Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif

Noureddine Chaachouay*, Ouafae Benkhnigue, Mohamed Fadli, Hamid El Ibaoui, Lahcen Zidane

Natural Resources and Biodiversity Laboratory, Department of Biology, Faculty of Sciences, Ibn Tofail University, B.P. 133, 14000, Kenitra, Morocco

ARTICLE INFO
Keywords: Metabolism Moroccan Rif Medicinal and aromatic plants Metabolic diseases

ABSTRACT
Since early times, the people of Morocco use medicinal and aromatic plants as traditional medicine to heal different human ailments. However, little studies have been made in the past to properly document and promote the traditional knowledge. This study was carried out in the Rif (North of Morocco), it aimed to identify medicinal and aromatic plant used by the local people to treat metabolic diseases, together with the associated ethnomedical knowledge. The ethnomedical information collected was from 582 traditional healers using semi-structured interviews, free listing and focus group. Family use value (FUV), use value (UV), plant part value (PPV), fidelity level (FL) and informant agreement ratio (IAR) were employed in data analysis. Medicinal and aromatic plant were collected, identified and kept at the natural resources and biodiversity laboratory, Ibn Tofail University, Kenitra. During the present study 30 medicinal plant species belonging to 14 families has been documented. The most frequent ailments reported were diabetes (IAR = 0.98). The majority of the remedies were prepared from infusion (53.9%). Leaves were the most frequently used plant part (PPV 0.633) and Rosmarinus officinalis L. (UV = 0.325) was the specie most commonly prescribed by local herbalists. The results of this study showed that people living in the Rif of Morocco are still dependent on medicinal and aromatic plants. The documented plants can serve as a basis for further studies on the regions medicinal plants knowledge and for future phytochemical and pharmacological studies.

1. Introduction
People have long histories on the uses of traditional medicinal and aromatic plants for medical purposes in the world, and nowadays, this is highly actively promoted [1]. In all ancient civilizations and in all continents, one finds traces of this use. Thus, even today, despite the progress of pharmacology, the therapeutic use of plants is very present in some countries, especially in developing countries [2].

Morocco, by its biogeographical position, offers a very rich ecological and floristic diversity constituting a true plant genetic reserve, with about 4,500 species belonging to 940 genera and 135 families [3]. The mountainous regions of Rif and Atlas being the most important areas for endemism [3]. This biodiversity is characterized by a very marked endemism that [4] allows it to occupy a privileged place among the Mediterranean countries to be a which have a long medical tradition and traditional know-how based on medicinal plants [5]. Indeed, traditional medicine has always occupied an important place in the traditions of medication in Morocco and the Rif region is a concrete example. The analysis of the Moroccan medicinal bibliography shows that the data on regional medicinal plants are very fragmentary and dispersed. We believe that the heritage of the medicinal flora requires regular monitoring and evaluation in terms of quality and quantity.

Accordingly, we conducted this ethnobotanical study in the Rif, which has a considerable lithological, structural, biological and floristic diversity. The purpose of the present investigations was to evaluate medicinal plants that grow in the study area with the aim to contribute to indigenous knowledge of medicinal plants and to analyze the results concerning the existing relationships between medicinal species and metabolic diseases. Indeed, it is very important to transform this traditional knowledge into scientific knowledge in order to revalue it, to preserve it and use it rationally.
2. Materials and methods

2.1. Description of the study area

The present study was conducted in the Rif (northern Morocco) it is located on the Mediterranean coast, about 431 km at the north of Rabat, the administrative capital. The Rif is part of the region of Tangier-Tetouan-Al Hoceima which is one of the twelve regions of Morocco established by the territorial division of 2015 [6]. This study area (between 34° to 36° N latitude and 4°–6° E longitude) is limited to the north by the Strait of Gibraltar and the Mediterranean Sea, to the west by the Atlantic Ocean, to the south-west by the Rabat-Sale-Kenitra region, to the south-east by the Fez-Meknes region and to the east by the Eastern region. The region has two prefectures (Tangier-Asilah and M'Diq-Fnideq) and six provinces (Al Hoceima, Chefchaouen, Fâhs-Anjra, Larache, Ouezzane and Tetouan) and the region's capital, Tangier-Asilah as shown in (Fig. 1).

According to the 2014 national census report [7], the total area of study area is about 11,570 km² with an average population density of 222.2/km², and the human population is 3,549,512. The study area has Mediterranean climate with maximum temperature beyond 45 °C during summer (July–August) and below 0 °C during winter (December–January) and annual rainfall is about 1000 mm. In the area, economy of the local people is very much dependent on subsistence agriculture, livestock and to a lesser extent, from forest resources for their livelihood. Inhabitants of the region use variety of medicinal plants for the treatment ailments due to expensive drugs.

2.2. Methodology

2.2.1. Data collection tools and procedures

In order to gather information on medicinal plants used for treating metabolic disorders, an ethnobotanical survey was conducted from June 30th, 2016 to June 1st, 2018. Semi-structured questionnaires were administered and free listings were conducted, through face to face interviews and focus group, adopting the standard methodology followed by Martin [8]. The inclusion criteria: A lot of people may believe they are knowledgeable about plants used to treat nervous system disorders. It must be specified that qualified healthcare professionals such as “pharmacists, herbalists, practitioners and therapists” were selected for the study. While the exclusion criteria were informants who are not living in the study area. Totally, 582 informants within aged 17 to 92 were randomly selected for interviews (pharmacists, herbalists, practitioners and healers) in the study area (hospitals, pharmacies, houses, mosques, and weekly markets). The healthcare professionals were informed about the objective of this study, after having them sign a consent form, they were regularly to collect and document indigenous knowledge of plants usage against metabolic diseases. The questionnaire used consists of two parts: the first part deals with the demographic characteristic of the informants and the second one focuses on the plants used in the treatment of the diseases (Appendix A). The sample is made up of 311 females and 271 males from different socio-economic strata, chosen at random from the Rif's population. In this study, the sample is developed using a stratified random sampling method [9] to conduct various surveys from a site to another in the study area. According to this sampling method, we

Fig. 1. Mapping representation of study area.
have divided our study area into sites (Sn), so we have 28 sites that correspond to the number of divisions in the study area (Fig. 2).

2.2.2. Plant species identification and preservation

Standard method was followed with record to collection of plant materials, drying, mounting, preparation and preservation of plant specimens [10]. All data collections were done with special care on the base of the cultural view of the local sites in the study area. The plant species collected during surveys were arranged alphabetically by family name, vernacular name/scientific name and ethnomedicinal uses. These plants were identified using standard floras available in this area of Morocco, including: The medicinal plants of the Morocco [11], Practical flora of Morocco [12] and Catalogs of vascular plants of northern Morocco volumes I and II [13]. Further, taxonomic names of plant species were confirmed at resources and biodiversity laboratory, Ibn Tofail University Kenitra, Morocco, from online databases namely: The Plant List (http://www.theplantlist.org) and the Kew Botanic Garden medicinal Plant Names services (http://www.kew.org/mpns). All the preserved specimens were deposited at the Herbarium of Ibn Tofail University.

2.2.3. Ethics statement and consent to participate

Approval for this study was granted by the Committee for ethical research of the department of biology, Ibn Tofail University. Before initiating data collection, we obtained oral informed consent in each case on a site level and then individually prior to each interview. Informants were also informed that the objectives of the research were not for commercial purposes but for academic reasons. Participants provided verbal informed consent to participate in this study; they were free to withdraw their information at any point of time. Finally, informants were accepted the idea and they have clearly agreed to have their names and personal data to be published.

2.2.4. Data analysis

A descriptive and quantitative statistical method was used to analyze the socio-demographic data of the informants (ANOVA One-way and Independent Samples T-Test, P-values of 0.05 or less were considered significant). The results of the ethnobotanical survey were analyzed using the Family Use Value (FUV), Use Value (UV), Plant Part Value (PPV), Fidelity Level (FL) and Informant Agreement Ratio (IAR). All statistical analyses were carried out with Statistical Package for Social Science (SPSS) version 21 and Microsoft Excel 2010.

2.2.4.1. Family use value (FUV).

The FUV identify the significance of plant families. It is as an index of cultural importance which can be applied in ethnobotany to calculate a value of biological plant taxon. To calculate FUV, we use the following formula: \[FUV = \frac{UV_s}{NS} \]

Where \(UV_s \) is the number of informants mentioning the family and \(Ns \) is the total number of species within each family [14].

2.2.4.2. Use value (UV).

The use value of species (UV), a quantitative method that demonstrates the relative importance of species known locally [15], was also calculated according to the following formula:

Fig. 2. Distribution of survey points at the study area level.
UV = \sum_{i=1}^{N} \frac{U_i}{N}. Where U_i is the number of use reports mentioned by each informant (i) and N is the total number informants interviewed for a given plant species.

2.2.4.3. Plant part value (PPV). Plant part value (PPV) was calculated using the following formula: \(PPV = \frac{RU_{part}}{RU_{plant}} \). Where RU is the number of uses reported of all parts of the plant and \(RU_{plant} \) is the sum of uses reported per part of the plant. The part with the highest PPV is the most used by the respondents.

2.2.4.4. Fidelity level (FL). Fidelity level (FL) is the percentage of informants who mentioned the uses of certain plant species to treat a particular ailment in the study area. The FL index is calculated using this formula [16]: \(FL(\%) = \frac{I_f}{I_p} \times 100 \). Where \(I_p \) is the number of informants who independently indicated the use of a species for the same major ailment and \(I_f \) the total number of informants who mentioned the plant for any major ailment.

2.2.4.5. Informant agreement ratio (IAR). The IAR for each use category in the four countries of investigation were calculated using the following formula [17]: \(IAR = \frac{N_{2}+N_{3}+N_{4}}{N_{1}+N_{2}+N_{3}+N_{4}+N_{5}} \). Where \(IAR \) is the Informant Agreement Ratio, \(N_1 \) is the number of mentions in each category and \(N_5 \) is the number of taxa used in each category. The values for the factor range from 0 to 1.

3. Results and discussion

3.1. Socio-demographic features of the informants

In total, 582 local informants including 311 females and 271 males (with a sex ratio female/male of 1.15) were interviewed. In the Rif, herbs were used by the respondents. The FL index is calculated using this formula [16]: $FL(\%) = \frac{I_f}{I_p} \times 100$. Where I_p is the number of informants who independently indicated the use of a species for the same major ailment and I_f, the total number of informants who mentioned the plant for any major ailment.

3.2. Quantitative analyse

3.2.1. Most used families and their family use value (FUV)

A total of 30 medicinal plants species belonging to 14 botanical families were used to treat digestive system diseases in the study area. These plants are presented in alphabetical order. For each plant listed, we give the scientific name, the family, the local name, the part used, the method of preparation adopted by the local population, as well as the data of FUV, UR, UV and FL are shown in Table 1.

The most representative families, in terms of number of species, were Asteraceae (6 species each) followed by Fabaceae and Moraceae (4 species each) and Lamiaceae (93 species), while other families were represented by two or single species (Fig. 3). Based on the FUV index, The 5 most cited families are Lamiaceae (FUV = 0.177), Cupressaceae (FUV = 0.136), Rosaceae (FUV = 0.130), Linaceae (FUV = 0.112) and Moraceae (FUV = 0.083). This high proportion could be explained by the high representation of these families in the Rif’s flora because of the ecological factors that favour the development and adaptation of the majority of their species. This partially coincides with the findings in other territories with similar characteristics [19, 29, 30, 31].

3.2.2. Diversity of medicinal plants and their UV values

To evaluate the relative importance of reported medicinal plants use value (UV) were calculated based on the informants’ citations for specific under study plant, its value ranged from 0.002 to 0.325 (Table 2). Results of this study depicted that Rosmarinus officinalis L. exhibited the higher
Table 2

<table>
<thead>
<tr>
<th>Scientific names of species and families</th>
<th>Local name</th>
<th>Parts used</th>
<th>Preparation</th>
<th>Medicinal uses</th>
<th>FL</th>
<th>UR</th>
<th>UV</th>
<th>FUV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta vulgaris L.</td>
<td>Lbarba</td>
<td>Seed</td>
<td>Infusion</td>
<td>AN</td>
<td>100</td>
<td>06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Apiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fennel communis L.</td>
<td>Ukulha</td>
<td>Leaf</td>
<td>Decoction</td>
<td>HT</td>
<td>100</td>
<td>04</td>
<td>0.007</td>
<td>0.018</td>
</tr>
<tr>
<td>Dillidia segetum (L.) Moris</td>
<td>Sito</td>
<td>Leaf</td>
<td>Cooked</td>
<td>DT, HC</td>
<td>70.6</td>
<td>17</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>Asteraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacuca sativa L.</td>
<td>Elkhass</td>
<td>Leaf</td>
<td>Infusion</td>
<td>AN</td>
<td>100</td>
<td>22</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>Brassicaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calendula arvensis M.Bieb.</td>
<td>Jema, Arzivel</td>
<td>Flower</td>
<td>Infusion</td>
<td>DT</td>
<td>100</td>
<td>96</td>
<td>0.165</td>
<td></td>
</tr>
<tr>
<td>Helianthus annuus L.</td>
<td>Abbad Shems</td>
<td>Seed</td>
<td>Infusion</td>
<td>AN</td>
<td>100</td>
<td>21</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Sonchus asper (L.) Hill</td>
<td>Tifaf</td>
<td>Leaf</td>
<td>Decoction</td>
<td>AN, OB, HT</td>
<td>48</td>
<td>25</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Sonchus asper (L.) Hill</td>
<td>Tifaf</td>
<td>Whole plant</td>
<td>Decoction</td>
<td>HT</td>
<td>100</td>
<td>01</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Tanacetum vulgare</td>
<td>Lhassem</td>
<td>Leaf</td>
<td>Infusion</td>
<td>DT, AN, HC</td>
<td>52.4</td>
<td>42</td>
<td>0.072</td>
<td></td>
</tr>
<tr>
<td>Brassicaeae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td>Anastatica hierochuntica L.</td>
<td>Kaff Mariam</td>
<td>Root</td>
<td>Decoction</td>
<td>AN, HC</td>
<td>80</td>
<td>25</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>Brassica oleracea L.</td>
<td>Karnabite</td>
<td>Leaf</td>
<td>Other</td>
<td>AN, OB</td>
<td>77.8</td>
<td>09</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita pepo L.</td>
<td>Gara Khedra</td>
<td>Fruit</td>
<td>Cooked</td>
<td>DT</td>
<td>100</td>
<td>43</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>Citrullus colocynthis (L.) Schrad.</td>
<td>Ldeij, Taferzitte</td>
<td>Seed</td>
<td>Infusion</td>
<td>DT</td>
<td>100</td>
<td>09</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Cupressaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.136</td>
</tr>
<tr>
<td>Juniperus phoenicea L.</td>
<td>Anar Finiqi</td>
<td>Leaf</td>
<td>Decoction</td>
<td>HT</td>
<td>100</td>
<td>79</td>
<td>0.136</td>
<td></td>
</tr>
<tr>
<td>Euphorbia peplus L.</td>
<td>Laxya, Haliba</td>
<td>Whole plant</td>
<td>Other</td>
<td>OB</td>
<td>100</td>
<td>01</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Lupinus pilosus L.</td>
<td>Rjel Djaja</td>
<td>Seed</td>
<td>Infusion</td>
<td>DT</td>
<td>100</td>
<td>07</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>Acacia albida Delile</td>
<td>Chok Telh</td>
<td>Root</td>
<td>Decoction</td>
<td>OB</td>
<td>100</td>
<td>02</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Phaseolus aureus Roxb.</td>
<td>Soja</td>
<td>Seed</td>
<td>Decoction</td>
<td>HC</td>
<td>100</td>
<td>02</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Phaseolus vulgaris L.</td>
<td>Loubya</td>
<td>Seed</td>
<td>Cooked</td>
<td>AN</td>
<td>100</td>
<td>36</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>Fumariaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Fumaria officinalis L.</td>
<td>Hichicht Essibyan</td>
<td>Root</td>
<td>Decoction</td>
<td>HT</td>
<td>100</td>
<td>01</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.177</td>
</tr>
<tr>
<td>Marrubium vulgare L.</td>
<td>Merriwta Hara, Hzi</td>
<td>Leaf</td>
<td>Infusion</td>
<td>OB</td>
<td>100</td>
<td>01</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Salvia officinalis L.</td>
<td>Salmiya</td>
<td>Leaf</td>
<td>Infusion</td>
<td>AN</td>
<td>100</td>
<td>119</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td>Rosmarinus officinalis L.</td>
<td>Azir, Yazir,</td>
<td>Leaf</td>
<td>Infusion</td>
<td>DT</td>
<td>100</td>
<td>189</td>
<td>0.325</td>
<td></td>
</tr>
<tr>
<td>Linaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.112</td>
</tr>
<tr>
<td>Linum usitatissimum L.</td>
<td>Zerit el Kettan</td>
<td>Seed</td>
<td>Cooked</td>
<td>DT</td>
<td>100</td>
<td>65</td>
<td>0.112</td>
<td></td>
</tr>
<tr>
<td>Moraceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.083</td>
</tr>
<tr>
<td>Ficus carica L.</td>
<td>Karmous, Chihiba</td>
<td>Leaf</td>
<td>Infusion</td>
<td>DT, HC</td>
<td>70</td>
<td>10</td>
<td>0.0172</td>
<td></td>
</tr>
<tr>
<td>Ficus abelii Miq.</td>
<td>Karmous, Chihiba</td>
<td>Leaf</td>
<td>Decoction</td>
<td>DT</td>
<td>100</td>
<td>103</td>
<td>0.177</td>
<td></td>
</tr>
<tr>
<td>Ficus domania Gasp.</td>
<td>Karmous, Chihiba</td>
<td>Fruit</td>
<td>Other</td>
<td>HC</td>
<td>100</td>
<td>11</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Morus alba L.</td>
<td>Ettout</td>
<td>Leaf</td>
<td>Infusion</td>
<td>AN, OB</td>
<td>58.8</td>
<td>68</td>
<td>0.117</td>
<td></td>
</tr>
<tr>
<td>Portulacaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.009</td>
</tr>
<tr>
<td>Portulaca oleracea L.</td>
<td>Rejla, Tasmamine</td>
<td>Leaf</td>
<td>Cooked</td>
<td>HC</td>
<td>100</td>
<td>05</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.130</td>
</tr>
<tr>
<td>Malus domestica Borkh.</td>
<td>Tilfah</td>
<td>Fruit</td>
<td>Other</td>
<td>DT</td>
<td>100</td>
<td>76</td>
<td>0.130</td>
<td></td>
</tr>
</tbody>
</table>

UV (0.325), followed by the *Salvia officinalis* L. (UV = 0.205), *Ficus abelii* Miq. (UV = 0.177) and *Calendula arvensis* M.Bieb. (UV = 0.165). The least UV was exhibited by 3 plant species (UV = 0.002 each). These species had the highest UV index, because these plants were mentioned by a large number of informants and UV directly depends on the number of informants mentioning the use of a specific plant. Those medicinal plant species having high UV must be further assessed for phytochemical and pharmaceutical analysis to identify their active constituents for any drug extraction [15]. These species should also be prioritized for conservation as their preferred uses may place their populations under threat due to over harvesting.

3.2.3. Fidelity level index (FL)

The fidelity value FL is an important means to see for which ailment a particular species is more effective. FL values in this study varied from 48% to 100%. The study determined 19 species of plants with a FL of 100%, most of which were in single ailment category with multiple informants. However, there were some plant species where only one informant mentioned the use of the plant. In general, a FL of 100% for a specific plant indicates that all of the use-reports mentioned the same method for using the plant for treatment [32]. This information means that the informants in the Rif had a tendency to rely on one specific plant species for treating one certain ailment than for several ailments. There are 19 plant species highly cited for metabolic problems should be taken in further consideration and studies to evaluate more data regarding their efficacy and authenticity as reported and recommended in other studies. Besides, plants with low FL% should not be abandoned as dwindling to remark them to the future generation that it could increase the risk of gradual disappearance of the knowledge [33].

3.2.4. Disease categories and their IAR values

Informant agreement ratio (IAR) depends upon the availability of plants within the study area to treat diseases. The product of IAR ranges from 0 to 1. High value of IAR indicates the agreement of selection of taxa between informants, whereas a low value indicates disagreement. Recently agreement ratio analysis has been used as an important tool for the analysis of ethno botanical data [34, 35]. In the present study, the IAR values ranged from 0.64 to 0.98 per uses categories (Table 3). The category with the highest degree of agreement from informants was diabetes disorders (0.98). The ranking followed with anemia (0.96), hypercholesterolemia (0.90), obesity (0.80) and hyperthyroidism (0.64). The IAR results of the study proved that diseases that were frequent in the Rif’s area have the higher informant agreement ratio (values between 0.64 and 0.98). This high IAR values indicated reasonable reliability of informants on the use of medicinal plants species [36]. The informant agreement values also indicated that the people share the knowledge of
the most important medicinal plants species to treat the most frequently encountered diseases in the study area. Therefore, species with high IAR are to be prioritized for further on pharmacological and phytochemical studies.

3.2.5. Parts of the medicinal plants used

People of the Rif harvest different plant parts for the preparation of traditional remedies (e.g., seed, root, flower, fruit, leaf and whole plant). Based on the plant part value PPV index, leaf was reported as the dominant plant part for metabolic remedy preparation in the study area (PPV 0.633), followed by seed (PPV 0.133), fruit (PPV 0.119), root (PPV 0.087), and whole plant (PPV 0.002) respectively (Fig. 4). The preference of leaves was due to its easy availability, easy harvesting and simplicity in remedy preparation. In addition the leaves (Fig. 4). The preference of leaves was due to its easy availability, easy harvesting and simplicity in remedy preparation. In addition the leaves

3.3. Methods of remedy preparations

In order to facilitate the administration of the active principles of the plant, several modes of preparation are employed to know the decoction, the infusion, cataplasm, raw, maceration, fumigation, inhalation and cooked. In the study area, information about the preparation of each plant has been included in Table 2. The results also showed that the majorities of remedies were prepared from infusion (53.9%) followed by decoction (22.1%) and cooked (15.16%). The percentage of the other methods of preparation grouped (fumigation, maceration, raw, inhalation, cataplasm) does not exceed 8.84% (Fig. 5). The frequent use of the infusion can be explained by the fact that the infusion makes it possible to collect the most active ingredients and attenuates or cancels out the toxic effect of certain recipes. Ethnobotanical research surveys conducted elsewhere in Morocco showed the majority of the interviewees prepared the remedy by infusion [21, 25, 43]. This confirms that there is a perpetual exchange of information on the use of medicinal plants between the people of Morocco. Infusion mentioned as the major method of preparation at the continental level [44, 45, 46].

3.4. Routes of administration

Route of administration also varies depends on the disease and materials used. In general, most of the prepared recipes are orally prescribed (81.3%) followed by massage (9.6%), other modes of administration (4.8%), swabbing (2.5%) and rinsing (1.8%). The predominance of oral administration may be explained by a high incidence of internal ailments in the region [47]. On the other hand, it’s thought that oral route is the most acceptable for the patient. The predominance of oral administration of the different medicinal plants in the Rif is in total agreement with most of the carried out ethnobotanical studies in Africa [20, 48, 49].

3.5. Conditions of medicine preparation

In the present investigations, the majority of the remedies (58.4%) in

Table 3

IAR values by categories for treating metabolic diseases.

<table>
<thead>
<tr>
<th>Categories</th>
<th>List of plant species used and number of uses</th>
<th>Nt</th>
<th>Nur</th>
<th>IAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes (DT)</td>
<td>Calendula arvensis M.Bieb. (96), Cucurbita pepo L. (43), Citrullus colocynthis (L.) Schrad. (9), Juniperus phoenicea L. (79), Lupinus pilosus L. (7), Rosmarinus officinalis L. (189), Lignum usitatisimum L. (65), Ficus abelii Miq. (100), Malus domestica Borkh. (76), Morus alba L. (20), Tanacetum vulgare L. (10), Ficus carica L. (5), Ridoia segetum (L.) Moris. (5).</td>
<td>13</td>
<td>705</td>
<td>0.98</td>
</tr>
<tr>
<td>Anemia (AN)</td>
<td>Beta vulgaris L. (6), Lactuca sativa L. (22), Helianthus annuus L. (21), Tanacetum vulgare L. (22), Phascolus vulgaris L. (36), Salvia officinalis L. (119), Morus alba L. (40), Sonchus tenerissimus L. (8), Anastatica hierochuntica L. (5), Brassica oleracea L. (2).</td>
<td>10</td>
<td>259</td>
<td>0.96</td>
</tr>
<tr>
<td>Obesity (OB)</td>
<td>Sonchus tenerissimus L. (12), Brassica oleracea L. (7), Euphorbia peplus L. (1), Acacia albida Delile. (2), Marrubium vulgare L. (1), Morus alba L. (8).</td>
<td>6</td>
<td>31</td>
<td>0.80</td>
</tr>
<tr>
<td>Hyperthyroidism (HT)</td>
<td>Ferula communis L. (4), Sonchus asper (L.) Hill. (1), Fumaria officinalis L. (1), Sonchus tenerissimus L. (5).</td>
<td>4</td>
<td>11</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Fig. 3. Family use value (FUV) of medicinal plants.
Fig. 4. Plant part used to treat metabolic diseases in the study area.

Fig. 5. Frequency of different methods of preparation.

Fig. 6. Traditional knowledge acquisition modes.
the study area were prepared from fresh parts of medicinal plants followed by dried form (40.2%) and only (1.4%) prepared either from dry or fresh plant parts. This indicates that fresh plants are much easier and quicker to prepare for remedy than the other forms. The study conducted by Abdurhman [50] indicated that 86% of preparations were in fresh form and Getahun [51] reported that most of (64%) medicinal plants were used in fresh form and 36% in dried from. The dependency of Moroccan Rif people on fresh materials is mostly due to the effectiveness of fresh medicinal plants in treatment as the contents are not lost before use compared to the dried forms.

3.6. Source of knowledge about medicinal plants

In our ethnomedicinal survey, 73.2% of the informants acquired knowledge about medicinal use of plants as a remedy for metabolic diseases through others' experiences. This reflects the relative transmission of traditional practices from one generation to the next one. Followed by herbalists (18%), pharmacist (7%) and only 1.8% had built this knowledge by reading books about traditional Arab medicine, by watching television programs or by their own experience with a large number of medicinal plants in their surroundings. The environment and others' experience remain therefore the most effective means to transmit knowledge about medicinal purposes of plants (Fig. 6).

4. Conclusion

The ethnobotanical and ethnopharmacological surveys revealed that, the study area has a great biodiversity with a variety of medicinal and aromatic plants and still needs more explorations. This rich floral indicates the high potential of traditional knowledge to serve for the development of natural product-derivate as affordable medicines. These plants still play a crucial role of people in Moroccan Rif, but medicinal plants used to treat metabolic diseases in this region lacks ethnomedical evidence. On the basis of results of the present studies, higher use value, informant agreement ratio scores, and fidelity level values of the recorded medicinal plant species would empower the future pharmaceutical and phytochemical studies and conservation practices. In this connection, attention should be drawn to the conservations of traditional medicinal plants and associated indigenous knowledge in the Moroccan Rif area to sustain them in the future.

4.1. Limitations of the study

This study was limited to a part of Morocco (Moroccan Rif region). The same study in various parts of Morocco is suggested.

Declarations

Author contribution statement

Noureddine Chaachouay: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Ouafae Benkhnigue: Performed the experiments, Mohamed Fadli: Analyzed and interpreted the data. Hamid El Ibaoui: Contributed reagents, materials, analysis tools or data. Lahcen Zidane: Conceived and designed the experiments.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2019.e02191.

Acknowledgements

We wish to express our heartfelt thanks to all the leaders and residents of the Rif region for their help. To all sellers of medicinal and aromatic plants (Attar). We also extend our acknowledgements to all those who contributed to the realization of this work.

References

[51] A. Getahun, Some Common Medicinal and Poisonous Plants Used in Ethiopian Folk Medicine, Amare Getahun, 1976.