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Identifying key gait features associated with the radiological grade of
knee osteoarthritis
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Purpose: Knee osteoarthritis (KOA) is characterized by pain and decreased gait function. This study
assessed key features that can be used as mechanical biomarkers for KOA severity and progression. The
identified features were validated statistically and were further examined by developing a classification
model based on a machine-learning algorithm.
Methods: The study included 227 volunteers with various grades of KOA. The severity of KOA was graded
using the KellgreneLawrence (KL) system. A total of 165 features were extracted from the gait data. The
key features were selected using neighborhood component analysis. The selected features were validated
using the t-test. Then, the features were examined by building a classification model using a random
forest algorithm.
Results: Twenty features were identified that could discriminate the grade of KOA, including nine fea-
tures extracted from the knee joint, seven from the hip, two from the ankle and two from the spatio-
temporal gait parameters. The t-test showed that some features differed significantly between health and
sever group, while some were significantly different among the severe group, and others were signifi-
cantly different for all KL grades. The areas under the receiver operating characteristic curves for clas-
sification were 0.974, 0.992, 0.845, 0.894, and 0.905 for KL grades 0 through 4, respectively.
Conclusion: Key gait features reflecting the grade of KOA were identified. The results of the statistical
analysis and machine-learning algorithm show that the features can discriminate the severity of disease
according to the KL grade.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Osteoarthritis (OA) is a leading cause of disability. More than
250 million people suffer from OA worldwide, and 1e2% of the
gross national product is spent on OA1,2. With the aging population,
the number of knee OA (KOA) patients is expected to grow rapidly
and the number of patients requiring Knee osteoarthritis (KOA)
surgery is expected to sextuple by 20303. KOA is characterized by
pain and gait dysfunction, which worsen as the stage of KOA
progresses4.
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As gait function, an overall gait performance, declines with
progression of the disease, an objective, comprehensive evaluation
of gait function would assist with the prognostic evaluation and
treatment decisions. Effort has been made to evaluate gait function
using patient-reported outcome measures (PROMs), including the
Western Ontario & McMaster Universities Osteoarthritis Index
(WOMAC) and Knee Society Function Score (KSFS). Although these
well-known indexes are used to measure joint function, these
measures have low repeatability and are readily affected by the
patient's pain and emotions5.

Modern gait analysis is a powerful technique that provides
biomechanical information about joints and is objective and
repeatable compared with other methods. Gait analysis provides
multiple temporalwaveforms for each joint in the lower limbs.With
this method, gait dysfunction can be evaluated objectively in in-
dividuals with joint disease, including KOA. However, the large
td. All rights reserved.
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volume and high complexity of data are significant barriers to its
clinical application6. The method most commonly used to resolve
this issue involves extracting specific features from the original data.

Several features are correlatedwith KOA severity4,7,8. Kean et al.9

reported that the knee adduction moment (KAM) impulse was
positively correlated with the severity of disease. Spatiotemporal
gait parameters, including speed, cadence, and duration of the
stance phase, differ significantly in KOA patients and asymptomatic
groups10. However, most previous studies concentrated on specific
joints, such as KAM, and features were separated into trends, un-
suited for clinical application. To make gait data more applicable
clinically, we first sought to extract as many features from various
joints as possible and then to identify key features by
KellgreneLawrence (KL) grade.

This cross-sectional study analyzed the gait data of subjects
ranging from no KOA to end-stage KOA. We hypothesized that the
patients' gait function would decrease gradually with the stage of
KOA and specific features would change with the progression. This
study sought key features that can beused asmechanical biomarkers
of KOA progression and validated the identified features by devel-
oping a classificationmodel based on amachine-learning algorithm.

Materials and methods

Participants

This study was approved by our Institutional Review Board (IRB
no.1810-004-974).Written informed consent was obtained from all
participants This studywas performedwith the database of our gait
lab. The database consists of the gait reports of the various degrees
of knee OA patients and healthy volunteers from 2012 to 2017. The
inclusion criteria of the database were healthy volunteers or knee
OA patients who decided to participate the gait analysis and X ray
analysis. The subjects' medical records were obtained, and all par-
ticipants underwent a physical examination and standing, knee-
extended position, full-limb radiography of the knee. We
excluded 397 subjects based on the following criteria: (1) patients
who lacked some data for both legs (n ¼ 202); (2) patients
aged > 70 or < 20 years (n ¼ 22); (3) spine disease, hip, or ankle
arthritis on X-ray (n ¼ 12); (4) inflammatory or traumatic arthritis
of the knee (n ¼ 6); (5) any prior bone surgery in the lower ex-
tremities (n ¼ 4); and (6) All participants with equal KL grades for
both knees. (n ¼ 151). Consequently, 227 unilateral subjects with
KOA participated in this study. The degree of KOA was determined
using the KL grading system. Table I summarizes the participants'
demographic characteristics and walking speed.

Data collection

All gait analysis data, including kinetic, kinematic and
spatialetemporal, were collected at the Human Motion Analysis
Laboratory of Seoul National University Hospital. The subjects were
asked to walk for a few minutes to get used to the setting. After
warming up, an operator with 19 years of experience placed
reflectivemarkers on the subjects based on theHelenHayes set. The
Table I
Subject characteristics

KL 0 KL 1 KL 2

age 59.08 (18.77) 61.69 (6.01) 65.13 (9
height 158.91 (10.42) 156.87 (6.51) 158.07
weight 64.99 (13.46) 60.02 (8.51) 65.27 (1
BMI 25.59 (3.62) 24.32 (2.31) 26.09 (3
TS 95.52 (26.69) 105.97 (17.11) 93.81 (2
subjects were asked to walk along a 9-m track. Motion data were
collected using twelve charge-coupled device cameraswith a three-
dimensional optical motion capture system (Motion Analysis Corp.,
Santa Rosa, CA, USA) at a sampling frequency of 120 Hz. The kinetic
data was obtained with two force plates which is embedded in the
floor. The kinetic and kinematic data for each joint were averaged
after five or six trials of the 9-mwalk and then used as study data.

Radiographic assessment

The entire radiographic evaluation was performed indepen-
dently by two authors with fellowship training in arthroplasty who
were blinded to other information on the study subjects. KOA was
graded using the KL scale11. The two authors discussed about the
grading and made a consensus. The inter-observer reliability of the
radiological assessment was satisfactory (Kappa value: 0751). All
radiographic images were acquired digitally using a picture
archiving and communication system (Maroview 5.4; INFINITT
Healthcare, Seoul, Korea).

Statistical analysis

All data analyses and classifications were performed using
MATLAB 2017a (MathWorks, Natick, MA, USA). In all, 149 features
were extracted from the kinetic and kinematic data for the hip,
knee, and ankle in the gait analysis data. These features are
extracted by calculating the area under the curve, maximum value
during swing phase, Kurtis, area of absolute value of the curve, and
other characteristic of the kinetic and kinematic curves. An addi-
tional 16 gait characteristics were selected as features for the
classificationmodel, such as velocity and cadence. All features were
extracted only from the right leg. We analyzed only the right leg to
remove statistical dependency from multiple observation from
single individuals12. Neighborhood component feature selection13

was performed to reduce the number of features. Neighborhood
component feature selection performs regularization to obtain
feature weights by minimizing the error for leave-one-out classi-
fication. Features with approximately zero feature weight were
excluded. The remaining features were identified as key features
and were used for the classification model. The student’s t-test was
performed to identify differences in the features among KL grades.

A random forest algorithm was used to build a classification
model using the selected features. Random forest is a type of
ensemble learning, constructed with multiple number of decision
tree. Random forest was selected as a classifier because have been
widely used and validated in various fields14,15. To resolve the class
imbalance problem, we oversampled the dataset for KL grades 0e3
using adaptive synthetic sampling16. A 10-fold cross-validation
method was used to validate the models. Each class was divided
randomly into ten different subsamples; nine subsamples were
used to train the model, and the remaining subsample was used for
validation. This process was repeated ten times, using a different
subsample for validation each time. The models were further
examined using the area under the receiver operating characteristic
curve (AUROC).
KL 3 KL 4 P-value

.23) 63.98 (7.56) 67.14 (10) 0.01
(7.88) 156.44 (7.9) 155.14 (8.26) 0.17
0.58) 63.97 (9.65) 63.5 (10.81) 0.55
.7) 26.08 (2.87) 26.29 (3.3) 0.36
1.25) 92.78 (22.1) 80.55 (21.74) <0.01
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Results

Among the 165 features extracted from the gait analysis data, 20
features (9 from the knee, seven from the hip, two from the ankle
joint, and two spatiotemporal parameters) remained after the
neighborhood component analysis (NCA) feature selection and
were selected as the final features. The gait parameters included as
key features were: knee extension moment, knee abduction
moment, knee rotational moment, knee flexion angle, hip abduc-
tion moment, hip extension moment, hip extension angle, ankle
dorsiflexionmoment, cadence and stride length. Figure 1 shows the
averaged values of representative parameters for each KL grade.
Table II shows the means and standard deviations with the results
of the t-tests. Table III shows the confusion matrix and AUROC of
the classification model, with the receiver operating characteristic
(ROC) curve shown in Fig. 2. The respective AUROC values were
0.974, 0.992, 0.845, 0.894, and 0.905 for KL grades 0 to 4. The
sensitivity of the model was 73.5% and the specificity was 93.6%.
The 95% confidence interval was 0.045 and 0.025 respectively.

Discussion

This study shows that gait function decreased gradually as the
severity of KOA increased by identifying key gait features and
Fig. 1. Mean values of representative gait parameters for each KL grade where features were
moment, and d) ankle dorsiflexion moment. All three moments were normalized using we
classifying the patients by their severity of disease using the
identified key features and machine algorithms. Our study differs
from previous ones in three ways. First, instead of extracting the
features with traditional methods, such as peak or minimum
values, we used methods that contain overall information on gait
data, including the root mean square (RMS) and kurtosis, and
selected key features using a validated algorithm. Second, this
study identified the statistical significance among all KL grades,
whereas previous studies have shown only the difference between
control and patient groups. Lastly, we used a machine-learning
algorithm to discriminate the severity of KOA for further valida-
tion of our features.

The parameters listed in Table II are well-known joint parame-
ters that have significantly different values at each stage of the
disease. Kean et al.9 reported that a feature extracted from the KAM
during gait can distinguish individuals with different KL grades.
Thorp et al.17 reported that the same feature extracted from the
KAMdiffered significantly among the control (KL grade 0 or 1), mild
(KL grade 2), and moderate (KL grade 3) groups. Other parameters
in Table II have also been reported18e20. Weidow et al.21 reported
that the maximum hip extension angle was smaller for OA patients
compared with controls and that the peak hip flexion moment was
also smaller in patients. They also showed that the knee flexion
angle decreased in lateral OA patients. Astephen et al.19 reported
extracted from the a) knee abduction moment, b) knee flexion angle, c) hip abduction
ight � height.



Table II
Key features selected using NCA

Joint Parameter Feature KL 0 KL 1 KL 2 KL 3 KL 4

Knee Extension Moment Variance 4.73 (3.94) 5.14 (3.52) 4.52 (5.11) 4.05 (2.91) 3.65 (3.56)
Abduction Moment Area during the stance phase 170.84 (94.28)1,4 134.07 (40.18)0,2,3,4 170.14 (90.26)1 188.14 (107.09)1 217.5 (123.9)0,1

Area under the curve 172.95 (92.44)1,4 137.48 (39.97)0,2,3,4 172.84 (89.65)1 189.87 (105)1 217.61 (121.13)0.1

Area of the absolute value 183.49 (94.12)1,4 149.36 (36.94)0,2,3,4 183.72 (91.87)1,4 205 (96.73)1 232.85 (116.75)0,1,2

Rotational Moment Area during the stance phase �37.72 (21.27)1,4 �30.97 (12.14)0,2,3,4 �39.56 (22.05)1 �40.8 (24.13)1 �48.28 (27.44)0,1

Flexion Angle Area of the absolute value
during the stance phase

1142.65 (428.89)1 992.52 (240.7)0,3,4 1099.14 (282.18)4 1202.14 (509.65)1 1348.7 (624.77)1,4

Area of the absolute value 2624.46 (447.93) 2760.66 (446.49) 2725.03 (375.22) 2762.38 (598.36) 2811 (753.56)
RMS 1152.65 (409.26)1 992.52 (240.7)0,3,4 1099.4 (281.46)2 1204.97 (504.2)1 1385.88 (542.79)1,4

Mean 2634.45 (421.86) 2760.66 (446.49) 2725.28 (374.67) 2765.46 (592.17) 2850.24 (676.52)
Hip Abduction Moment Area under the curve 301.31 (106.51) 285.52 (36.71)2 325.26 (117.3)1,4 299.05 (98.29)4 255.36 (114.46)2,3

Area of the absolute value
during the stance phase

301.52 (105.7) 283.88 (35.37)2 322.72 (116.18)1,4 298.93 (97.22) 259.13 (113.39)2

RMS 316.94 (108.69) 300.36 (37.3)2 339.89 (120.93)1,4 313.69 (100.08) 275.23 (114.04)2

Extension Moment Area under the curve �21.23 (92.28)1,4 14.94 (85.67)0 20.33 (91.59) 8.81 (78.8) 18.79 (88.93)0

Area of the absolute value
during the stance phase

�18.73 (87.53)1,4 10.34 (81.48)0 16.86 (88) 7.55 (73.35) 16.18 (83.57)0

Extension Angle Maximum value during the late
phase

�3.21 (7.17)1,4 �6.85 (4.81)0,2,3,4 �1.58 (8.54)1,4 �2.14 (8.97)1 1.19 (9.09)0,1,2

Area under the curve 917.43 (395.26)4 832.54 (316.54)3,4 1057.37 (480.62) 1074.9 (536.93)1 1164.82 (552.67)0,1

Ankle Dorsiflexion Moment Area during the stance phase 305.76 (109.52) 278.32 (81.44)2 302.08 (115.76)1 276.95 (99.62) 285.22 (115.21)
Standard deviation 19.36 (14.48) 15.48 (7.4) 17.54 (10.34) 15.1 (10.98) 13.79 (9.41)

Spatialetemporal Cadence 108.14 (10.97) 111.78 (12.56) 106.69 (11.89) 108.19 (11.32) 101.4 (14.92)
Stride Length 104.79 (24.36)1 112.96 (12.95)0,2,3,4 104.01 (18.32)1,4 101.42 (18.22)1,4 93.78 (17.4)1,2,3

0 Significantly different with KL grade 01; Significantly different with KL grade 1; 2 Significantly different with KL grade 2;3 Significantly different with KL grade 3;4 Significantly
different with KL grade 4.

Table III
Confusion matrix and the AUROC values for the 10-fold classification result of the
random forest algorithm

KL 0 KL 1 KL 2 KL 3 KL 4 AUC*

KL 0 64 0 4 2 4 0.974
KL1 0 75 0 0 0 0.992
KL 2 8 7 42 7 4 0.845
KL 3 2 3 13 50 11 0.894
KL 4 7 1 7 19 43 0.905

*AUC, area under the curve of receiver operating characteristic curve.

Fig. 2. ROC curves for the KOA classification results using the random forest algorithm
and identified key features.
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that the range of peak knee flexion angle differed significantly for
severe OA patients and that the peak knee flexion angle during
stance phase significantly differed progressively. They also reported
that the minimum hip flexion moment during late stance differed
significantly for all OA and that the hip flexion angle range signif-
icantly differed progressively. The peak andminimum ankle flexion
moments were also reported to differ significantly for patients with
severe OA18.

The features listed in Table II have different abilities to
discriminate the severity of disease. Some differed significantly for
all severities, while others differed only in the controls, mild OA, or
severe OA. The stride length differed significantly progressively,
while maximumvalue during the late swing phase of hip extension
moment differed significantly for KL grades 3 and 4. In comparison,
area under the curve of hip abduction moment differed signifi-
cantly between the most severe groups, KL grades 3 and 4, whereas
all features extracted from the hip extention moment differed
significantly between the control group.

Features like the peak and minimum values of gait data are re-
ported to be limited to load or motion at an instance during the gait
cycle and cannot contain information on the duration9. Features
with duration information, such as the KAM impulse, are better
discriminators than features without duration information, such as
the peak KAM9,17. Most of the features extracted in this study, such
as the variance, RMS, and area under the curve, contain duration
information. The variance and RMS are well-known, widely used
parameters that contain overall information on the signal. Area
under the curve is an integral of the signal and is also a represen-
tative parameter. The classification model based on the identified
features performed better than any reported models, supporting
our hypothesis.

The input features for the classification model contains kinetic
and kinematic data of functional status of the knee. Also, the model
and features are non-invasive and objective measurement. Along
with X-ray assessment of the disease, which contains static and
structural information about the knee, the result from the model
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could provide an extra functional information to clinician to di-
agnose KOA patients.

There are limitations to our study. Our methodology considered
only OA severity based on a radiographic assessment. Indexes such
as WOMAC incorporate information on the patient's pain, stiffness,
and physical function of the joint22. It would be meaningful to
investigate the relationship between the gait data and WOMAC. In
addition, few studies have compared the classification performance
examined in our study. Before clinical application, our methodol-
ogy needs to be validated by other studies. Further, this study was
validated internally. In order to validate the model for overfitting, it
needs an external validation.

For a future work for this study, our algorithm can be applied to
data collected from wearable sensors. Many studies have reported
that kinetic and kinematic gait data can be obtained fromwearable
inertial measurement unit sensors and force sensors23e25. Applying
our algorithm with wearable sensors will allow frequent and long-
termmonitoring of changes in gait features and could help to guide
treatment plans for KOA patients.

In conclusion, we identified 20 features that can be used as
biomarkers for discriminating the severity of KOA. The features
were validated using both traditional statistics and by building a
classification model using a machine-learning algorithm. The
classification model along with biomechanical features can be used
as an extra tool for objective and repeatable KOA diagnosis, rep-
resenting joint function from the early to the final stage of the
disease.
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