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A B S T R A C T

VIDISCA is a next-generation sequencing (NGS) library preparation method designed to enrich viral nucleic acids
from samples before highly-multiplexed low depth sequencing. Reliable detection of known viruses and dis-
covery of novel divergent viruses from NGS data require dedicated analysis tools that are both sensitive and
accurate. Existing software was utilised to design a new bioinformatic workflow for high-throughput detection
and discovery of viruses from VIDISCA data. The workflow leverages the VIDISCA library preparation molecular
biology, specifically the use of Mse1 restriction enzyme which produces biological replicate library inserts from
identical genomes. The workflow performs total metagenomic analysis for classification of non-viral sequence
including parasites and host, and separately carries out virus specific analyses. Ribosomal RNA sequence is
removed to increase downstream analysis speed and remaining reads are clustered at 100% identity. Known and
novel viruses are sensitively detected via alignment to a virus-only protein database, and false positives are
removed. A new cluster-profiling analysis takes advantage of the viral biological replicates produced by Mse1
digestion, using read clustering to flag the presence of short genomes at very high copy number. Importantly,
this analysis ensures that highly repeated sequences are identified even if no homology is detected, as is shown
here with the detection of a novel gokushovirus genome from human faecal matter. The workflow was validated
using read data derived from serum and faeces samples taken from HIV-1 positive adults, and serum samples
from pigs that were infected with atypical porcine pestivirus.

1. Introduction

The host range expansion of viral pathogens and emergence of novel
species can pose substantial threats to human health (Parrish et al.,
2008). Viruses evolve rapidly, possess high molecular diversity, and are
found in relatively low concentration alongside host nucleic acids in
most sample types. These factors complicate detection of novel viral
genetic material and necessitate specific virus discovery methods to
achieve sufficient detection sensitivity. Next-generation sequencing
(NGS) and metagenomics have greatly accelerated the discovery of
novel viruses when contrasted with traditional wet-lab virological
techniques such as isolation in cell culture, as they can be performed on
any virus directly from biological or environmental samples, in a high-
throughput way (Shi et al., 2018, 2016). Approaches that prioritise an
unbiased metagenomic profile require high sequencing depth to ensure
pathogen detection, and are therefore relatively expensive per viral
nucleotide. The incorporation of virus enrichment techniques prior to
sequencing reduces the required depth for detection (Conceição-Neto
et al., 2015; de Vries et al., 2011), and may be desirable when

processing tens to hundreds of samples.
VIDISCA is a virus discovery NGS library preparation method that

enriches viral nucleic acids in samples before low depth Ion Torrent
sequencing, allowing processing of 140 samples per week. The wet-lab
procedure, described in detail elsewhere (de Vries et al., 2011; Edridge
et al., 2018), is summarised here in order to highlight advantages for
bioinformatic analysis. First, cells and debris are pelleted, and virus-
containing supernatant is DNase treated to reduce residual cellular
DNA. Virion proteins are linearised to release nucleic acid, which is
extracted using the Boom method (Boom et al., 1990). RNA viruses are
reverse transcribed using non-ribosomal RNA (rRNA) hexamer primers
(Endoh et al., 2005), which reduce the proportion of rRNA transcribed
into DNA. After second-strand synthesis, double-stranded DNA products
are digested using the frequent cutting Mse1 restriction enzyme, an
important feature unique to VIDISCA library preparation. Sequencing
primers are ligated onto the two sticky ends of a restriction fragment,
before size selection against both long and short fragments, amplifica-
tion with PCR, and sequencing with the Ion Torrent PGM platform
(Thermo Fisher Scientific, Waltham, MA, USA).
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The inclusion of Mse1 digestion during library preparation has ad-
vantageous implications for virus discovery bioinformatics. Viral gen-
omes are short compared to their host, and can be at high copy number
during infection. Since Mse1 reproducibly cuts homologous restriction
fragments from genomes of the same type, high numbers of viral bio-
logical replicates with identical start and end sites are expected in li-
brary inserts prior to PCR. This is in contrast with a randomly frag-
mented library in which identical start and end sites are relatively rare.
The VIDISCA insert redundancy is not expected from background or
host nucleic acid, except that with ‘virus-like’ characteristics, i.e. high
copy number, such as mitochondrial DNA. The virus replicates should
result in characteristic redundancy in sequencing data, which can be
identified via read clustering. Additionally, since Mse1 cuts TTAA sites,
it cuts more rarely in GC rich rRNA (de Vries et al., 2011). Viable rRNA
VIDISCA fragments are generally longer as a result, and can be dis-
proportionately reduced during size selection, contributing to a high
sensitivity that enables lower sequencing depth and analysis time. Re-
cently VIDISCA was used to discover the suspected human pathogen
Ntwetwe virus with 2 reads from 6,947, whereas an in-house Illumina
workflow optimised for virus detection found only 8 reads among the
2,741,915 obtained (Edridge et al., 2018).

Here we present a new bioinformatic workflow designed to process
VIDISCA data. The core task is sensitive virus detection including false
positive reduction. The workflow includes metagenomic analysis for
identification of host background and non-viral organisms including
parasites, and collects descriptive metrics in order to flag unusual
properties of samples, such as high rRNA content. It outputs text and
interactive HTML results for detailed investigation of samples, and in-
cludes a new cluster-profiling analysis used to flag the presence of se-
quences at high copy number (e.g. virus infections). This analysis also
provides an informative profile of sample content in different classifi-
cation bins, including known and novel viruses, mitochondrial DNA,
and background sequence. Notably, the flagging of highly repetitive
reads does not rely on identity searches, ensuring that abundant un-
known sequences can be identified. The utility of the workflow is pre-
sented with examples.

2. Materials and methods

2.1. Bioinformatic workflow for VIDISCA next-generation sequencing data

The new bioinformatic workflow for VIDISCA NGS data is sum-
marised graphically (Fig. 1) and described in detail below. As input, the
workflow takes FASTA formatted sequences. Eukaryotic and prokar-
yotic virus protein databases used by the workflow were constructed in
advance from respective NCBI Identical Protein Groups datasets, fol-
lowed by clustering at 95% identity using CD-HIT v4.7 (Fu et al., 2012).

First, metagenomic analysis of raw reads is carried out using Centrifuge
v1.0.3 (Kim et al., 2016) against the pre-built NCBI non-redundant
nucleotide Centrifuge index including known viruses, eukaryotes, and
prokaryotes (February 2018). Centrifuge classification tables are vi-
sualised as interactive HTML charts using Recentrifuge (Martí, 2018).

Next, the main virus detection steps are run. Reads from rRNA are
separated from raw reads using SortMeRNA v2.1 (Kopylova et al.,
2012). Non-rRNA reads are sorted by length and clustered at 100%
identity using CD-HIT v4.7, and ‘clstr’ files are retained for later pro-
cessing. Clustered non-rRNA reads are queried against the eukaryotic
virus protein database using the UBLAST algorithm provided as part of
the USEARCH v10 software package, with -mincodons set to 15, -accel
to 0.8, and -evalue to 1e-4 (Edgar, 2010). Unmatched reads from this
step are queried against the prokaryotic virus protein database, and
those remaining unclassified are mapped to human, pig, and chicken
mitochondrial DNA sequences using the BWA-MEM algorithm of BWA
v0.7.17 (Li, 2013). Reads matching the eukaryotic virus protein data-
base are treated as putatively viral, and are next queried against the
NCBI nt. database (April 2018) using BLASTn v2.4.0 (Camacho et al.,
2009). Those classified by BLASTn as viral are regarded as confident
viral reads (classified as viral twice), those classified as non-viral are
regarded as false positives, and those that remain unclassified are re-
garded as possible unknown viruses (classified as viral once). This in-
formation is used to split the UBLAST protein classification tables into
the three categories, each of which are visualised separately as inter-
active HTML charts using KronaTools v2.7 (Ondov et al., 2011). The
BLASTn classification of false positives is also visualised for inspection
and comparison to the original viral classification.

Cluster-profiling outputs are produced using the CD-HIT ‘clstr’ files,
which are converted into a table reporting the representative se-
quences, the number of reads clustered per representative, and the
proportion of the original non-rRNA that each represents in a sample.
The classification bin (such as ‘confident virus’, or ‘mitochondrial DNA’)
of each representative read is then added to the table, including a bin
for unclassified sequences. This output is plotted as a bar chart using
ggplot2, with separate bars for classification bins, and representative
reads stacked according to proportional amount of clustering
(Wickham, 2016). The classification bins are ‘Virus (aa+nt)’ including
reads classified as viral twice, ‘Virus (aa)’ including reads classified as
viral once, ‘False pos. (nt)’ including reads removed as probable false
positives, ‘Phage (aa)’ including reads aligning to our prokaryotic virus
database, ‘MitoDNA’ including reads mapped to mitochondrial DNA
references, ‘Centrifuge’ including reads identified by the metagenomic
tool Centrifuge, and ‘No hit’ including reads with no assigned classifi-
cation. The bar chart output provides a visual overview of the pro-
portion of reads from a sample that were classified in a particular bin.
Furthermore, reads that represent many other reads are visually

Fig. 1. Schematic overview of the
bioinformatic workflow for VIDISCA
data, showing the main virus detection
and discovery steps (orange), the me-
tagenomic analysis (green), and visua-
lisation processes (blue). (For inter-
pretation of the references to colour in
this figure legend, the reader is referred
to the web version of this article.)
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identifiable due to their higher relative proportion. This allows the
presence of clustering to be identified in each bin separately. Most re-
petitive non-viral sequences are accounted for via removal of rRNA and
binning of mitochondrial DNA, however unclassified sequences puta-
tively from viruses require manual inspection or full-length sequencing
in order to establish their likely provenance.

For each classification bin, the 10 representative sequences ac-
counting for the largest proportion of reads are automatically extracted
as FASTA files for inspection, for example with BLASTx. All text tables
and sample-specific files produced by the analysis are packaged into
sample folders, and descriptive metrics about the run time and classi-
fication performance for each sample are reported to a log file for later
examination.

2.2. Data selection and workflow testing

Three VIDISCA datasets were selected and analysed using the new
bioinformatic workflow, in order to assess specific aspects of workflow
performance and utility. First, VIDISCA reads from 194 serum samples
collected in 1994–1995 from HIV-1 infected adults were run. The aim
was to determine whether the bioinformatic workflow outputs could be
used to troubleshoot the likely causes of pathogen detection failure.
This was done by comparison of HIV-1 detection by VIDISCA with pre-
existing HIV-1 load data obtained using nucleic acid sequence based
amplification (NASBA). Outputs from samples in which HIV-1 was
unexpectedly not detected were manually inspected to determine the
cause of failure.

Second, VIDISCA reads from 194 faecal samples from the above
mentioned cohort were run (Oude Munnink et al., 2014). The aim was
to test the prediction that cluster-profiling could be used to flag virus-
like characteristics in unclassified reads, and therefore identify novel
viruses at high load missed by classification algorithms. Cluster-pro-
filing outputs were examined for evidence of clustering among un-
classified reads and a single sample (F115) was selected for follow up.
Illumina reads from a randomly fragmented library of the sample were
downloaded from the European Nucleotide Archive (accession
ERR233419), cleaned of adapters, quality trimmed (minimum 50bp,
sliding window trim < Q20) with Trimmomatic v0.38 (Bolger et al.,
2014), and assembled using SPAdes v3.12 (Bankevich et al., 2012). The
10 unclassified VIDISCA representative sequences accounting for the
most clustering were BLAST queried against the contigs, and the most
common target sequence was extracted and manually curated.

Third, VIDISCA reads from 13 serum samples taken from sows ex-
perimentally infected with atypical porcine pestivirus (APPV) and 16
serum samples taken from the transplacentally-infected piglets of the
sows were run (de Groof et al., 2016). In this case, sequencing was
carried out on an Ion Proton instrument (Thermo Fisher Scientific,
Waltham, MA, USA). The aims were to statistically test support for the
assumption that a higher viral load would result in higher clustering
among viral reads, and to explore whether such an association was
strongly influenced by PCR bias toward abundant templates. Since the
dataset included individuals infected with the same virus strain at a
large range of viral loads, this was carried out as a reliability test of the
main assumption underlying cluster-profiling analysis, that VIDISCA
library preparation selects for biological replicates from identical gen-
omes, resulting in read clustering associated with the biological load of
a sequence.

3. Results and discussion

3.1. Bioinformatic workflow design

The new VIDISCA bioinformatic workflow has been designed to
prioritise sensitivity to viruses, however non-virus metagenomics and
the efficiency of analysis have also been considered. K-mer based me-
tagenomic tools such as Kraken (Wood and Salzberg, 2014) are

commonly used for pathogen detection, since they provide very rapid
classification of reads via exact matches of length k between reads and
reference indexes. Metagenomic samples often contain species with
variable nucleotide identity to their most related reference sequence.
Since k must be set in advance, high k decreases classification sensi-
tivity for distantly related species, and low k decreases precision to well
represented taxa. To circumvent this, the metagenomic software tool
Centrifuge was selected for the workflow since it uses FM-indexed re-
ference sequences, allowing k to be optimal for each individual read in
a metagenomic sample, maximising both sensitivity and precision while
simultaneously minimising index size and memory requirements (Kim
et al., 2016).

Detection of novel viruses is normally achieved via local alignment
of reads to viral proteins, a computationally intensive operation. High
speed algorithms are available to decrease analysis time, for example
UBLAST (Edgar, 2010), DIAMOND (Buchfink et al., 2015), or Kaiju
(Menzel et al., 2016). Minimisation of query reads and database size
can provide additional gains. The VIDISCA workflow incorporates
several of these speed-ups, including rRNA removal to reduce query
reads, and redundancy removal in non-rRNA using clustering. Clus-
tering information is retained for retrospective classification of re-
dundant reads and cluster-profiling analysis. These steps reduced
average protein query counts by 31% and 45% in the 194 faecal and
194 serum datasets respectively. A virus-only protein database was
constructed and clustered for a size reduction of 81%. Alignment of
reads to a taxonomically restricted database raises the likelihood of
spurious hits due to chance similarity, therefore false positive removal
via BLAST analysis against the NCBI nucleotide database is required.
Due to the prior selection steps mentioned above, a minority of reads
require this querying, for example an average of 1.5% and 2.4% of
reads from the above faecal and serum datasets were queried.

3.2. Assessment of the bioinformatic workflow performance

The VIDISCA bioinformatic workflow was used to identify the
causes of HIV-1 detection failure in data generated from archival serum
samples collected from HIV-1 positive adults. Bioinformatic analysis
detected the pathogen in 128 of 194 samples (66%) with an average of
42,124 total reads per sample. Of the VIDISCA negative samples, 23
(35%) had undetectable HIV-1 loads when specifically tested with
NASBA, while 9 (7%) VIDISCA positive samples did. There was a
median value of 84 HIV-1 copies/μl in VIDISCA positive samples and 14
in negative (Fig. 2A), suggesting detection failure was mostly attribu-
table to viral load. Viral load was positively associated with the pro-
portion of HIV-1 reads (Spearman’s rho= 0.61, p < .001), however
the variance was poorly described by a linear regression model
(Fig. 2B), showing that sample dependent factors crucially impact the
metagenomic profile. Notably, rRNA proportion was weakly but posi-
tively associated with HIV-1 proportion (Spearman’s rho=0.34,
p < .001), while the proportion of non-rRNA identified as human
(including residual genomic DNA and cellular RNA) was found to have
a weak negative association with the HIV-1 proportion (Spearman’s rho
= -0.17, p= .017). Together these observations imply sample-specific
biases against integrity or representation of the RNA fraction. Con-
tributing factors could include higher degradation susceptibility during
freeze-thaw cycles, high host DNA content with only partial degrada-
tion during DNase treatment, high intrinsic RNase activity in certain
samples, or sample-specific inhibition of reverse transcription. An ad-
ditional explanation could be that rRNA acts as a carrier for low con-
centrations of viral RNA.

HIV-1 was not detected in 11 outlier samples with over 50 HIV-1
copies/μl and an average read count of 40,290. In 3 of these, cluster-
profiling showed that 78–90% of processed (non-rRNA) reads belonged
to Hepatitis B virus, which commonly dominates VIDISCA metage-
nomic profiles if present. One sample also showed possible competition
with Torque Teno virus which represented 30% of processed reads. A
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further 6 samples had approximately 80–95% of processed reads clas-
sified by Centrifuge as host or bacterial sequence with very low read
clustering, suggesting a highly diverse library insert distribution prob-
ably derived from cell lysis. In the final sample an unusually high 75%
of processed reads were not classified by any analysis. Manual BLAST
analysis on some of these unclassified reads gave bacterial hits or weak
alignment scores suspected to originate from unknown bacteriophages,
suggesting bacterial growth in the stored material.

3.3. Cluster-profiling for virus discovery

A cluster-profiling analysis was incorporated in the workflow based
on the prediction that short viral genomes at high load would result in
distinctive read clustering characteristics, since VIDISCA library pre-
paration produces homologous library inserts from each genome based
on its Mse1 restriction sites. The analysis uses read clustering and
classification information generated as part of the workflow to generate
a visual output, and therefore does not require significant additional
computational time. Importantly, the clustering signal generated by
high copy number sequences does not require identity-based classifi-
cation. This could potentially allow detection of highly divergent
viruses with low protein identity to relatives represented in databases.

Cluster-profiling images generated using VIDISCA data from 194
faecal samples were analysed and sample F115 was selected for follow-
up due to a high degree of clustering among unclassified reads – 12% of
the 16,160 processed reads were clustered into only 100 unclassified
representative sequences (Fig. 3), suggesting an unknown entity at high
copy number. Available Illumina data from a randomly fragmented li-
brary of this sample were assembled into 9157 contigs. Ten unclassified
representative VIDISCA sequences accounting for the most reads, which
were automatically extracted by the workflow, were aligned to the
contigs using BLAST. Of the 10, 8 aligned to a single contig, suggesting
that they were part of a genome of a novel virus present at high copy
number. Manual curation of this 5 kb sequence showed that it is a novel
gokushovirus (circular ssDNA bacteriophage, NCBI accession number
MK263179) with 72% nucleotide identity to its closest relative. The
sequences of this virus were not identified by the classification com-
ponents of the workflow since the related viral proteins were not part of
the reference set. Mapping of complete read-sets revealed that 6.83% of
Illumina read-pairs from the sample were derived from the virus and
17.27% of VIDISCA reads were. The result confirms the expectation
that viruses at high load produce characteristic clusters in VIDISCA
data, ensuring that those missed by identity searches can still be de-
tected.

3.4. Association between viral read clustering and viral load

Cluster-profiling analysis for discovery of viruses, as shown in Fig. 3,
relies on a high level of sequence redundancy in order to generate a
visible signal that can be investigated. A strong association between

viral load and the level of clustering observed in viral reads is expected,
an effect that would underlie application of the analysis to the dis-
covery of novel viruses. To test this assumption VIDISCA reads from 29
serum samples taken from pigs infected with APPV were analysed. The
workflow detected APPV reads in 27 of these, and a strong linear as-
sociation between viral load and the proportion of APPV reads was
observed after removal of a single outlier (linear regression, F
(1,26)= 70.57, p < .001, R2 = 0.73). As expected, there was a strong
association between viral load and the average number of reads clus-
tered per APPV representative sequence (Spearman’s rho=0.81,
p < .001). To account for the possibility that this effect was due to
stochastic PCR bias disproportionately amplifying abundant templates
(Kebschull and Zador, 2015), an association between viral load and the
proportion of all APPV reads that were represented by the top APPV
sequence cluster was tested for. Since viral load should correspond to
the abundance of replicate templates prior to PCR, PCR bias would be
expected to occur in samples with the highest loads. No such relation-
ship existed (Spearman’s rho= 0.17, p=0.41).

Together the observations show that the degree of clustering among
viral reads corresponds well with true biological load, and does not
suffer from significant PCR bias toward abundant templates. While the
analysis therefore can be applied to detection of novel viruses in un-
classified reads, it is important to note that only infections with a high
load and a high proportional amount of reads are likely to be observed.
For example, it is unlikely that the analysis would have successfully
flagged the presence of HIV-1 reads in the human serum samples ana-
lysed above, had they not been successfully classified using alignment
tools. Nonetheless, it does provide an additional approach to both virus
detection and the graphical representation of sample content, which are
useful supplements to the more sensitive approaches utilised by the
bioinformatic workflow.

3.5. Conclusions

A new bioinformatic workflow for sensitive virus detection and
discovery in VIDISCA sequence data has been presented, which includes
false positive removal and total metagenomic analysis. The workflow
has been validated for virus detection in samples derived from in-
dividuals infected with known pathogens. The new cluster-profiling
analysis, based on the VIDISCA library preparation molecular biology,
has been used to flag a novel virus in unclassified reads, serving as a
proof of concept for discovery of more divergent viruses.

Code is available upon request

For example outputs from the pipeline, see the GitHub repository at:
https://github.com/CormacKinsella/VIDISCA-e.g.-output.

Fig. 2. A: HIV-1 viral RNA load in serum and VIDISCA outcome.
HIV-1 detection in sequence reads is indicated with HIV-1 (+),
and lack of detection is indication with HIV-1 (-). On the x-axis the
HIV-1 RNA load per μl of serum is plotted. B: Linear regression
model fitted to HIV-1 viral load against HIV-1 reads as a percen-
tage of total reads, F(1,192)= 56.68, p < .001, R2= 0.228. A
low 23% of variance in proportion is explained by viral load when
assuming a linear relationship.
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