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Objective: Osteoarthritis (OA) is polygenic with over 90 independent genome-wide association loci so far
reported. A key next step is the identification of target genes and the molecular mechanisms through
which this genetic risk operates. The majority of OA risk-conferring alleles are predicted to act by
modulating gene expression. DNA methylation at CpG dinucleotides may be a functional conduit through
which this occurs and is detectable by mapping methylation quantitative trait loci, or mQTLs. This
approach can therefore provide functional insight into OA risk and will prioritize genes for subsequent
investigation. That was our goal, with a focus on the largest set of OA loci yet to be reported.
Method: We investigated DNA methylation, genotype and RNA sequencing data derived from the
cartilage of patients who had undergone arthroplasty and combined this with in silico analyses of
expression quantitative trait loci, epigenomes and chromatin interactions.
Results: We investigated 42 OA risk loci and in ten of these we identified 24 CpGs in which methylation
correlated with genotype (false discovery rate (FDR) P-values ranging from 0.049 to 1.73x10~%°). In silico
analyses of these mQTLs prioritised genes and regulatory elements at the majority of the ten loci, with
COLGALT2 (encoding a collagen galactosyltransferase), COL11A2 (encoding a polypeptide chain of type XI
collagen) and WWP2 (encoding a ubiquitin ligase active during chondrogenesis) emerging as particularly
compelling target genes.
Conclusion: We have highlighted the pivotal role of DNA methylation as a link between genetic risk and
OA and prioritized genes for further investigation.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society
International. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

Introduction

genome-wide significant loci, 52 of which were novel. A series of
techniques including statistical FINEMAPPING and expression

Genetic susceptibility is a major risk factor for osteoarthritis
(OA)'. Genome-wide association studies (GWAS) have revealed
the polygenic nature of OA and to date over 90 independent risk loci
have been identified®> . The largest and most recent OA GWAS was
carried out using the full UK Biobank cohort, with a focus on hip and
knee OA®. This study utilised the genotypes of up to 455,000 in-
dividuals across 17.5 million single nucleotide polymorphisms
(SNPs). Meta-analysis with the arcOGEN dataset’ resulted in 64
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quantitative trait locus (eQTL) co-localisation were employed to
identify putative effector genes at these loci.

DNA methylation at CpG dinucleotides is an epigenetic process
that regulates gene expression®. Using the Illumina 450 genome-
wide methylation array, we have shown previously that changes
in DNA methylation levels occur in cartilage chondrocytes and that
these changes correlate with SNP genotype at around 25% of OA
genetic risk loci®'°. These CpGs are known as methylation quanti-
tative trait loci, or mQTLs. At several OA loci, including GDF5 and
RUNX2, genotype at the associated SNP correlates not only with
DNA methylation but also with gene expression''?. This indicates
that chondrocytes use DNA methylation as an intermediary be-
tween genotype and phenotype, with this epigenetic mechanism
underpinning a large proportion of OA disease risk. Identifying
mQTLs therefore offers insight into the functional mechanism of OA
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genetic susceptibility. Furthermore, if mQTL CpGs cluster in or close
to a particular gene at a risk locus, their mapping prioritises that
gene and functional regulators of the gene for further investigation
as plausible effectors of the association signal.

In this current study, we focussed on the OA signals that
emerged from the analysis of the full UK Biobank cohort® and
searched our cartilage genetic and epigenetic datasets to identify
novel OA mQTLs. We were able to investigate a total of 42 signals
and found evidence of mQTLs at ten of these. We subsequently
carried out an in-silico analysis on these signals, highlighting reg-
ulatory elements and their putative gene targets requiring detailed
functional analyses.

Methods
mQTL analysis of OA risk loci

Genotype and DNA methylation data were generated previously
using the Human Omni Express array and Infinium Human-
Methylation450 array (Illumina)®. Both datasets were generated
from 87 patients who had undergone joint arthroplasty for knee OA
(n = 57), hip OA (n = 14), or neck-of-femur (NOF) fracture (n = 16).
We used genotype at the UK Biobank GWAS SNP, or, if not captured,
genotype at a proxy variant. Proxies were derived from European
population data using the LDproxy tool'>. The proxy with the
highest r? relative to the GWAS SNP was chosen. At each locus, we
investigated DNA methylation 1 Mb upstream and 1 Mb down-
stream of the association SNP. Linear regression was used to mea-
sure the relationship between methylation -values (ranging from
0to 1) and genotype (0, 1 or 2 copies of the minor allele) at the SNP.
If the minor allele frequency (MAF) was low (<3 homozygotes in
our cohort) we combined minor allele homozygotes with hetero-
zygotes and compared these to major allele homozygotes.

RNA-sequencing (RNA-seq)

Hip cartilage RNA-seq data that we had generated previously
was used to assess differential expression in genes of interest at
each locus. Detailed analytical methods can be found within the
original reports of this dataset'*~'6,

In silico eQTL analysis

For each locus that had an mQTL, we determined which genes at
the locus were expressed in cartilage using our RNA-seq data
(TPM>1). We then assessed whether any of these cartilage-
expressed genes had an eQTL for the relevant association SNP by
searching the genotype-tissue expression database GTEx (https://
www.gtexportal.org/home/).

In silico epigenome analysis and investigation of chromatin
interactions

ROADMAP (http://www.roadmapepigenomics.org/) was
searched for epigenomic data, including chromatin state and pres-
ence of enhancers, at signals harbouring an OA mQTL. We focussed
on five cell types of relevance to the articulating joint: EO06, em-
bryonic stem cell derived mesenchymal stem cells (MSCs); E049,
bone marrow derived cultured chondrocytes; E023, MSC derived
adipocytes; E025, adipose derived MSCs; E026, bone marrow
derived MSCs. We searched the WashU epigenome browser'’ to
identify long range chromatin interactions extending from anno-
tated regulatory elements containing CpGs of interest. All publicly
available HiC and long-range chromatin interaction datasets were
loaded for all cell types with available data and the region was

searched visually to identify interactions stemming from the regu-
latory elements. The human breast cancer cell line MCF7 and chronic
myeloid leukaemia cell line K562 interaction schema represent
protein factor mediated chromatin interaction data measured by
RNA polymerase-II Chromatin Interaction Analysis with Paired-End
Tag (Polll ChIA-PET) data'®. These data were produced as part of
the ENCODE project. Data from the human lymphoblastoid cell line
GM12878 were produced by RNA CTCF ChIA-PET .

Statistical analyses

All mQTL calculations were performed using Matrix eQTL?". In
this analysis we investigated DNA methylation at 19,761 CpGs in
correlation with genotype at 42 SNPs and the P-values were adjusted
to account for the 19,761 tests performed using a false discovery rate
(FDR) estimation based on Benjamini—Hochberg correction?’. Dif-
ferential expression analysis between OA and NOF RNA-seq data was
carried out with the Bioconductor package DESeq2?%. Hypothesis
testing was performed using the DESeq2 implementation of the
Wald test and P-values were adjusted accordingly.

Results
OA loci investigated

The UK Biobank GWAS identified 52 novel OA association sig-
nals®. We excluded two of these as a SNP identification number was
not reported. We excluded a further five as the SNP MAF was 5% or
less, which would preclude us from having an adequate number of
minor-allele carriers to test for mQTLs in our 87 patients. Of the
remaining 45 loci, eight were not directly genotyped on our array
and also lacked a proxy variant in high LD (* > 0.7); these were also
excluded. This left 37 of the 52 novel loci that could be analysed by
us. In addition to novel loci, the authors of the UK Biobank GWAS also
reported on previously identified OA signals. For four of these, the
association SNP in their GWAS was in modest LD (? < 0.7) with the
SNP that had originally been reported as associated with OA, which
may indicate a separate and novel signal. We therefore included
these in our analysis. These are the SNPs rs10974438 (GLIS3),
1s2396502 (RUNX2), rs2820443 (TGFB2) and rs4775006 (ALDH1A2).
The authors also reported an association to rs12901372, a SMAD3
SNP that had previously shown suggestive evidence of association to
OA. We also included this SNP. In total therefore, we analysed 42 loci;
37 novel and five previously reported (Supl. Table 2).

Identification of OA mQTLs

At each locus, we searched for correlations between genotype
and methylation at all CpGs within a 2 Mb region flanking the as-
sociation SNP. In total, we analysed methylation at 19,761 CpGs
across the 42 loci (Supl. Table 3). This identified ten loci at which
there was a significant correlation (FDR P-value <0.05) between
genotype and methylation at one or more CpGs (Supl. Table 2).
There were 24 such CpGs in total, with the largest number (nine)
occurring at locus 10. Stratification by joint site, sex, and status (OA
or NOF) did not identify any additional mQTLs. Below we discuss
the results of each locus including the in-silico analyses.

Locus 1

rs11583641 (C>T, OA risk allele = C, MAF = 0.17) is located at
chromosome 1q25.3. The SNP is not on our genotyping array and
we therefore used the proxy rs10911472 (> = 0.99) and investi-
gated 291 CpGs at this locus. Genotype at rs10911472 correlated
with methylation at one CpG, located 6 kb from the association
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SNP: cg18131582 (FDR P = 0.0027; Table I). Both the SNP and CpG
are located within the gene body of COLGALT2 [Fig. 1(A)]. The region
encompassing cg18131582 is marked as an enhancer in multiple
relevant cell types in ROADMAP [Fig. 1(B)]. The region containing
the CpG was also marked as an area of DNasel hypersensitivity and
contained binding sites for multiple transcription factors [Fig. 1(B)].
The OA risk C allele corresponded with decreased levels of
methylation [Fig. 1(C)].

GTEx revealed one eQTL corresponding to genotype at the as-
sociation signal; a COLGALT2 eQTL in adrenal gland tissue, with the C
allele correlating with a relative increase in gene expression. Our
cartilage RNA-seq data showed a significant increase in COLGALT2
expression in OA compared to NOF controls (P = 8.43x107%,
Fig. 1(D)). Long range chromatin interactions were identified
between the enhancer region containing cg18131582 and se-
quences towards the 3’ untranslated region (3'UTR) of COLGALT2 in
K562 cells [Supl. Fig. 1(A)].

Locus 2

rs62182810 (G>A, OA risk allele = A, MAF = 0.39) is located at
chromosome 2q33.2. The SNP is not on our genotyping array and
we therefore used the proxy rs2305417 (r* = 0.95) and investigated
147 CpGs. Genotype at rs2305417 correlated with methylation at
one CpG, cg10114877 (FDR P = 3.09x10~%; Table 1), which is located
41.7 kb from the association SNP [Supl. Fig. 2(A)]. The OA risk allele
correlated with an increase in methylation of the CpG [Supl.
Fig. 2(B)]. GTEx eQTLs were identified for three -cartilage-
expressed genes from locus 2: ICAL1, AL2CR8 and NBEALIL. All are
located upstream of RAPHI1. There was a significant increase in
ALS2CR8 expression in OA (P = 0.02; Supl. Fig. 2(C)).

Locus 3

rs11732213 (T>C, OArisk allele = T, MAF = 0.15) is located within
an intron of SLBP on chromosome 4p16.3. The SNP is not on our
array and we therefore used the proxy rs798756 (* = 0.99) and
investigated 1618 CpGs. Genotype at rs798756 correlated with

Table I
The significant genotype—methylation associations identified

methylation at two intergenic CpGs, cg20987369 and cg25007799
(FDR P of 0.0027 and 0.019, respectively; Table I), both located
125 kb upstream of the association SNP and falling only 85bp apart
[Fig. 2(A)]. The OA risk allele correlated with a decrease in
methylation for both CpGs [Fig. 2(B)]. GTEx identified eQTLs across
multiple tissue types for several cartilage-expressed genes at this
locus. There was a significant increase in expression in OA of three of
these: TMEM129 (P = 3.05x10~7), TACC3 (P = 1.81x10~13) and FGFR3
(P = 6.99x10~1?) [Fig. 2(C)].

Locus 4

rs9277552 (C>T, OA risk allele = C, MAF = 0.22) is located on
chromosome 6p21.32. The SNP is not on our array and we therefore
used the proxy rs9277557 (r* = 0.81) and investigated 3,574 CpGs.
Genotype at rs9277557 correlated with methylation at four CpGs:
cg25491704, cg02197634, cg02375585 and cg13921245 (FDR P-
values of 0.0021, 0.011, 0.028 and 0.040, respectively; Table I). These
span a 42 kb region on chromosome 6 and flank the association SNP
[Fig. 3(A)]. This is a gene-rich region coding for HLA and non-HLA
genes, including COL11A2.

The OA risk allele correlated with an increase in methylation at
cg02375585 but a decrease in methylation at cg02197634,
cg25491704 and cg13921245 [Fig. 3(C)]. These latter three CpGs
fall within the gene body of HLA-DPB1, with cg02197634 and
cg25491704 being only 4bp apart [Fig. 3(B)]. These two CpGs are
located within an intron of HLA-DPB1 and in the promoter region
of the syntenic gene HLA-DPA1, with this promoter demonstrating
long range chromatin interactions with the 3'UTR of HLA-DPB1
[Supl. Fig. 1(B)]. This region is also one of DNase I hypersensitivity
and transcription factor binding, with ¢g02197634 and
cg25491704 being located within the binding site of POLR2A, the
largest subunit of the eukaryotic mRNA synthesising enzyme RNA
polymerase II.

cg02375585 is located within an intron of HLA-DPB2, which is a
part of a repressed heterochromatic sequence that physically in-
teracts with the promoter of COL11A2 [Fig. 3(A) and Supl. Fig. 1(C)].
GTEx identified eQTLs across several tissue types for four cartilage-

Locus Chr. GWAS SNP SNP position ~ Proxy SNP r? CpG CpG position (hg19)  Uncorrected FDR- Slope (95% CI)
(hg19) P-value corrected
P-value

1 1 rs11583641 183906245 rs10911472 099 cgl18131582 183912305 1.92x10°° 0.0027 0.52 (0.32—0.72)

2 2 162182810 204387482 152305417 095 cg10114877 204427199 9.37x10~1° 3.09x10°6 0.91 (0.65—-1.17)

3 4 rs11732213 1704244 798756 099 g20987369 1579572 1.55x10°° 0.0027 0.33 (0.21-0.46)
€g25007799 1579657 1.96x10°> 0.019 0.71 (0.40—1.02)

4 6 rs9277552 33055501 1s9277557 0.81 g25491704 33048879 9.43x10~7 0.0021 0.93 (0.58—1.28)
cg02197634 33048875 1.05x10°° 0.011 1.02 (0.59—1.46)
cg02375585 33091111 3.11x107° 0.028 —0.68 (—0.98—-0.37)
cg13921245 33053791 4.86x10° 0.04 0.37 (0.20—0.54)

5 8 rs60890741 130768504  rs12542856  0.97 cg18170545 131080137 6.20x10° 0.049 ~0.34(—0.49—-0.18)

6 12 15317630 69637847 5317646 099  g22375663 69725435 8.45x10~1° 4.18x10~1 1.06 (0.84—1.28)

7 15 rs35206230 75097780 rs1378940 096 ¢g20040747 74715105 1.83x10°° 0.0027 —0.27 (-0.37—-0.17)
cg10253484 75165896 3.12x10°° 0.028 0.36 (0.20—0.52)

8 16 16499244 69735271 157359336 091 g26661922 69951706 8.27x1076 0.0096 —0.46 (—0.66—-0.27)
cg26736200 69951820 9.98x107° 0.011 —0.51(—0.72—-0.29)

9 17 1s2953013 29496343 Notrequired njfa  cg16779580 29740988 4.86x10°° 0.006 —0.51(—0.72—-0.30)

10 17 162063281 44038785 rs17650901  0.98 cgl17117718 43663208 8.78x1030 1.73x10°% 1.63 (1.45-1.82)
cg15633388 44266530 1.93x1072! 1.91x10°"7 -1.52(-1.75—-1.28)
cg18228076 43983362 9.35x10 14 3.69x10~1° ~1.09(-1.33—-0.85)
cg15295732 43942128 1.10x10~° 3.09x10°° —0.41(—0.52—-0.29)
cg23616531 44269258 2.07x1077 0.00051 ~0.39(—0.52—-0.25)
cg10826688 43714992 1.48x10°© 0.0027 —0.31(-0.43—-0.19)
cg11117266 43971461 1.75x10°% 0.0027 —0.49 (—0.68—-0.30)
cg16520312 43971471 2.76x10°° 0.0036 —-0.32(—0.44—-0.19)
cg01934064 44064242 4.33x10°° 0.037 0.31 (0.17-0.45)
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Fig. 1. Genotype at rs11583641/rs10911472 correlates with the methylation of CpG cg18131582, located in the gene body of COLGALT2. (A) The plot shows the association
between genotype and methylation levels of CpGs probes within the locus. The x-axis represents the genomic position of the CpGs and the y-axis the Benjamini-Hochberg
corrected -logip P-value of the correlation between genotype and M-value at each CpG. Each open circle represents a single CpG, with cg18131582 highlighted in red. The
locations of rs11583641 and rs10911472 are indicated. The genes within the region analysed are shown below the association plot, with the gene direction indicated by arrows.
The lower panel shows data from the ROADMAP epigenome database, marking chromatin states in five relevant cell types: red, active transcription start site (TSS); green,
strong transcription; orange, active enhancer. (B) Zoomed in image showing the location of cg18131582 in an enhancer. DHS, DNasel hypersensitivity; TF, transcription factor
binding sites. (C) The association between genotype at rs10911472 and cg18131582 methylation for all 87 samples (FDR P-value = 0.0027). The level of methylation is shown as
the B-value. Horizontal lines represent the mean and standard error of the mean (SEM). 0, major allele homozygote; 1, heterozygote; 2, minor allele homozygote. (D)
Expression of COLGALT2 in cartilage from OA and NOF patients. TPM, transcripts per million. Bars represent the mean and the SEM. P-values were calculated using a Wald test

within the DESeq2 package.

expressed genes at this locus: HLA-DPA1, HLA-DPB1, COL11A2 and
HSD17B8. There was a significant increase in expression of COL11A2
in OA cartilage (P = 7.7x10~>; Fig. 3(D)).

Locus 5

rs60890741 (C>CA, OA risk allele = C, MAF = 0.18) is located on
chromosome 8q24.2 and marks a region of LD spanning 24.5 kb
rs60890741 is not on our array and we therefore used the proxy
rs12542856 (* = 0.97) and analysed 166 CpGs. We identified a
single CpG, cg18170545, at which methylation significantly corre-
lated with genotype at rs12542856 (FDR P = 0.049; Table I). This
CpG falls within an intron of ASAP1 [Supl. Fig. 3(A)] in a predicted
enhancer region containing multiple transcription factor binding
sites [Supl. Fig. 3(B)]. The CpG is hypermethylated in cartilage, with
the OA risk allele correlating with increased methylation [Supl.
Fig. 3(C)]. There were no cartilage-expressed genes at this locus
that had GTEx eQTLs.

Locus 6

rs317630 (C>T, OA risk allele = T, MAF = 0.23) is located on
chromosome 12q15 and falls within an intron of CPSF6 [Supl.
Fig. 4(A)]. rs317630 is not on our array and we therefore
used the proxy rs317646 (r> = 0.99) and analysed 239 CpGs.
We identified a single CpG, cg22375663, at which methylation
significantly correlated with genotype at rs317646 (FDR
P=4.18x10""1; Table I). This CpG is intergenic, located 88 kb
upstream of the association SNP and falls within a region
marked as a bivalent enhancer and promoter [Supl. Fig. 4(B)].
cg22375663 falls within the binding site for POLR2A. The OA
risk allele correlates with an increase in methylation of the
CpG [Supl. Fig. 4(C)]. GTEx identified eQTLs across multiple
tissue types for three cartilage-expressed genes at this locus:
CPSF6, LYZ and YEATS4. There was no differential expression
for any of these between OA and NOF cartilage [Supl.
Fig. 4(D)].



S.J. Rice et al. / Osteoarthritis and Cartilage 27 (2019) 1545—1556 1549
A 4.0
o 1511732213 11 15798756
= O ©g20987369
i
S
g
3 . - GG
chra: 1,600,000 1,700,000 1,800,000 1,900,000
= FAVI53A G SLBP FGFR3 mump-
< TMEM129
TACC3 sy
€006 /NN (WA | DT NSO NN N N W W
ZZER S B TR ] u 1 ||
e023 | B BT | | T - .
£025 ENEETREET i | [ | IR NI e
[ I |
B 10 cg20987369 ¥ g25007799
T ©
S08{ oo Bo06
5ol B H
206 2 0.4
B 0.4 B0.2
= =
0.2 T T T 0.0
0 1 2
C P=6.99x10"19
3007 ® NOF
200] ° OA {g
100 o®
s 60 P=3.05x107 ®
& -13
40 s POB # p=181x10 +
01 T > & o
- *
-
0 . r . .
FAMS53A SIBP TMEM129 TACC3 FGFR3

Fig. 2. Genotype at rs11732213/rs798756 correlates with the methylation of CpGs cg20987369 and cg25007799. (A) The plot shows the association between genotype and

methylation levels of CpGs within the locus. The x-axis represents the genomic position
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rs798756 and methylation at cg20987369 and cg25007799 for all 87 samples (FDR P-values = 0.0027 and 0.019, respectively). The level of methylation is shown as the B-value.
Horizontal lines represent the mean and SEM. 0, major allele homozygote; 1, heterozygote; 2, minor allele homozygote. (C) Expression of genes at the locus in cartilage from OA and
NOF patients. TPM, transcripts per million. Bars represent the mean and the SEM. P-values were calculated using a Wald test within the DESeq2 package.

Locus 7

rs35206230 (C>T, OA risk allele = T, MAF = 0.24) is located on
chromosome 15@24.1. rs35206230 is not on our array and we
therefore used the proxy rs1378940 (1> = 0.96) and analysed 761
CpGs. Genotype at rs1378940 correlated with methylation at two
CpGs, ¢g20040747 and cg10253484 (FDR P-values of 0.0027 and
0.028, respectively; Table I).

cg20040747 is located within an intron of SEMA7A [Fig. 4(A)]
within a DNasel hypersensitive enhancer region containing tran-
scription factor binding sites [Fig. 4(B)]. cg10253484 is located
451 kb downstream of cg20040747, within the promoter region of
SCAMP2 [Fig. 4(B)]. Chromatin interactions were identified between
this promoter and that of the neighbouring gene MPI [Supl.
Fig. 1(D)]. The OA risk is associated with a decreased methylation
of ¢g20040747 but an increased methylation of cg10253484
[Fig. 4(C)].

GTEx identified eQTLs at nine cartilage-expressed genes
from within this locus: CSK, LMANI1L, ULK3, SCAMP2, MPI,
FAM219B, RPP25, SCAMP5 and PPCDC. There was no differential
expression for any of these between OA and NOF cartilage
[Fig. 4(D)].

Locus 8

rs6499244 (A>T, OA risk allele = A, MAF = 0.29) is located
on chromosome 16q22.1. rs6499244 is not on our array and we
therefore used the proxy rs7359336 (1> = 0.91) and analysed
453 CpGs. Genotype at rs7359336 correlated with methylation
at two CpGs, ¢g26661922 and cg26736200 (FDR P-values of
0.0096 and 0.011, respectively; Table I). Both CpGs fall within
the body of WWP2 [Fig. 5(A)] in a region marked as having
enhancer activity [Fig. 5(B)], with the OA risk allele correlating
with increased methylation at each CpG [Fig. 5(C)]. GTEx
identified eQTLs at five cartilage-expressed genes at this locus:
CLEC18A, IL34, NFAT5, NOB1 and PDXDC2P. There was a signifi-
cant increase in expression of CLEC18A in OA cartilage (P = 0.02;
Fig. 5(D)).

Locus 9

rs2953013 (T>G, OA risk allele = G, MAF = 0.32) is located
on chromosome 17q11.2. This SNP was directly genotyped on
the array and we analysed 313 CpGs. Genotype at rs2953013
correlated with methylation at one CpG, cg16779580 (FDR
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P-values were calculated using a Wald test within the DESeq2 package.

P = 0.006; Table I). cg16779580 resides within RAB11FIP4 [Supl.
Fig. 5(A)] and specifically within an intronic enhancer region of
the gene [Supl. Fig. 5(B)], with the OA risk allele correlating
with decreased methylation of the CpG [Supl. Fig. 5(C)]. GTEx
identified eQTLs at three cartilage-expressed genes at this lo-
cus: NF1, EVI2A and RABI1FIP4. A significantly increased
expression of RAB11FIP4 was observed in OA cartilage (P = 0.05;
Supl. Fig. 5(D)).

Locus 10

rs62063281 (T>C, OA risk allele = C, MAF = 0.22) is located on
chromosome 17q21.31. This SNP was not directly genotyped on the
array and we therefore used the proxy rs17650901 (r* = 0.98) and
analysed 501 CpGs. Genotype at rs17650901 correlated with
methylation at nine CpGs, with FDR P-values ranging from 0.037 to
1.73x1072° (Table I).
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SEM. P-values were calculated using a Wald test within the DESeq2 package.

The nine positive CpGs demonstrate hypo- and hyper-
methylation, with the OA risk allele correlating with increased and
decreased levels of methylation [Fig. 6(C)]. Several of the CpGs
reside within genes and within potential functional domains
[Fig. 6(A)] with four meriting particular comment. cg11117266 and
cg16520312, which are located just 10bp apart, fall within the

promoter region of MAPT [Fig. 6(B)], whilst cg15633388 and
cg23616531 are located within the promoter region of KANSL1 and
an adjacent enhancer element [Fig. 6(C)]. These regulatory ele-
ments of MAPT and KANSL1 physically interact with each other
[Supl. Fig. 1(E)], implying coordinated functionality of DNA se-
quences harbouring the four CpGs.
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GTEX identified eQTLs for 19 cartilage-expressed genes at this
locus, including MAPT and KANSL1 [Fig. 6(D)]. Four showed a sig-
nificant differential expression between OA and NOF cartilage, with
NMT1 (P = 3.30x10~3) and PLEKHM1 (P = 6.05x1071%) demon-
strating reduced expression in OA, and CRHR1 (P=0.03) and
KANSL1-AS1 (P = 0.01) demonstrating increased expression.

Discussion

GWAS are widely used in the identification of risk-conferring
variants in a range of complex traits. Despite this, there remains
an enormous disparity between the discovery of GWAS signals and
subsequent functional analyses, which are essential in their inter-
pretation and the identification of intervenable targets®>. In this
report, we utilised genome wide genetic and epigenetic datasets
and discovered cis mQTLs operating at novel OA risk loci. This
highlights the potential mechanistic importance of DNA methyl-
ation in mediating gene expression. This study aims to bridge the
gap between GWAS and the execution of successful functional
analyses, by prioritising disease-associated regulatory elements
and genes. There have now been 18 OA mQTLs identified to date.
This is likely a conservative number considering the low genomic
coverage of the Illumina methylation array, which captures less
than 1% of CpGs. Our results emphasise the key function of DNA
methylation in mediating a large proportion of OA susceptibility.
Due to the joint specificity of both the cartilage methylome and OA
GWA signals, we found it somewhat surprising that we did not
identify any hip- or knee-specific mQTLs. However, this is consis-
tent with our previous analyses”'°. We hypothesise that, whilst OA
mQTLs are active at both joint sites, they might not necessarily
exert a functional effect at all sites due, perhaps, to variability in
chromatin state, or distinct compensatory mechanisms within a
joint. Additionally, it is feasible that the enhancers marked by
mQTLs are functionally active during different stages of the lifespan
and could be integral for correct cartilage development and
maintenance within the joints at distinct time points. At each novel
mQTL we analysed cartilage RNA-seq data and online datasets,
including eQTL and long-range chromatin interaction data, to
highlight functionally relevant genes and regulatory elements that
could be the targets of OA genetic risk. In this regard, loci 1,4 and 8
were particularly compelling.

At locus 1, (rs11583641, C>T), cg18131582 falls within a pre-
dicted COLGALT2 enhancer. There is a physical interaction between
this enhancer and the body of the gene, which implies that the
enhancer could regulate COLGALT2 expression. The gene encodes
procollagen galactosyltransferase 2, an enzyme that post-
translationally glycosylates collagen®®. Collagens are core struc-
tural and functional components of the cartilage extracellular ma-
trix (ECM) with their post-translational modification being key to
their activity?>. Polymorphism in COLGALT2 has previously been
associated with skeletal development?® whilst in our RNA-seq data,
there was a highly significant increased expression of the gene in
OA hip cartilage. This increase in COLGALT2 expression has also
been observed in knee cartilage®’. In a recent study of the OA
cartilage transcriptome performed on a Netherlands cohort of 47
patient samples®®, evidence of allelic expression imbalance at
COLGALT2 was reported, implying that the gene is subject to carti-
lage eQTLs. We hypothesise that in OA there is an attempted
reparative response of the cartilage involving new collagen syn-
thesis with a concurrent upregulation of COLGALT2. This increased
expression requires methylation of the enhancer falling within the
gene body of COLGALT2. However, the OA risk allele attenuates this
response, manifested as lower enhancer methylation and an inad-
equate increase in COLGALT2 expression. This ultimately has a

negative impact on the post-translational modification of newly
synthesised collagens, hindering repair.

At locus 4, (rs9277552, C>T), there were four mQTL CpGs, three
within HLA-DPB1 and one within HLA-DPB2. The HLA-DPB2 CpG,
cg02375585, marks a heterochromatic region that interacts with
the promoter of COL11A2. This gene encodes the a2 polypeptide
chain of type XI collagen, a critical structural component of articular
cartilage. Type XI collagen is essential for the stability of type II
collagen fibrils, which comprise 90% of the collagen network of the
cartilage ECM?°. Mutations in COL11A2 cause Stickler syndrome, a
skeletal abnormality that often presents with early-onset OA*°. In
our RNA-seq data, COL11A2 is abundantly expressed with a highly
significant increased expression in OA vs non-OA cartilage. Simi-
larly, a significant increase in COLL11A2 expression was detected in
OA knee cartilage®’. This may reflect a cartilage reparative response.
Unfortunately, the HLA locus was excluded from analysis in the
Netherlands cartilage transcriptome study”®. On GTEx, the OA risk-
conferring C allele of rs9277552 correlates with both increased and
decreased expression of the gene in non-cartilaginous tissues. We
speculate that in cartilage, this risk conferring allele will also
correlate with differential expression of the gene and that akin to
COLGALT2, this expression change is mediated by differential
enhancer methylation.

At locus 8, (rs6499244, A>T), there were two mQTL CpGs, both
located in an enhancer within WWP2. This gene encodes NEDD4-
like E3 ubiquitin-protein ligase, a protein that is expressed at
high abundance in cartilage and which plays an essential role in
chondrogenesis via TGFB/Smad signaling'. Knockout of the protein
results in altered craniofacial patterning and palatogenesis®?3. In
our search of GTEx, we did not find any WWP2 eQTLs correlating
with the OA association signal and there was no differential
expression of the gene between our OA and non-OA cartilage (data
not shown). However, the Netherlands cartilage transcriptome
study reported allelic expression at the gene?’. The transcript SNPs
used are in modest LD with the association SNP, with the most
significant WWP2 transcript SNP, rs1052429 (A/G), having an r? of
only 0.22 with rs6499244. Despite this, the OA risk conferring A
allele of rs6499244 occurs almost exclusively on a haplotype con-
taining the A allele of rs1052429, which correlates with increased
WWP2 expression. We therefore hypothesise that the risk allele at
this locus leads to increased methylation of the enhancer and
subsequent increased expression of WWP2, which is detrimental to
cartilage health. WWP2 encompasses microRNA 140, which also
regulates chondrocyte activity>* and could also be a target of this
mQTL.

The locus with the largest number of significant CpGs in our
study was locus 10, with nine including three with FDR P-values
<1.0x107 15, This is an extremely complex locus of very high LD
containing a large number of polymorphisms. These span an in-
terval of 945 kb and contain at least nine recently evolved common
haplotypes, including inversions and repeats>”. The large number
of highly significant CpGs at this locus, which are spread across a
number of genes, many of which are expressed in cartilage, make
this a highly intriguing signal. None of the 19 cartilage-expressed
genes at the locus that have eQTLs in GTEx were reported as
demonstrating allelic expression in the Netherlands cartilage
transcriptome study. However, this could simply reflect the rela-
tively modest sample size used in that transcriptome report. Future
functional studies of this complex locus may require a gene by gene
approach.

In summary, we have identified novel mQTLs correlating to
genotype at OA risk loci. Through this analysis, we have more than
doubled the number of such mQTLs and in several instances, we
have highlighted putative effector genes through the co-
localisation of CpGs to regulatory elements; COLGALT2, COL11A2
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and WWP2 represent clear examples. Our results reveal potential
mechanisms by which the OA-encoded risk at several of the loci
mediate their effect and as such, the significant CpGs and their
regulatory elements, and putative target genes now warrant a
detailed functional investigation in the context of OA molecular
aetiology.
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