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ARTICLE INFO SUMMARY
Am’c{e history: Objective: MicroRNA (miRNA)107 expression is downregulated but high mobility group box 1 (HMGB-1),
Received 20 August 2018 Toll-like receptors (TLRs), and receptor for advanced glycation end products (RAGE) are upregulated in

Accepted 17 May 2019 osteoarthritic (OA) cartilage. We investigated mir-107/HMGB-1 signaling in OA after hyperbaric oxygen

(HBO) treatment.
Keywords: Design: MiR-107 mimic was transfected and the HMGB-1 was analyzed in OA chondrocytes. MiRNA

Z&Q&Oz targets were identified using bioinformatics and a luciferase reporter assay. After HBO treatment, the
RACE B mRNA or protein levels of HMGB-1, RAGE, TLR2, TLR4, and inducible nitric oxide (NO) synthase (iNOS)

Osteoarthritis and phosphorylation of mitogen-activated protein kinase (MAPK) were evaluated. The secreted HMGB-1
Hyperbaric oxygen and matrix metalloproteases (MMPs) levels were quantified. Finally, we detected the HMGB-1 and iNOS
expression in rabbit cartilage defects.
Results: Overexpression of miR-107 suppressed HMGB-1 expression in OA chondrocytes. The 3'UTR of
HMGB-1 mRNA contained a ‘seed-matched-sequence’ for miR-107. MiR-107 was induced by HBO and a
marked suppression of HMGB-1 was observed simultaneously in OA chondrocytes. Knockdown of miR-
107 upregulated HMGB-1 expression in hyperoxic cells. HBO downregulated the mRNA and protein
expression of HMGB-1, RAGE, TLR2, TLR4, and iNOS, and the secretion of HMGB-1. HBO decreased the
nuclear translocation of nuclear factor (NF)-kB, downregulated the phosphorylation of MAPK, and
significantly decreased the secretion of MMPs. Morphological and immunohistochemical observation
demonstrated that HBO markedly enhanced cartilage repair and the area stained positive for HMGB-1
and iNOS tended to be lower in the HBO group.
Conclusions: HBO inhibits HMGB-1/RAGE signaling related pathways by upregulating miR-107 expres-
sion in human OA chondrocytes.
© 2019 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.

Introduction

Osteoarthritis (OA) is a widely prevalent degenerative joint
disease, which is characterized by articular cartilage degradation
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non-coding small RNAs containing 20—25 nucleotides, which can
regulate gene expression by pairing with the 3’-untranslated region
(3’-UTR) of their target messenger RNAs (mRNAs). Therefore,
miRNAs regulate diverse cellular processes, including cell prolifer-
ation, cell apoptosis, and cell differentiation®. Various miRNAs are
dysregulated and therefore functionally implicated in the patho-
genesis of OA° . MiR-27b was shown to regulate the expression of
MMP-13 in human OA chondrocytes®. Overexpression of miR-9 was
reported to promote interleukin (IL)-6 expression upon IL-1p-
stimulation in human chondrocytes®. MiR-107 was reported to be
downregulated in OA cartilage'®!", however, the function of miR-
107 in OA chondrocytes is not clear.

High mobility group box 1 (HMGB-1) is a ubiquitous non-
histone DNA-binding protein, which is an important modulator of
inflammation'?. The dysregulation of HMGB-1 contributes to many
inflammatory diseases'?. The expression of HMGB-1, receptor for
advanced glycation end products (RAGE), Toll-like receptor (TLR) 2,
and TLR four are up-regulated within OA cartilage'>'%. Chon-
drocyte derived HMGB-1 is a potential ligand for RAGE', TLR 2, and
TLR 4'°. Extracellular HMGB-1 interacts with RAGE, TLR 2, and TLR
four present on the membranes of nearby cells, to activate NF-kB or
mitogen-activated protein kinase (MAPK), which are key factors in
the inflammatory response"'>'6. In humans, genes expression is
altered by three major groups of distinctly regulated MAPK cas-
cades; extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-
terminal kinase (JNK), and p38 MAPK. Phosphorylation of ERK, JNK,
and p38 MAPK induces in the expression of genes encoding in-
flammatory response factors such as nitric oxide (NO)'”'%. Previous
studies have identified certain matrix metalloproteases (MMPs),
such as MMP-1, MMP-3, MMP-9, and MMP-13 in human OA carti-
lage'®?°, The production of MMPs was significantly increased after
chondrocytes were treated with the RAGE ligands such as HMGB-1!
or S100A4°. HMGB-1 binding with RAGE could contribute to
cartilage degradation through the wupregulation of MMP-13
expression .

Although the articular cartilage is an avascular tissue, which
functions under low oxygen tension, a further decrease in the ox-
ygen tension of synovial fluid and environmental changes may
result in traumatic injury or degenerative diseases of the articular
cartilage®'. Hypoxia has been suggested to play a central role in the
induction of tissue damage in OA®. Hypoxia is a potent inducer of
extracellular HMGB-1, which may in turn play an important role in
the development of arthritis’>. MiR-107 expression was increased
or unchanged in the presence of hypoxia®> and increased in the
hyperoxic conditions** in diverse cell types. Hyperbaric oxygen
(HBO) treatment increases the tissue/microvascular O, levels to
improve the hypoxia®. MiR-107 expression was downregulated in
OA cartilage'®!", To analyze the biological impact of this down-
regulation, we overexpressed the MiR-107 and found the reduced
HMGB-1 expression in OA chondrocytes. HBO increased mir-107
expression in OA chondrocytes. Bioinformatics were used to pre-
dict putative target sequences for miR-107 in human HMGB-1
mRNA and this was confirmed by a luciferase reporter assay. The
effects of HBO treatment on the miR-107/HMGB-1 signaling-
mediated catabolic pathway were also investigated in human OA
chondrocytes. Finally, we examined the effects of HBO on HMGB-1
and inducible nitric oxide synthase (iNOS) expression in rabbit
cartilage defects.

Method

The experimental protocols used in the present study were
approved by the Human Subjects Institutional Review Board at the
Chang Gung Memorial Hospital. All animals were cared for in
accordance with regulations of the National Institutes of Health of

the Republic of China, under the supervision of a licensed
veterinarian.

Surgical procedures and cells isolation and cultivation

Articular cartilage specimens (tibial plateaus and femoral con-
dyles) were obtained from 28 Ahlback grade IV or Kellgren and
Lawrence grade IV OA patients who receive TKA surgery. OA
chondrocytes were released from the OA cartilage by digestion with
1 mg/ml collagenase (Sigma—Aldrich, MI, USA) in Dulbecco’s
modified Eagle's medium (DMEM)/F-12 containing 2% fetal bovine
serum (FBS) and incubated at 37°C. The isolated cells were seeded
in T-75 flasks (Falcon, Amsterdam, The Netherlands) containing
15 ml of medium supplemented with 10% FBS. The cultures were
incubated in a humidified atmosphere of 5% CO2 and 95% air. Cells
were used at passage one for each experiment.

Effect of miR-107 overexpression on HMGB-1 expression

OA chondrocytes were transfected with miR-107 mimics and
negative control (NC) by Lipofectamine 3,000 according to manu-
facturer's protocols and the HMGB-1 mRNA expression was
analyzed (see Appendix).

Exposure to intermittent HBO intervention

Control cells were maintained in 5% CO,/95% air at 1 atm (atm)
throughout the experimental period. The hyperoxic cells were
exposed to 100% O, for 25 min and then to 5% CO/95% air for
5 min at 2.5 atm absolute (ATA) in a hyperbaric chamber (Perry
Baromedical Corporation, FL) for a total treatment time of 90 min
every 48 h. HBO treatment was administered three times. At 24 h
after each treatment, the conditioned media (CM) were collected by
contributive at 1000 g for 10 min, filter the medium through
0.22 pM filter, and stored at —70°C prior to further analysis.

MiRNA target prediction and dual-luciferase reporter assay

The Target Scan 7.1 and miRnalyze online software were used to
analyze the putative target genes of miR-107. The 3’-UTR of HMGB-
1 (50—56 bases) containing the potential miR-107 binding site was
cloned into pmir GLO dual-luciferase miRNA reporter vectors
(Promega, WI, USA). A mutated 3'-UTR of HMGB-1 was created
using the New England Biolabs Q5 Site-Directed Mutagenesis Kit
(#E0554S) and introduced into the potential miR-107 binding site.
A luciferase reporter vector clone containing the wild type (WT) or
mutant (Mut) HMGB-1 3’-UTR were was obtained commercially
from Gene Labs (Taipei, Taiwan). The reporter vectors containing
the WT or mutant (Mut) HMGB-1 3/-UTR were transfected into OA
chondrocytes using Lipofectamine 2000 (Invitrogen) (see
Appendix). After incubation with or without HBO the transfected
cells were lysed. Firefly and renilla luciferase activities were
detected using the dual-luciferase assay system (Promega, WI,
USA).

Transfection of OA chondrocytes with miRNA inhibitor and analysis
after HBO treatment

OA chondrocytes were transfected with miR-107 inhibitor by
Lipofectamine RNAIMAX (Invitrogen) and the HMGB-1 expression
was analyzed after HBO treatment. Cellular RNA was isolated using
an RNeasy mini kit (Qiagen, CA, USA) and reverse-transcribed into
cDNA using the ImProm-II reverse transcription system (Promega).
For real-time qPCR detection, the cDNA was analyzed on an ABI
PRISM 7,900 sequence detection system using the TagMan PCR
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Master Mix (Thermo Fisher). Cellular protein was extracted using
M-PER mammalian protein extraction reagent (Thermo Fisher) (see
Appendix).

RNA extraction and real-time qPCR detection of HMIGB-1, TLR2,
TLR4, RAGE, and iNOS

Cells were plated at a density of 3 x 10° cells per 100-mm cul-
ture dish in 10 ml of DMEM/F-12 containing 5% FBS. At 12 h after
the third HBO treatment, RNA extraction was performed as
described above, for real-time qPCR detection of HMGB-1 (Assay
ID: Hs01923466), RAGE (Assay ID: Hs00542584), TLR2 (Assay ID:
Hs00610101), TLR4 (Assay ID: Hs00152939), and iNOS (Assay ID:
Hs00167257) RNA transcripts.

Protein extraction and Western blot analysis of HMGB-1, TLR2, TLR4,
RAGE, and iNOS

At 24 h after the third HBO treatment, protein extraction and
Western blot analysis of HMGB-1, TLR2, TLR4, RAGE, and iNOS were
performed (see Appendix).

HMGB-1 ELISA assay

The post-treatment levels of HMGB-1 in the CM were deter-
mined using an ELISA assay with a Human HMGB-1 ELISA kit
(LifeSpan Biosciences, WA, USA). At 24 h after each treatment,
200 pl of CM was sampled and analyzed to detect the HMGB-1
levels.

MAPK phosphorylation assay

At 30 and 60 min after the third HBO treatments, the phos-
phorylation levels of ERK, JNK, and p38 MAPK were measured using
the Human phosphor-kinase array kit according to the manufac-
turer's protocol (R&D Systems, MN, USA). Dot images were ob-
tained using an ECL Hyper film and the staining intensity was
quantified using the image analysis system.

Preparation of cytosolic and nuclear fractions for IkBa and NF-«B
p65 detection

At 60 min after the third HBO treatment, the cells were rinsed
with PBS, treated with 0.05% trypsin, and then collected by
centrifugation. NE-PER nuclear and cytoplasmic extraction re-
agents (Thermo Fisher) were used to isolate cytoplasmic and nu-
clear extracts from the cells and the protein was separated by 10%
SDS-PAGE. After blocking with 10% nonfat milk, the membranes
were incubated overnight at 4°C with 1:1,000 diluted mouse an-
tibodies to detect IkBa. (Cell Signaling Technology, MA, USA) and B-
actin (Abcam) in the cytoplasmic extracts and NF-kB p65 (Cell
Signaling Technology), TATA binding protein (TBP; Abcam) in the
nuclear extracts. The membranes were then washed and rinsed
with ECL detection reagents and the band images were photo-
graphed using the Hyperfilm. The staining intensity of IkBa, B-actin,
NF-kB p65, and TATA was quantified using the image analysis
system.

MMP-9 and MMP-13 ELISA assay

The levels of MMP-9 and MMP-13 in the CM after treatments
were determined using Quantikine® Human MMP-9 and MMP-13
ELISA Kkits, respectively (R&D Systems). At 24 h after each treat-
ment, 200 pl of CM was sampled and analyzed to detect the levels
of MMPs. The results were normalized to 10° cells.

Effect of HBO on rabbit cartilage defects

A rabbit cartilage defect model was created and the effect of
HBO on HMGB-1 and iNOS expression in repaired cartilage was
performed by immunohistochemically analysis (see Appendix). The
staining intensity ratios of HMGB-1 and iNOS were quantified by
using an image-analysis system (see Appendix).

Statistical analysis

Articular cartilage specimens were obtained from 28 OA pa-
tients who receive TKA surgery. Each human knee yield one sample.
Three or four sample were used in each experimental item
(n = three or 4). The control and HBO samples separated from the
same (Control group: without HBO treatment) so we used paired ¢-
test to analyze the control/HBO ratio in this study. Data were rep-
resented as mean + 95% confidence interval (CI). The P-values for
the paired Student's t-test or repeated measures ANOVA were
performed using the SPSS software package (Version 12.0, Chicago,
IL). A P-value of <0.05 was considered statistically significant.

Results
MiR-107 overexpression results in decreased expression of HMGB-1

Transient transfection assays were used to directly confirm the
effect of overexpression of miR-107 on HMGB-1 expression in OA
chondrocytes (see Appendix and Supplementary Figs. S1(a) and
S1(b)).

HBO treatment increases miR-107 expression in OA chondrocytes

MiR-107 was downregulated in OA cartilage. HBO treatment
significantly increased miR-107 expression in OA chondrocytes
(HBO/control ratio = 1.71 + 0.201 fold, **P = 0.002, n = 4). These
results indicated that miR-107 might play an important role in the
inhibition of OA progression after HBO treatment.

HMGB-1 is a direct target of miR-107

To investigate the potential molecular mechanism of miR-107,
we screened the putative target genes of miR-107 were screened
using Target Scan 7.1 and miRnalyze online software. It was found
that HMGB-1, an important regulator of inflammation, was a direct
target of miR-107. The 3’ UTR of HMGB-1 contains a potential
binding element for miR-107 with a 7-nucleotide match to the miR-
107 seed region [Fig. 1(a) and (b)]. Cross-species conservation of the
miR-107 seed sequence in the 3'UTR of HMGB-1 mRNA was iden-
tified by the Target Scan algorithm [Fig. 1(c)]. These findings sug-
gest that the hsa-miR-107 may target the HMGB-1 mRNA by
directly recognizing its seed-matched sequence present in the
3'UTR.

To validate the direct targeting of HMGB-1 by miR-107, the wild-
type (WT) HMGB-1 3’-UTR containing the target sequences, or a
mutant variant (Mut) thereof was cloned into a dual-luciferase
reporter vector [Fig. 2(a)]. Overexpression of miR-107 after HBO
treatment significantly inhibited luciferase activity of the
WTHMGB-1 3/-UTR (0.55 + 0.135 fold; **P = 0.003, n = 4; Fig. 2(b)),
whereas mutation of the miR-107 binding sites (MT) abolished this
inhibitory effect of miR-107 in human OA chondrocytes
(1.01 + 0.184 fold, P = 0.903, n = 4; Fig. 2(b)). These results iden-
tified HMGB-1 as a target gene of miR-107 after HBO treatment.

The expression of HMGB-1 in OA chondrocytes transfected with
anti-miR-107 was also examined. As shown in Fig. 2(c), HBO
treatment significantly decreased the mRNA expression of HMGB-1
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(a) Targetscan

Predicted consequential pairing of target region (top} and
miRNA (bottom)

Position 50-56 of HMGB1 3' UTR 5"

hsa-miR-107 3’

(b) miRnalyze

. - - UGRUAUUUUGGAUAUUGCUGCRU. . .

ACURUCGGGACRUGUURCGACGAR

Transcript ENST00000399489.1
Gene: high mobility group box 1 (HMGBI)

Prevalent number: 1

Positionin  Seed Context++  Contextttscore  Weighted Conserved branch
Gene (Transcript) the UTR match  score percentile context++score  length Pct
high mobility group box 1 50-56 7mer-1A  -0.20 >90 -0.20 5.284 N/A
(ENST00000399489.1)
(c)
40 50 60 bases-

Human 5°------- AUUUUGgauauugcugcaunaucgagcuaaa------ 3

Chimp 5°-------- AUUUUGgauauugcugcauaucgageuaaa------ 3’

Rhesus5’-------- AUUUUGgavauugcugcauaucgagcuaaa------ 3

Rabbit 5’--------AUUUCCgauvauugcugcauaucgagcuaaa------ 3?

Seed sequence

Fig. 1. Seed sequence of miR-107 in the 3'UTR of HMGB-1 mRNA. (a) TargetScan predicted duplex of miR-107 with the seed sequence in the 3’UTR of human HMGB-1 mRNA. The
sequences in white are the locations of the potential seed-matched sequence for the miRNAs studied. (b) miRnalyze predicted duplex of miR-107 with the seed sequence in the
3'UTR of human HMGB-1 mRNA. (c) Cross-species conservation of the miR-107 seed sequence in the 3'UTR of human HMGB-1 mRNA as identified by the TargetScan algorithm

(sequences in red).

(0.63 + 0.214 fold; *P = 0.012, n = 4), whereas transfection with
miR-107 inhibitors increased the mRNA level of HMGB-1 in OA
chondrocytes after HBO treatment (0.92 + 0.095 fold; P = 0.065,
n = 4). Western blot analysis [Fig. 2(d)] indicated that HBO treat-
ment led to a significant decrease in the protein expression of
HMGB-1 (0.78 + 0.126 fold; *P = 0.002, n = 4), whereas knockdown
of miR-107 reversed HMGB-1 protein expression in HBO-treated
OA chondrocytes (0.96 + 0.065 fold; P = 0.118, n = 4). These data
indicated that HMGB-1 was negatively mediated by miR-107 at the
post-transcriptional level in OA chondrocytes after HBO treatment.
Overexpression of miR-107 after HBO treatment significantly
inhibited the mRNA [Fig. 2(c)] and protein [Fig. 2(d)] expression of
HMGB-1 in OA chondrocytes.

Effect of HBO on the mRNA and protein expression of HMGB-1,
RAGE, TLR2, TLR4, and iNOS

Fig. 3(a) shows the effect of HBO intervention on the tran-
scription of HMGB-1, RAGE, TLR2, TLR4, and iNOS. HBO treatment
significantly suppressed the mRNA expressions of HMGB1
(0.63 + 0.214 fold; *P = 0.012, n = 4), RAGE (0.64 + 0.221 fold;
*P =0.014, n = 4), TLR2 (0.68 + 0.243 fold; *P = 0.025, n = 4), TLR4
(0.58 + 0.199 fold; **P = 0.007, n = 4), and iNOS (0.57 + 0.248 fold;
*P=0.012, n = 4) in OA chondrocytes. Fig. 3(b) showed the protein

expression of HMGB-1 (0.52 + 0.23 fold; *P = 0.012, n = 3), RAGE
(0.66 + 0.161 fold; *P = 0.012, n = 3), TLR2 (0.42 + 0.182 fold;
**P=0.005, n = 4), TLR4 (0.51 + 0.211 fold; **P = 0.009, n = 4), and
iNOS (0.48 + 0.254 fold; *P = 0.013, n = 3), which were down-
regulated after culturing for three rounds of HBO treatment.
Fig. 3(c) shows the quantification of the relative protein expression
levels.

Effect of HBO on the secretion of HMGB-1

HBO treatment significantly inhibited the extracellular release
of HMGB-1 by OA chondrocytes in association with the protein
level (Control group vs HBO group: 114.9 + 43.1 vs 97.4 + 33.7 after
15t treatment; 125.9 + 49.4 vs 89.6 + 29.9 after 2™ treatment, n = 4;
135.8 + 44.9 vs 86.1 + 45.5 after 3" treatment, **P < 0.001, n = 4;
Fig. 4).

Effect of HBO on MAPK phosphorylation

Extracellular HMGB-1 interacts with RAGE present on the
membrane of nearby cells to activate MAPKs. To assess the mo-
lecular mechanisms of the catabolic pathways mediated by HMGB-
1/RAGE in OA chondrocytes after HBO treatment, the effects of HBO
on MAPK activity were evaluated (Fig. 5). The phosphorylated dot
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Fig. 2. HMGB-1 is a direct target of miR-107. (a) Diagram of the binding site between miR-107 and the HMGB-1 3’-UTR. The reporter vectors contain the wild type (WT) or mutant
of HMGB-1 3’-UTR. (b) Dual-luciferase reporter assay of HMGB-1 3/-UTR. The reporter vectors containing the WT or mutant of HMGB-1 3’-UTR were transfected into OA chon-
drocytes. Luciferase activity was significantly downregulated after hyperbaric oxygen (HBO) treatment (**P = 0.003; n = 4) in the WT but not in the mutant type (P = 0.903, n = 4).
(c) Real-time PCR analysis of HMGB-1 mRNA expression in OA chondrocytes transfected with miR-107 inhibitors. HMGB-1 mRNA expression was down-regulated after HBO
treatment (*P = 0.012; n = 4). MiR-107 inhibitors reversed the suppressive effects of HBO (P = 0.065; n = 4). (d) Western blot analysis of HMGB-1 protein expression in chondrocytes
transfected with miR-107 inhibitors. Values were normalized against B-actin. HMGB-1 protein expression was significantly downregulated after HBO treatment (**P = 0.002; n = 4).

MiR-107 inhibitors reversed the suppressive effects of HBO (P = 0.12; n = 4).

density ratios for HBO and control groups at 30 and 60 min after
administering the third HBO treatment. At 30 min, the ratios were
74.9% + 15.1% for p38 MAPK phosphorylation (*P = 0.013, n = 4),
85.1% + 8.5% for ERK phosphorylation (*P = 0.012, n = 4), and
94.9% + 16.3% for JNK phosphorylation (P = 0.391, n = 4). At 60 min,
the ratios were 34.8% + 4.4% for p38 MAPK phosphorylation
(***P < 0.0001, n = 4), 38.7% + 3.8% for ERK phosphorylation
(***P < 0.0001, n = 4), and 43.3% + 9.0% for JNK phosphorylation
(**P = 0.0002, n = 4). HBO treatment significantly suppressed
MAPK phosphorylation in OA chondrocytes.

Effect of HBO on the protein expression of IkBa and NF-kB p65

HMGB-1 has been previously reported as an inducer of the NF-
kB inflammatory signaling pathway. HBO treatment significantly
suppressed the mRNA expressions of iNOS [Fig. 3(a)]. As NF-kB is a
central transcription factor that regulates the expression of iNOS,
the effects of HBO on the nuclear translocation of NF-kB p65

subunits were examined (Fig. 6). The protein expression of IkBa was
significantly upregulated at 60 min after administering the third
HBO treatment (1.92 + 0.436 fold; *P = 0.019, n = 3). In addition, the
levels of NF-kB p65 in the nucleus (0.28 + 0.143 fold; *P = 0.029,
n = 3) were significantly decreased after HBO treatment [Fig. 6(a)].
Fig. 6(b) shows the quantification of relative protein expression
levels. IkBa resides in the cytoplasm to prevent NF-kB translocation
to the nucleus. HBO treatment decreased the NF-kB inflammatory
signaling.

Effect of HBO on MMP-9 and MMP-13 secretion

As MAPK signaling and NF-kB activation may contribute to
cartilage degradation through the upregulation of MMP expression,
ELISA analysis was performed to detect MMP-9 and MMP-13, which
are released by HBO-treated primary OA chondrocytes (Fig. 7).
Fig. 7(a) shows the effect of three rounds of HBO treatment on
MMP-9 secretion (**P < 0.001; Table I). Fig. 7(b) shows the effect of
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Fig. 3. Effect of HBO on the mRNA and protein expression of HMGB-1, receptor for advanced glycation end products (RAGE), and inducible nitric oxide synthase (iNOS). (a)
HBO treatment significantly suppressed the mRNA expressions of HMGB1 (*P = 0.012; n = 4), RAGE (*P = 0.014; n = 4), and iNOS (*P = 0.012; n = 4) in OA chondrocytes. (b) Western
blot analysis was performed to examine the protein expression of HMGB-1, RAGE, and iNOS. The protein expression of HMGB-1 (*P = 0.012; n = 3), RAGE (*P = 0.045; n = 3), and
iNOS (*P = 0.012; n = 3) were significantly downregulated after culturing for three rounds of HBO treatment. (c) The quantification of relative protein expression levels.

three rounds of HBO treatment on MMP-13 secretion (**P < 0.001;
Table I). HBO treatment significantly inhibited MMP-9 and MMP-13
secretion by OA chondrocytes.

Effect of HBO treatment on cartilage defect repair

The gross appearance of the defects and repaired cartilage were
examined. Morphological observations showed HBO markedly
enhanced cartilage repair (see Appendix and Supplementary
Figs. S2(a)—2(d)).

Effect of HBO treatment on HMGB-1 and iNOS expression

HBO treatment markedly suppressed HMGB-1 and iNOS
expression in repaired cartilage (see Appendix and Supplementary
Figs. S2(e)—2(h)).
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Fig. 4. Effect of HBO on the secretion of HMGB-1. HBO treatment significantly
inhibited the extracellular release of HMGB-1 by OA chondrocytes (Control group vs
HBO group: 114.9 + 43.1 vs 97.4 + 33.7 after 1% treatment; 125.9 + 49.4 vs 89.6 + 29.9
after 2™ treatment, n = 4; 135.8 + 44.9 vs 86.1 + 45.5 after 3™ treatment, **P < 0.001,
repeated measures ANOVA, n = 4).

Discussion

MiR-107 is increasingly thought to serve key functions in
humans?>25, It regulates gene expression involved in cell division®,
hypoxic stress response®?, and angiogenesis®® in different tissues
and cells. MiR-107 has also been implicated in human colon car-
cinomas®® and neurodegenerative disease’’. MiR-107 expression
was increased in the retina following hyperoxia’4. MiR-107 de-
creases hypoxia signaling by suppressing the expression of hypoxia
inducible factor-1p (HIF-1p) in human colon cancer cells®”. MiR-107
is significantly downregulated in inflamed colons®. MiR-107 is
downregulated in OA'®!". After verifying the re-expression levels of
miR-107 by real-time qPCR (Fig. S1(a)), we assessed the ability of
the miR-107 to diminish HMGB-1 levels. As shown in Fig. S1(b),
overexpression of miR-107 significantly decreased the levels of
HMGB-1.

pho~p38 pho~ERK pho~JNK

e
post HBO 30 mins m . -

*P=0.013 *P=0.012 P =0.391

post HBO 60 mins ..‘. . .

***P < 0.0001 ***P <0.0001 **P = 0.0002

pre HBO

Fig. 5. Effect of HBO on MAPK phosphorylation. HBO treatment significantly sup-
pressed ERK, JNK, and p38 MAPK phosphorylation in OA chondrocytes. Phosphoryla-
tion dot density ratios for the HBO and control groups were determined at 30 and
60 min after the third round of HBO treatment. At 30 min, the ratio for p38 MAPK
(*P=0.013; n = 4) and ERK (*P = 0.011; n = 4) was significantly decreased. At 60 min,
the ratio for p38 MAPK (***P < 0.0001, n = 4), ERK (***P < 0.0001, n = 4), and JNK
(**P = 0.0002, n = 4) were significantly decreased. HBO treatment significantly sup-
pressed MAPK phosphorylation in OA chondrocytes.
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Fig. 6. Effect of HBO on the protein expression of IkBo. and NF-kB p65. (a) The cytosolic protein level of IkBo. was significantly upregulated at 60 min after the administration of
the third HBO treatment (*P = 0.019, n = 3). In addition, the levels of NF-kB p65 in the nucleus was significantly decreased after HBO treatment (*P = 0.029, n = 3). IkBa resides in
the cytoplasm to prevent NF-kB translocation to the nucleus. HBO treatment decreased the NF-kB inflammatory signaling. (b) Quantification of the relative protein expression levels.

In this study, for the first time, we reported that miR-107 played
an important role in OA chondrocytes after HBO treatment. To
investigate the potential role of miR-107, we detected miR-107
expression in OA chondrocytes after HBO treatment. Hypoxia is a
potent inducer of extracellular HMGB-1° and miR-107 can modu-
late the cellular response to hypoxic in tumors®’. A decreased
expression of miR-107 was shown in OA chondrocytes'®!!. The
results of the present study showed that HBO treatment increased
miR-107 expression to suppress inflammation in OA chondrocytes
(Fig. 1). HMGB-1 was identified as a target gene of miR-107 after
HBO treatment. MiR-107 may regulate inflammatory signaling by
targeting HMGB-1 (Figs. 2 and 3). HBO treatment significantly
increased miR-107 expression and therefore decreased the HMGB-
1 production from OA chondrocytes (Figs. 1-3).

HMGB-1 is released from the cells after translocation from the
nucleus to the cytoplasm or the external of the cell’', which in-
dicates that secretion of HMGB-1 may be associated with activation
of the inflammasome complex’2. RAGEs expression increased with
progression of OA!. Treatment with HMGB-1 resulted in phos-
phorylation of the MAPK and the p65 subunit of NF-«B in cultured
chondrocytes'or mouse knee joint>?, both of which are well-
characterized mediators of RAGE signaling**. Hypoxia induces
MAPK activity in rat nucleus pulposus cells (NPCs)>°. Suppression of
MAPK phosphorylation plays a key role in the protection of NPCs
after HBO treatment>®. Consistent with these previous reports, the
present study suggested that the reduced HMGB-1 secretion (Fig. 5)
and RAGE expression (Fig. 4) after HBO treatment suppressed p38
MAPK, ERK, and JNK phosphorylation in OA chondrocytes (Fig. 6).
These results suggest that HBO plays a role in treating OA chon-
drocytes by down-regulating HMGB-1/RAGE/MAPK signaling
expression. The inhibition of HMGB-1 and RAGE by HBO treatment
showed effective anti-inflammatory action in OA chondrocytes. In
addition, reduced expression of HMGB-1 and iNOS in repaired
cartilage by HBO treatment was also shown in our animal model
(Fig. S2(e), (f), (&), (h)).

In most cell types, NF-kB is composed of a p65/p50 heterodimer.
IkBa, IkBf, IkBy and IkBe reside primarily in the cytoplasm and

function to prevent NF-kB translocation to the nucleus'®. Under
normal conditions, NF-«B is present in an inactive state and mainly
located in the cytoplasm. However, once activated, the p65 subunit
dissociates from its inhibitor IkBa and translocate from the cyto-
plasm to the nucleus to activate the transcription of its target
genes'?. Hypoxia induces inflammatory responses by activating of
NF-kB, which is a major mediator of inflammation and controls the
transcriptional programs, which execute and regulate the inflam-
matory responses'!. HBO treatment reduces inflammatory re-
sponses in patients with acute pancreatitis by upregulating of IxB
activation and downregulating of NF-kB levels in granulocytes?>.
The present study further investigated the HMGB-1/RAGE/NF-«B
signaling pathway in OA chondrocytes, and the results demon-
strated that IkB expression was upregulated in response to HBO
treatment, which decreased the translocation of NF-kB from the
cytosol into the nucleus (Fig. 7). NF-kB mediated iNOS mRNA
[Fig. 4(a)] and protein [Fig. 4(b)] expressions were subsequently
downregulated after HBO intervention. Because the presence of
NF—kB binding sites in the RAGE promoter creates a positive
feedback loop through increasing RAGE expression®®, NF-kB
mediated RAGE mRNA [Fig. 4(a)] and protein [Fig. 4(b)] expressions
were downregulated after HBO intervention. These results suggest
that HBO plays a role in treating OA chondrocytes by down-
regulating HMGB-1/RAGE/NF-kB/iNOS signaling expression. These
findings supported our previous study that HBO treatment sup-
pressed the iNOS expression in OA chondrocytes®” or OA animal
model®®,

Upregulation of MMP-9 results in destruction of articular
cartilage in patients with OA'®. NF-kB p65-specific short interfering
RNA (siRNA) inhibits the expression of iNOS and MMP-9 in IL-18-
and TNF-a-induced chondrocytes®’. MMPs production is signifi-
cantly increased in chondrocytes treated with RAGE ligands>®3°.
Binding of HMGB-1 to RAGE may contribute to cartilage degrada-
tion by upregulating MMP-13 expression>®. Overexpression of
HMGB-1 antagonists inhibited the upregulation of iNOS, MMP-1,
MMP-3, and MMP-9 induced by IL-1B in human chondrocytes?’.
HBO treatment significantly inhibits the secretion of MMP-13'% and
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Fig. 7. Effect of HBO on MMP-9 and MMP-13 secretion. (a) HBO treatment signifi-
cantly inhibited MMP-9 secretion (**P < 0.001, repeated measures ANOVA; n = 4) by
OA chondrocytes. (b) HBO treatment significantly inhibited MMP-13 secretion
(**P < 0.001, repeated measures ANOVA; n = 4) by OA chondrocytes. HBO treatment
decreased the MAPK and NF-kB signaling, which contribute to the regulation of matrix
metalloproteases (MMPs) regulation.

MMP-97 in different cells. In the present study, the expression of
HMGB-1 and RAGE was reduced in response to HBO treatment
(Fig. 4), which may lead to the downregulation of MMP-9 [Fig. 7(a)]
and MMP-13 [Fig. 7(b)]. In addition, HBO increases the protein
expression of IkBa, which leads to the downregulation of NF-kB
signaling (Fig. 6), iNOS (Fig. 3), and MMP-9 secretion [Fig. 7(a)].
HBO intervention can reduce MMPs associated extracellular matrix
damage and promote the repair of OA cartilages (Fig. S2).

HBO serves as primary or adjunctive therapy for a diverse range
of medical conditions (ex. crush injury, traumatic ischemia, radia-
tion necrosis of soft tissue and bone)*"*2. One of the mechanisms is
by increasing the oxygen diffusion to the tissues by raising dis-
solved oxygen level in plasma or body fluid. Because oxygen is a gas,
the effectiveness of the HBO treatments is that the gases are pushed
into the tissue not just delivered through the blood stream*"*>!”.
The basis of modulating pressure and oxygen concentration is to
regulate cellular metabolism or tissue microenvironment. Hypoxia
has been suggested to play a central role in the induction of tissue
damage in OA*. Therefore, the HBO treatment maybe a good choice
to study avascular tissue like cartilage. In our previous animal

Table I
Effect of hyperbaric oxygen (HBO) on the extracellular release of matrix metal-
loproteases (MMPs) by OA chondrocytes

Control HBO P-value
MMP-9 Mean 95% Cl Mean 95% CI
1°¢ treatment 427.4 59.8 349.6 59.4 **P < 0.001
2" treatment 363.2 79.7 272.9 59.2
3™ treatment 370.3 74.5 241.8 60.5

Control HBO P-value
MMP-13 Mean 95% CI Mean 95% CI
15t treatment 21,847.2 2001.3 21,108.6 1,615.9 **P < 0.001
2" treatment 21,947.9 1,531.8 18,258.7 1,017.5
3™ treatment 22,477.7 1,430.9 15,220.6 1,481.9

Differences between control and HBO groups were analyzed (using repeated mea-
sures ANOVA; n = 4). A P-value of <0.05 was considered statistically significant.

studies, HBO increased the oxygen tension in synovial fluid and
suppressed iNOS expression and apoptosis of cells in rabbit OA
model®®. In the present study, we further found HBO treatment
markedly suppressed HMGB-1 and iNOS expression in repaired
cartilage (Figs. S2(e), (f), (g), (h)). Recently, HBO therapy down-
regulated HMGB-1 and NF-kB expression in clinical patients with
acute spinal cord injury also has been reported*>. The effects of HBO
on HMGB1/RAGE, TLR2, 4/NF-kB signaling in clinical OA patients
are needed to be further investigation.

In post-natal growth cartilage, nutrition is supplied by the
metaphysical subchondral circulation to the hypertrophic layer
while the germinal and proliferative layers are supplied from
epiphysial subchondral vessels**, It follows that the nutrition of
chondrocytes is carried out by diffusion of tissue fluid from sub-
chondral vessels. The effects of HBO on cells/explants maintained
under hypoxic conditions also has been reported. Calderwood
showed the beneficial effect of HBO on the transplantation of
epiphysial growth cartilage in rabbits**. HBO increasing the amount
of oxygen in tissue fluid should be of great benefit to chondrocytes
when the normal subchondral vasculature has been grossly
disturbed after transplantation®”. In addition, our previous study
also showed the beneficial effects of HBO in chondrocyte trans-
plantation via upregulating of platelet-derived growth factor-BB
(PDGF-BB) receptors expression”®.

The results of the present study indicate that HBO treatment of
OA chondrocytes exerts a protective effect by mitigating inflam-
mation and its subsequent activation. This effect is induced through
inhibition of the miR-107/HMGB-1/RAGE, TLR2, 4/MAPK, NF-xB
signaling pathway and subsequent suppression of pro-
inflammatory cytokines and MMPs levels.
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