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Obesity is a well-known primary risk factor for osteoarthritis (OA). In recent decades, the biomechanics-
based theoretical paradigm for the pathogenesis of obesity-associated OA has been gradually but
fundamentally modified. This modification is a result of accumulating evidence that biological factors
also contribute to the etiology of the disease. The gut microbiota is a complicated ecosystem that pro-
foundly influences the health of the host and can be modulated by the combined effects of environ-
mental stimuli and genetic factors. Recently, enteric dysbacteriosis has been identified as a causal factor
in the initiation and propagation of obesity-associated OA in animal models. Gut microbes and their
components, microbe-associated lipid metabolites, and OA interact at both systemic and local levels
through mechanisms that involve interplay with the innate immune system. However, the demonstra-
tion of causality in humans will require further studies. Nonetheless, probiotics, prebiotics, dietary habits
and exercise, which aid the restoration of a healthy microbial community, are potential therapeutic
approaches in the treatment of obesity-associated OA.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Osteoarthritis (OA), which is the most prevalent arthritic disease
and one of the leading causes of disability, is no longer considered
as a degenerative illness of the cartilage but as a disorder of the
whole joint with a heterogeneous and multifaceted etiology'.
Obesity is a predisposing risk factor in OA initiation and perpetu-
ation?>. The pathophysiological mechanisms that underpin this
close link have not been fully elucidated, but microbial causes of gut
origin have been proposed.

The human body is not a self-sufficient and isolated unit, but a
diverse and dynamic ecosystem. The intestinal canal is an excellent
culture medium harboring approximately 10 microorganisms,
which contains microbial genetic information that represents an
extension of the host's metagenomes and, thereby, influences the
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individual's health status*°. In turn, the gut microbiome can be
shaped by the combined effects of environmental stimuli and ge-
netic factors®. The crosstalk among the environment, the gut
microbiota and the host is a fundamental determinant of metabolic
and immune physiology or pathology’®. Interference of the delicate
balance of homeostatic mechanisms caused by nutrient overload,
microbial agents or immune dysfunction underlies many dis-
eases”!’. Links have been demonstrated between dysbiosis of the
gut microbiota and rheumatoid arthritis (RA) in animal models and
humans'’. Furthermore, the involvement of the gut microbiota in
obesity-associated OA is being elucidated.

Hence, we review the key findings on the association between
obesity and OA in a historical context and summarize the evidence
that gut microbes, their components, and microbe-associated lipid
metabolites contribute mechanistically to the etiology and patho-
genesis of obesity-associated OA (Fig. 1). Additionally, we review
the potential therapeutic approaches for gut microbial ecosystem
reshaping in the prevention and treatment of OA.

Obesity and OA

The concept that OA is a wear-and-tear form of arthritis
resulting from years of long, hard use has been proposed for
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Fig. 1. A schematic illustration of the proposed mechanisms underlying the gut microbiome—osteoarthritis (OA) axis, and potential therapeutic approaches involving altering the
microbiota composition. Abbreviations: LPS, lipopolysaccharides; PGNs, peptidoglycans; FFAs, free fatty acids; PRRs, pattern recognition receptors; TLRs, Toll-like receptors; MMPs,
matrix metalloproteases; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

decades'?. However, obesity significantly increases the risk of
developing OA in nonweight-bearing joints, such as hand and
temporomandibular joints, thereby indicating that obesity in-
fluences OA in a nonmechanical manner®>. However, metabolic
and mechanical factors are inextricably interwoven in weight-
bearing joints. Thus, demonstrating the net effects of these fac-
tors without reciprocal interference in vivo is difficult. Nonetheless,
some animal studies with ingenious designs demonstrated that
body fat instead of body mass was highly correlated with the
radiographic and symptomatic severities of knee OA (KOA) caused
by a high-fat diet (HFD) or sucrose diet'>~'>. Metabolic disturbance
due to nutrient overload is a comorbidity factor in OA-related
osteophyte formation and cartilage degeneration that is indepen-
dent of weight'®. In addition to systemic factors, the locally hy-
pertrophic infrapatellar fat pad is involved in cartilage degradation
by secreting proinflammatory cytokines in obese mice'”. However,
a study performed by superimposing energy-dense diets on a tail-
suspension mouse model found that infrapatellar fat pad inflam-
mation and chondrocyte apoptosis were the results of metabolic
stresses caused by an HFD alone, and the surface irregularity of
articular cartilage and osteophyte formation resulted from both
metabolic stresses and mechanical load'®. An animal study using an
in vivo tibial loading model indicated that severe adiposity and

systemic inflammation aggravated cartilage damage induced by
mechanical load'®. Collectively, these results support the determi-
native role of these biological contributions in OA etiology. None-
theless, mechanical effects may be important in some cases.

The delineation of OA into distinguishable phenotypes on the
basis of etiological underpinnings has attracted considerable in-
terest. An OA subtype called metabolic OA displays a unique OA
trajectory characterized by its major causative metabolic factors’.
The convergence of research into OA and metabolic syndrome
(MetS) has yielded considerable information about their bidirec-
tional effects. Epidemiological and experimental studies indicated
the increased incidence of OA in patients with MetS'>2°. A large-
scale cohort study provided solid evidence that the accumulation
of MetS components (e.g., central obesity, hypertension, high tri-
glyceride levels and impaired fasting glucose) and their clustering
significantly increased the risk of KOA occurrence and progres-
sion’!. A study of obese mice further suggested that improved
glucose tolerance and the disrupted coexpression of inflammatory
cytokines delayed the progression of structural damage in OA
without lowering the inflammatory cytokine levels'”. Moreover, OA
is associated with the increased prevalence of MetS and its com-
ponents, particularly in young individuals*’>. Regardless of some
controversial findings®>?4, the bona fide association between MetS
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and OA phenotypic outcomes is generally accepted, as this link
persists after the body weight or body mass index is adjusted???°,
Metabolic OA has even been proposed as a new criterion for the
definition of MetS, which is supported by shared pathogenic
mezc[?anisms, such as inflammation, in the etiologies of MetS and
OA“".

Persistent inflammation is less pronounced in OA than in pro-
totypical RA?’. This situation is reminiscent of the low-level sub-
acute inflammation that occurs in obesity. Accumulating evidence
suggests that obesity provides a permissive inflammatory setting in
OA pathophysiology. The altered plasma levels of human C-reactive
protein, which is a well-established biomarker for systemic
inflammation, can be evoked by metabolic stresses and used as a
prognostic biomarker for the estimation of individual susceptibility
to developing OA later in life®. Obesity also triggers a locally dy-
namic inflammatory response guided by predominant infiltration
of proinflammatory M1-polarized macrophages in the OA syno-
vium prior to cartilage degradation®’. Some proinflammatory cy-
tokines and adipokines produced by adipocytes are highly involved
in OA pathogenesis®®>!. A preclinical study found that improved
metabolic inflammation substantially mitigated OA deterioration
elicited by an HFD?%. All of these data indicate the causative role of
metabolic inflammation.

To summarize briefly, the link between obesity and OA onset
and progression is well-established, and MetS and metabolic
inflammation are considered as major hidden risk factors that
provide unifying mechanisms underlying this association.

Gut microbiota and immunometabolic disorder regulation

The interfaces between metabolism and immunity exist at
multiple levels within a complex network and have important
implications for physiological homeostasis’~'°. Gut microbes and
microbe-associated molecules may be present in the intricate
network involved in the pathogenesis and potentiation of immu-
nometabolic disorders, such as MetS and metabolic inflammation.

Gut microbiota

Large-scale alterations in the gut microbiota, especially in the
proportional representation of Bacteroidetes and Firmicutes, in
leptin-deficient obese mice*? and the reverse changes during
weight loss in obese individuals®® suggest that microbiome con-
figurations are correlated with host energy balance. A seminal
study found that the colonization of germ-free mice with gut
microbiota harvested from the cecum of conventionally raised
donors induced a significant increase in epididymal fat weight and
total body fat content even with decreased chow consumption®*,
The overgrowth of a specific taxa, such as endotoxin-producing
Enterobacter, has been identified as an etiological factor rather
than an epiphenomenon in obesity>.

A series of studies found that a Western diet-mediated gut
microbiota was an instigator of MetS by activating multiple
mechanisms or pathways in various organs and tissues>°. The
modulation of MetS-associated phylotypes of the gut microbiota
attenuates metabolic deterioration in mice fed an HFD?’. Specific
taxonomic changes, such as the decreased abundance of Akker-
mansia muciniphila, in a holistic bacterial community result in ad-
ipose tissue inflammation and systemic dysmetabolism®%. A study
of dietary intervention in obese human subjects highlighted the
importance of restoring the gut microbiota in the amelioration of
chronic inflammation>®,

These data provide evidence that an altered gut microbiota
plays a robust causal role in the development of obesity and
immunometabolic disorders.

Components from gut microbes and microbe-associated lipid
metabolites

A number of leading theories about the role of the components
of gut microbes and microbe-associated lipid metabolites as key
molecules in relaying and transferring signals from the gut to
systemic tissues have been proposed?’~#?. These molecules are
likely involved in the emergence and persistence of immunome-
tabolic disorders.

Lipopolysaccharide (LPS), which is a major component of the
outer membranes of Gram-negative bacteria, can provoke vigorous
and generalized proinflammatory responses in infected hosts*%43.
The increased metabolic concentrations of plasma LPS (by two-to
three-fold) due to microbiota dysbiosis and impairment of the in-
testinal epithelium barrier caused by an HFD are defined as meta-
bolic endotoxemia, which can serve as a sufficient molecular
mechanism for the initiation of obesity and hyperinsulinemia via an
inflammation-mediated pathway*’. Meanwhile, the process of
uptake and trafficking of gut-derived LPS is a coherent mechanism
for the hypertrophy of adipose tissues because it can facilitate li-
poprotein transcytosis through the endothelial barrier and endo-
cytosis in adipocytes*. Gut-derived LPS can augment adipose
macrophage accumulation and skew the polarization of alterna-
tively activated M2 macrophages toward proinflammatory M1
phenotypes™.

Peptidoglycan (PGN) is also a component of bacterial cell walls.
Bacterial PGNs derived from the intestinal microbiota can penetrate
internal sites and induce immune and inflammatory responses*’.
Specific PGN motifs can enhance the cytotoxicity of adipocytes by
stimulating cell-autonomous lipolysis, which drives hyperlipid-
emia and systemic inflammation®'. In addition to adipocytes, other
types of metabolic cells, such as hepatocytes, can be activated by
the mimetics of bacterial PGN and cause considerable whole-body
insulin resistance.

Free fatty acids (FFAs) are released from adipocytes during tri-
glyceride lipolysis and can be utilized by various tissues. An
expanded adipose tissue mass can accelerate FFA efflux into the
bloodstream®’. FFAs are also bioactive molecules that link obesity
and metabolic diseases by mechanisms involving the activation of
oxidative stress and innate immune pathways*’. Imbalanced mi-
crobial populations are associated with the considerably increased
expression of key genes associated with FFA synthesis, FFA trans-
port and immune regulation in the liver’. Altered serum FFA
profiles are related to specific gut microbial signatures, including
imbalanced populations of Akkermansia and Lactobacillus*®,

Innate immunity

The effects of the gut microbiota on host infection/inflamma-
tion mainly rely on pattern recognition receptors (PRRs), particu-
larly the Toll-like receptors (TLRs) and NOD-like receptors
(NLRs)”®. In addition to their classical role in detecting pathogens
and inducing innate immune responses, PRRs are emerging as key
players in host metabolism programming. TLR4, a well-
characterized membrane receptor, can be activated by both clas-
sical microorganism-derived toxins, such as LPS and PGNs, and
endogenous metabolic cues, such as FFAs**°%, This receptor also
plays a major role in linking increased dietary consumption of
lipids, body fat accumulation and intestinal dysbacteriosis with
metabolic inflammation and insulin resistance?*”°. NLR proteins,
which are cytosolic PRRs, are essential components of the
inflammasome. This large, multimolecular immune complex as-
sembles upon the recognition of infection or pathogens®">?.
Recently, the NLRP3 inflammasome has been identified as a
remote control for MetS by modulating the prevalence of
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colitogenic species of intestinal microflora and the influx of bac-
terial TLR agonists into portal circulation®*>%,

The gut microbiota and the innate immune system can work as a
complex holobiont; the innate immune system can shape the gut
microbiota, and the gut microbiota has immune-activating func-
tions>>%. Most perturbations in the microbiome or innate immune
system can result in a new equilibrium for the pathogenesis of
metabolic diseases>®. This idea was further validated by the finding
that genetic modification of the NLRP3 inflammasome or TLR5
induced impaired glucose metabolism, which was closely related to
an altered microbiota structure®>>”>8, Alterations in microbial
community structure, elevation of TLR ligand levels and over-
expression of TLRs were also observed in mice and humans with
obesity or metabolic disorders’®.

Dysbacteriosis and OA

The concept that gut microbiota correlates with musculoskeletal
health has been recognized for >60 years®. Previous studies on
animal models and humans revealed the role of the microbiota in
the onset, severity and progression of RA®’. Although the impor-
tance of intestinal dysbiosis in either triggering or driving auto-
immunity related to RA has been proposed!!, the mechanism
underlying the gut microbiome—joint axis remains unclear. Evi-
dence from animal studies indicates that the gut microbiota is also
involved in the etiology of OA. Work on the gut microbiome—0A
connection will provide a basis for the discovery of novel thera-
peutics for patients with chronic inflammatory arthritis.

Gut microbiota

The evidence for the efficacy of oral chondroitin sulfate in OA
treatment is contentious and inconsistent®’. A hypothesis paper
proposed that the relative abundance of A. muciniphila, a
commensal gut bacterium, might determine the contribution of
chondroitin sulfate to the amelioration or aggravation of OA®. An
animal study indicated that the altered abundance of the gut mi-
crobes Lactobacillus spp. and Methanobrevibacter spp. was associ-
ated with the Mankin scores of articular cartilage'®. Lactobacillus
casei can enhance the mitigative effects of type II collagen/glucos-
amine on OA treatment by downregulating the inflammatory re-
sponses of articular tissues in mice®. In revolutionary initial
research, Schott et al. provided direct evidence that obesity-
associated OA was an inflammatory ailment driven by obesity-
related gut dysbiosis®®. They found that reversal of a proin-
flammatory shift in the obese murine gut microbiota, through the
prebiotic manipulation of specific microbial species, particularly
Bifidobacterium pseudolongum, could reduce inflammatory profiles
in the colon and circulation, thereby preserving the articular
cartilage and essentially rescuing OA®*. Similar to a previous study
showing that the intestinal epigenome and even gene expression
were reprogrammed by an obesity-associated gut microbiome®?,
this study indicated that alterations in the obesogenic diet-
conditioned microbiota changed the colonic gene expression pat-
terns associated with the support of intestinal cell types related to
epithelial proliferation and barrier function; thus, endotoxin
leakage and macrophage infiltration into the synovium were
reduced®. The therapeutic modification of dysbalanced microbial
populations characterized by a MetS-like phenotype in TLR5
knockout mice can alleviate the OA cartilage pathology and sub-
chondral bone morphology'°. This finding further indicates the role
of a person's enterotype in the development of metabolic OA.

A considerable number of both intracellular and extracellular
bacteria were observed in the synovial tissues of patients with OA,
which was associated with a substantial quantity of inflammatory

infiltrate®®. However, the exact source of these organisms is difficult
to identify because many species are normal commensal residents
both in the intestinal tract and skin®®. It seems reasonable to pro-
pose the gut as the source of these organisms because impaired gut
permeability and mucosal competence have been observed in pa-
tients with arthritis®®®’, and some living bacteria could be trans-
ferred from the gut to the joints/enthesis through the circulatory or

lymphatic system®®.

Components from gut microbes and microbe-associated lipid
metabolites

A hypothesis article proposed the pivotal role of metabolic
endotoxemia in cross-sectional associations among gut dysbiosis,
systemic inflammation and articular damage in obesity-induced
OA®°. However, another hypothesis article proposed that an
increased serum endotoxin load was insufficient for OA onset and
progression but exerted adjuvant effects on the process. A two-hit
model of OA pathogenesis was formulated, wherein an initial
proinflammatory innate immune response triggered by LPS was the
first hit. Structural damage in a joint resulted from the second hit,
which involved coexisting complementary mechanisms, such as
inflammasome activation or assembly by the fragmented matrices
of joint tissues that synergistically activated innate immunity’°.
Reliably quantifying LPS has been a challenge for years because
some LPS inhibitors combine with LPS and form complexes that
mask detection in biospecimens’!’%. Nonetheless, an increased
serum LPS concentration was previously detected in obese mice
with OA'®. A study also optimized the methodology of LPS quan-
tification, thereby confirming that LPS placed a burden in both
synovial fluid and serum samples of patients with OA’?. Synovial
LPS concentrations were correlated with macrophage activation,
osteophyte severity, joint space narrowing severity and the total
Western Ontario and McMaster Universities OA Index score in the
knee’?. LPS can also induce the secretion of matrix metal-
loproteases and components of the innate immune response in
cultured chondrocytes’> and accelerate the matrix degradation of
articular cartilage explants’*. These studies strongly support the
pathogenic role of LPS in the perpetuation of OA.

Although not specific to patients with OA, peptidoglycan—
polysaccharide (PGN-PS) complexes were detected in cells in the
synovial sublining layer of OA-afflicted joints’>. PGN-PS complexes
were also isolated successfully from human feces and ileostomy
fluids. The arthritogenic properties of PGN-PS complexes were
further proven by the adjuvant-induced arthritis model’®. Bacterial
PGNs were present in some immune cells, including macrophages
and dendritic cells, in the synovia of patients with OA. The different
cellular phenotypes coexpressed costimulatory molecules that
were involved in antigen presentation and produced cytokines
contributing to the inflammatory internal environments in joints’”.
Several in vitro studies indicated the direct stimulatory effects of
bacterial PGNs on synovial fibroblasts obtained from patients with
OA and showed that bacterial PGNs induced the expression of
matrix metalloproteases and proinflammatory cytokines’®. All of
these results suggest that the intra-articular PGNs are involved in
triggering or exacerbating OA progression.

The serum and synovial fluid lipidomic profiles are sensitive
biomarkers of the radiographic stage of obesity-associated OA”°.
Some metabolites related to FFA metabolism in the synovial fluid,
such as myristic acid, oleic acid and lanosterol, increased with the
structural deterioration of OA®’. Pathological concentrations of
oleate could reduce the viability of articular chondrocytes through
apoptosis®!. The accumulation of ectopic lipids was observed in
articular cartilage in joints afflicted with OA, and total fatty acids in
general and arachidonic acid in particular closely correlated with
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the erosion severity of the cartilage surface®2. The lipotoxic effects
induced by dyslipidemia in dominant cells within synovial tissues,
including adipocytes and macrophages, worsened synovitis in pa-
tients with OA and MetS®>. The exertion of FFA-induced lipotoxicity
in chondrocytes correlated with the amount of cellular FFAs, which
were originally sequestered within lipid droplets®’. Thus, FFAs may
play an important role in OA pathophysiology.

Innate immunity

The complex and intricate interplay between the innate im-
mune system and the intestinal microbiota plays a role in immu-
nometabolic disorders®*®>® and has been recognized as a causal
factor in the biological basis of metabolic OA'*?52829_ In addition,
overexpression of TLR2 and TLR4 has been observed in the lesions
of OA articular cartilage®*. The treatment of chondrocytes obtained
from OA patients with PGN and LPS activated TLR2-mediated in-
flammatory and catabolic signaling pathways®’. These results
indicate the direct pathogenic role of non-immunocytes, which
operate via the same mechanisms as canonical innate immune
responses in OA. The activated synovial fibroblasts in patients with
OA are also part of the innate immune system due to the activation
of their outer membrane protein, TLR2, with PGN stimulation’®.
The oral administration of resveratrol partly rescued the joint ar-
chitecture disorganization in obesity-related OA by suppressing the
TLR4-mediated inflammatory signaling pathways in the cartilage®.
However, MetS-like disorders elicited by TLR5 deletion did not
aggravate load-induced cartilage damage in mice'®. There are a
number of possibilities to explain this. In particular, the extent of
metabolic changes is insufficient to cause damage, the effects of
metabolic factors are time-dependent and require time to manifest,
and TLR5 itself may be involved in OA progression.

Increasing evidence has indicated that the NLRP3 inflamma-
some is a novel biomarker for OA diagnosis and monitoring®®. The
high correlation between NLRP3 protein expression and pro-
oxidant enzyme levels in the synovial membranes of patients
with KOA suggested the possibility that the inflammasome was
activated by oxidative stress in OA progression®’. Inhibition of the
expression of the NLRP3 inflammasome or its components, such as
pro-caspase-1, contributed to the amelioration of OA progres-
sion’"®®. In addition to the NLRP3 inflammasome, the NLRP1
inflammasome showed upregulated expression in the synovia of
the joints of patients with OA°"®”. NLRP1 and NLRP3 inflamma-
somes also mediated inflammation and pyroptosis induced by LPS
in fibroblast-like synoviocytes obtained from patients with OA®'.
These data strongly indicate the important role of inflammasomes
in OA pathology and progression. Intriguingly, some exogenous and
endogenous stimuli, including LPS and oxidative stress, which
activate inflammasomes in OA progression, overlap with common
pathogenic factors in obesity. However, whether these inflamma-
somes can be activated in the context of obesity contributing to OA
development needs further investigation.

Therapeutics

Considering the continuously increasing global prevalence of
obesity, novel preventive and therapeutic approaches for realizing
symptomatic and structural relief of obesity-associated OA are
greatly needed. Probiotics, prebiotics, nutritional supplements, di-
etary habits and exercise may influence the gut microbiome—0OA
interlinkage. Thus, these methods are considered as potential
therapeutic approaches in the treatment of obesity-associated OA.

Probiotics and prebiotics, which are safe and effective dietary
substances that can be used for elaborating microbial commu-
nities®’, are plausible therapeutic options for obesity-associated

OA. A randomized double-blind clinical trial proposed that com-
mercial probiotic L. casei Shirota exhibited beneficial effects on the
treatment outcomes of knee joints afflicted with OA%°. Supple-
mentation with prebiotic fiber in the form of oligofructose could
reverse the detrimental effects of fat-enriched diets on gut micro-
bial communities by increasing the abundance of beneficial Bifi-
dobacteria at the expense of numerous proinflammatory microbes,
while inducing a considerable and consistent reduction in meta-
bolic inflammation. It protected the joints of patients with OA
against articular cartilage degeneration®®. Green-lipped mussel
extract, a dietary supplement, is efficient in reducing OA symptom:s,
and its therapeutic efficacy is likely correlated with a decrease in
Clostridia spp., which are potent modulators of colonic Th17 and
CD4" regulatory T cells, in the microbiota®'.

The structures and functionalities of microbial communities are
strongly related to diet>®?”. Some data have verified that dietary
fats, especially saturated fatty acids, exert toxic effects on the eti-
ologies of OA and the proinflammatory profiles of microbial com-
munities might be a hidden causal factor underlying these
effects®*92. Conversely, high intake of dietary fiber and poly-
unsaturated fatty acids or a high ratio between polyunsaturated
fatty acids and saturated fatty acids was associated with the alle-
viation of the symptoms and joint structures of obesity-associated
OA and reduced the risk of the illness®>~%°. Although the role of the
gut microbiota still needs to be further explored, dietary habits
provide a potential path toward the regulation of OA progression.

Although evidence from clinical trials on the effectiveness of
exercise or physical activity for OA in individuals with obesity is
limited, some intervention studies, which were not restricted to
patients with obesity, had many recruited subjects that were over-
weight or obese, and the results confirmed the beneficial therapeutic
effects of exercise on obesity-associated OA to some extent”® °%. An
experimental study in obese mice showed that wheel running
exerted protective rather than damaging effects on OA'°. The inte-
grated therapeutic approaches of exercise and dietary weight loss
induce considerable improvements in knee pain and mobility per-
formance in adults with obesity, compared with a single interven-
tion®>'1%°, In addition, exercise considerably contributes to the
modification of obese gut microbiota'®’ ~1%3, Several specific micro-
biota taxa, such as Lactobacillus and Bifidobacterium, which can be
positively regulated by exercise'°%'%4 also have potential value in OA
treatment®>%4, Metabolic endotoxemia is also lower in active in-
dividuals than in those with sedentary lifestyles'%>. Nonetheless,
given the varying degrees of obesity in patients with OA and the
pleiotropic effects of exercise involving mechanical and biological
effects, the context-dependent roles of exercise should be further
explored. Whether exercise presents favorable effects on OA by
regulating the gut microbiota should be clarified.

Conclusion and future perspectives

The association between obesity and OA has been well estab-
lished. Researchers have only recently begun to appreciate aberrant
intestinal microbiota as a causal factor in the genesis and perpet-
uation of obesity-associated OA in animal models. However, the
demonstration of the causality in humans will require further
research. Microbiota-associated molecules affect the etiopathology
of OA at both systemic and local levels by mechanisms involving
innate immune activation. Given that many factors potentially
contribute to immunometabolic disorders, at what point and to
what extent microbiota-mediated factors play a major role in OA
pathogenesis remains to be elucidated. In addition, further mech-
anistic studies are still required to provide a deep understanding of
the interactions between the microbiota and the host either locally
in the intestine or peripherally in the joint tissues. Probiotics and
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prebiotics, dietary habits, and exercise may influence the gut
microbiome—OA interlinkage and are considered as potential
therapeutic approaches in the treatment of obesity-associated OA.
Some oral nutritional supplements, such as green-lipped mussel
extract, which have symptom-modulating effects in OA, although
no consensus has been reached about the mechanism of action,
may act by modulating the gut microbiome. The exploration of
approaches for restoring a healthy microbiota, especially increasing
the amount of specific commensal microbiota that antagonize
proinflammatory microbes and maintain the intestinal mucosa
barrier, is an important future direction for OA treatment.
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