after DMM
surgery attenuated many DMM-induced changes, including the
hallmarks of OA: cartilage erosion, osteophyte formation, and
subchondral bone sclerosis. Furthermore, low-level loading had
subtle beneficial effects on cellularity, and a trend towards less
aggrecanase activity compared to DMM-only limbs. However,
loading did not attenuate cancellous bone loss, meniscal growth, or
surface collagen loss. Overall, these results support our hypothesis
that low-level cyclic compression can slow the progression of
DMM-induced OA.

The effect of low-level cyclic tibial compression in the knee was
opposite that of tibial compression at higher load magnitudes.
Previously, cyclic tibial compression studies focused on the induc-
tion of OA-like damage following high levels of mechanical
loading23,24. Loading at 9.0N caused cartilage erosion, osteophyte
formation, and subchondral bone changes in both 10- and 26-
week-old mice. Moderate loading at 4.5N caused mild cartilage
surface degradation in 26-week-old mice, but minimal bone
changes. In the current study, the 4.5N load level was expected to
exacerbate DMM-induced OA progression in 10-week-old
mice24,25. However, the OA severity in the DMMþ4.5N and DMM-
only groups was not different; therefore, the 4.5N-load may be an
intermediate level that is neither protective nor damaging in 10-
week-old male mice. This outcome may reflect different effects of
loading with a DMM-operated knee vs a healthy knee and with
animal age. Low-level cyclic compression at 1.0N or 2.0N attenu-
ated damaging effects from DMM surgery in 10-week-old mice.
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Overall, a dose response to load magnitude was evident. These
results demonstrate the importance of loadmagnitude in the joint's
response to tibial loading. In addition, the constant load/unload and
dwell times across waveforms resulted in lower strain rates at
lower load magnitudes. Strain rate is an independent parameter in
the cartilage response to compression12; therefore, the lower strain
rates during the lower-magnitude loading may also have promoted
joint health.

The beneficial effects of cyclic axial compression were compa-
rable to other noninvasive preclinical loading regimens. To our
knowledge, the only beneficial reports of in vivo cyclic loading
involved transverse loading of the knee in the medial-lateral di-
rection at 1.0N for 2 weeks after surgical induction of OA in
mice19,42,43. Low-level transverse knee loading attenuated post-
traumatic cartilage damage and bone mineral density changes.
Therefore, low-level loading of the knee joint in both the medial-
lateral and axial directions can attenuate cartilage and bone
changes after injury. However, osteophyte formation has not been
examined with transverse knee loading in the medial-lateral di-
rection. In addition, transverse loading of the knee rarely occurs
during activities of daily living, whereas axial joint loading occurs in
most lower extremity exercises (i.e., walking, running, etc.). Thus,
our findings support the direct beneficial effects of axial loading on
articular cartilage during exercise.

Controlled, low-level loading was equally as effective, if not
more effective, compared to preclinical exercise regimens used to
benefit joint tissues. Activities involving mild to moderate me-
chanical loading of joints enhanced articular cartilage in multiple
preclinical studies17,18,44,45. Mice with lifelong access to running
wheels maintained thicker cartilage compared to mice without
running wheels17. In addition, low-intensity (30min/day) treadmill
exercise attenuated cartilage degeneration in rats after DMM44.
However, gentle treadmill walking did not affect osteophyte for-
mation after DMM44, whereas low-level cyclic compression
significantly attenuated DMM-induced posteromedial osteophyte
formation in our study. The posterior region showed the most
significant changes, most likely because during tibial loading the
contact point occurs in the posterior region of the tibial plateau29.
Furthermore, the success of controlled loading following DMM in
mice may reflect the lesser degree of joint instability associated
with the DMMmodel compared to other ligament injury models29.
In destabilization models associated with increased joint laxity,
such as ACL transection or rupture, in vivo loading may exacerbate
joint instability and produce extreme kinematics. Nonetheless,
although exercise is beneficial to articular cartilage, low-level cyclic
compression resulted in additional benefits to joint tissues
following DMM, possibly due to the controlled nature of the
loading protocol.

The cartilage response to mechanical loading at the cellular and
protein levels depends on load-induced strain levels46. Low-level
cyclic compression likely resulted in a beneficial response due to
healthy tissue strains. The applied load was equal to 3e4x body
weight, similar to loads applied during normal gait27. In turn, these
dynamic physiologic strains may have induced anabolic, anti-
catabolic, or anti-inflammatory effects46, attenuating PTOA.
Therefore, we expected beneficial effects from loading at the
cellular and protein levels. Based on our TUNEL data, low-level
loading had subtle protective effects on cellularity and apoptosis.
In addition, although significance was not observed due to small
sample size, increases in aggrecanase activity were approximately
double in DMM-only limbs compared to DMMþ1.0N limbs. The
surface collagen content was not retained with 1.0N-loading, but
more intact cartilage tissue remained in the DMMþ1.0N groups
compared to the DMM-only groups. Further investigation of the
mechanisms at the cellular and molecular levels will elucidate the
beneficial effects of low-level cyclic strain on joint health.

The translation of these findings from mice to humans is
important. Although cartilage strain levels during static murine
tibial compression have been approximated using computational
models47, stresses and strains resulting from dynamic cyclic
compression should be quantified. Clinically, novel imaging mo-
dalities can determine cartilage strain after physical activities48e50,
and computational models can be used to predict load-induced
cartilage stresses and strains51,52. With the appropriate load mag-
nitudes and resultant physiological strains, controlled loading
regimens could improve post-traumatic treatment of joints. For
example, crutches and braces frequently are used to reduceweight-
bearing following ACL injury53. Reduced weight-bearing and
unloading protect against DMM-induced post-traumatic OA pro-
gression54. Here, low-magnitude loading overcame adverse
stresses associated with habitual cage activity following DMM
surgery. Combined, low-level loading could be even more effective
in attenuating post-traumatic OA progression in the absence of
habitual activity. Further research is necessary to determine the
optimal timing and magnitude of post-traumatic loading to benefit
the injured joint55.

In conclusion, controlled low-level cyclic loading was beneficial
to joint health and attenuated PTOA following DMM. Although
protection was not observed in all regions of the knee joint, carti-
lage erosion, osteophyte formation, and subchondral bone sclerosis
were attenuated. Low-level cyclic compression was equally as
effective, if not more effective, in attenuating OA-like changes
compared to similar non-invasive approaches. The beneficial ef-
fects were likely due to healthy tissue strains achieved by the low
load magnitudes. Future work needs to focus on molecular events
that result from low-level loading and translation to clinical use. In
addition, although male mice develop PTOA rapidly and are used
frequently in published studies involving the DMMmodel56, future
work needs to explore sex-dependent differences in the develop-
ment and attenuation of PTOA by examining the effects of low-level
loading in female mice. Ultimately, rehabilitation protocols
following joint injury may benefit from controlled, low-level cyclic
compression to maintain healthy cartilage and attenuate the
development of PTOA.
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