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Diagnosing osteoarthritis from T2 maps using deep learning: an
analysis of the entire Osteoarthritis Initiative baseline cohort
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Objective: We aim to study to what extent conventional and deep-learning-based T2 relaxometry pat-
terns are able to distinguish between knees with and without radiographic osteoarthritis (OA).
Methods: T2 relaxation time maps were analyzed for 4,384 subjects from the baseline Osteoarthritis
Initiative (OAI) Dataset. Voxel Based Relaxometry (VBR) was used for automatic quantification and voxel-
based analysis of the differences in T2 between subjects with and without radiographic OA. A Densely
Connected Convolutional Neural Network (DenseNet) was trained to diagnose OA from T2 data. For
comparison, more classical feature extraction techniques and shallow classifiers were used to benchmark
the performance of our algorithm's results. Deep and shallow models were evaluated with and without
the inclusion of risk factors. Sensitivity and Specificity values and McNemar test were used to compare
the performance of the different classifiers.
Results: The best shallow model was obtained when the first ten Principal Components, demographics
and pain score were included as features (AUC ¼ 77.77%, Sensitivity ¼ 67.01%, Specificity ¼ 71.79%). In
comparison, DenseNet trained on raw T2 data obtained AUC ¼ 83.44%, Sensitivity ¼ 76.99%,
Specificity ¼ 77.94%. McNemar test on two misclassified proportions form the shallow and deep model
showed that the boost in performance was statistically significant (McNemar's chi-squared ¼ 10.33,
degree of freedom (DF) ¼ 1, P-value ¼ 0.0013).
Conclusion: In this study, we presented a Magnetic Resonance Imaging (MRI)-based data-driven platform
using T2 measurements to characterize radiographic OA. Our results showed that feature learning from
T2 maps has potential in uncovering information that can potentially better diagnose OA than simple
averages or linear patterns decomposition.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Osteoarthritis (OA) affects 27 million US adults1 and often leads
to severe disability2. The prevalence of OA is 33.6% in adults older
than 65 years3. Although OA is a widespread and debilitating dis-
ease, treatment options are currently limited, and disease-
modifying therapies have not been established yet4. In an effort
to develop quantitative biomarkers for OA and to fill the void that
exists for diagnosing, monitoring and assessing the extent of early
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whole joint degeneration in OA, the past decade has shown an
increase in using noninvasive imaging for OA. Magnetic Resonance
Imaging (MRI) is a central component of large-scale epidemiologic
observational studies such as the Osteoarthritis Initiative (OAI),
where it can provide a rich array of structural and functional fea-
tures of musculoskeletal tissues, which in turn shed light on disease
etiology, potential treatment pathways, and prognostic tools for
long-term disease outcomes.

Magnetic resounance (MR)-derived compositional imaging
techniques, such as T2 relaxation times, assess the structural and
biochemical properties of cartilage since they are sensitive to
changes in collagen orientation and water content5,6. The degen-
erative changes observed in MRI are commonly quantified using
averaged region of interest (ROI) based approaches. In such ap-
proaches, relevant compartments of cartilage are segmented, and
each ROI within the cartilage is described by its average T2 value.
td. All rights reserved.
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Table I
Subjects demographic and clinical characteristics (N ¼ 4384)

Characteristic OA: KL 2e4
(N ¼ 1937)

Controls KL ¼ 0e1
(N ¼ 2447)

P-value

Age (years)y 62.73 ± 8.90 59.86 ± 9.12 2.59E-25
BMI (kg/m2)y 29.73 ± 5.07 27.53 ± 4.47 2.28E-51
Sex*
Female 766 (39.54%) 1063 (43.44%) 0.0094
Male 1171(60.45%) 1384 (56.55%)
KOOS Pain

(0e100, 0 ¼ worst outcome)y
79.78 ± 18.61 88.29 ± 14.38 2.76E-63

* Data expressed as Count (Percentage %).
y Data expressed as Mean ± Standard Deviation.
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However, previous studies reported that spatially assessing relax-
ation times of the knee cartilage using laminar and sub-
compartmental analyses could lead to better and possibly earlier
identification of cartilage matrix abnormalities7,8. Accordingly, in
the last few years, quantitativeMRI research has been characterized
by a growing interest in exploring the spatial distribution and local
patterns in relaxation time maps.

Extraction of second-order statistical information or texture
analysis9,10 has been widely used to overcome the limitation of the
average-based approaches. While texture descriptors have the po-
tential to capture local information, themost commonly usedmethod
is based on gray levels co-occurrence matrix9,10 which summarizes
the values of contrast, entropy, and other textural features on a
regional basis. Because of that, even if grayscale co-occurrence
textural features can explain the local changes adequately, they do
not capture the specific localization of the changes to a voxel level.

In an attempt to overcome these limitations, a novel fully-
automated and data-driven algorithm for transforming all knee
relaxation time images to a standard coordinate system, and
deriving Voxel Based Relaxometry (VBR) maps has been previously
proposed11. This technique allows for the investigation of local
cartilage composition differences between two groups of subjects,
or subjects at different time points, through voxel-based statistics
or Statistical Parametric Mapping (SPM)12. The fact that all images
are aligned to a single template in VBRmakes it possible to consider
each patient as a data-point in a multi-dimensional feature space.
Feature extraction techniques that generate a smaller set of pre-
dictors that seek to capture the majority of the information can be
adopted for analysis of T2 data. Principal Component Analysis
(PCA), a commonly used feature extraction technique, can be uti-
lized to efficiently abstracts the characteristics of the multidimen-
sional point cloud obtained from VBR maps of subjects, and to
discover the latent patterns and subgroups of biochemical
composition among subject groups.

In order to shift away from using conventional handcrafted
features (such as averages or standard deviations over specified
regions) to describe T2 maps; we can employ data-driven models
that are trainable to learn relevant features from the raw input. The
concept of feature learning is the very strength of deep learning13. It
has shown the superiority of data-driven feature extraction in
comparison to conventional hand-crafted knowledge-based fea-
tures in medical imaging field14e16; which in quantitative T2 map-
ping translates to abandoning the established concept of regions of
interest or compartmental average analysis in favor of data-driven
representation of relevant information directly from the raw data13.

In this study, we propose a fully automated method for the
analysis of T2 relaxation time maps with the aim of extracting
relevant relaxometry patterns to classify radiographic knee OA in
the entire OAI baseline dataset. We aim to establish the role of data-
driven feature extraction to exploit the potential of T2 relaxation
times in comparison to classic feature handcrafting.

We hypothesize that the coupling of quantitative compositional
MRI and deep learning can uncover latent feature representations,
non-linear aggregation among elementary features, and thus better
characterize OA as compared to compartmental averages or linear
patterns decompositions.

Methods

Dataset

All the 4,797 subjects recruited and imaged for the OAI study
were initially included. From this dataset, 4,663 subjects had a T2
mapping acquisition; and 4,384 also had a radiographic evaluation
of OA performed with Kellgren and Lawrence (KL) grading system
(central readings)17. Within this group, 1937 (44.2%) subjects
showed radiographic OA (KL � 2), and 2447 (55.8%) were consid-
ered controls (KL < 2). Table I shows the distribution of the de-
mographics and pain scores from the Knee Outcomes in
Osteoarthritis Scores (KOOS)18 survey.

Experimental design

All the 4,384 T2 maps were processed to obtain the automated
evaluation of T2 values. The overall experimental design, including
input/output for each experiment, is shown in Fig. 1.

We performed four main experiments: (1) Comparison between
manual and automated segmentation of T2 maps [Fig. 1(A)], (2)
Voxel-based Relaxometry analysis to detect local OA features in T2
maps [Fig. 1(B)], (3) Exploration of the usage of Deep Learning to
predict OA classes from T2 maps [Fig. 1(C)], and (4) Classical ma-
chine learning to predict OA classes using the extracted features
from T2 maps with the aim of establishing a performance bench-
mark [Fig. 1(D)].

Image processing

Image analysis was performed with software developed in-
house using MATLAB (Mathworks Inc, El Segundo, CA) integrated
with the elastix registration library19. All the images weremorphed
to the space of a reference obtaining matched T2-weighed images,
using a previously developed and evaluated technique11. An
intensity-based multi-resolution pyramidal approach was applied
for the registration. B-spline transformation was used for the
morphing and Advanced Mattes Mutual Information image simi-
larity was used as an objective function.

Global non-rigid registration was applied first, and four local
registrations were then applied using the reference cartilage seg-
mentation to constrain the image area considered in the registra-
tion optimization. This process was performed on the first T2
-weighted image and the transformation obtained was applied to
all the followed T2-weighted images. T2 maps were then computed
on the morphed echoes using a three-parameter, Levenberge
Marquardt mono-exponential: (S(TE) a exp(�TSL/T2)þC). The
reference image was selected through an iterative process aimed to
minimize the dataset global deformation. Four compartments,
[medial femoral condyle (MF), lateral femoral condyle (LF), medial
tibia (MT), lateral tibia (LT)] were segmented manually on the
reference knee, and the mask from the reference segmentationwas
applied to all the other images in the dataset, to obtain a fully
automated estimation of the cartilage T2 relaxation time.

Comparison with manual segmentation

A total of 1799 cases was segmented manually in the course of
several studies performed between 2011 and 2017 from two main



Fig. 1. Experimental design overview.
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NIH projects: U01AR059507, P50AR060752. The availability of
manual segmentation was the only criteria for case selection. All
the users that performed manual segmentation went through the
same training, and all the manual segmentation and T2 results were
previously quality controlled and used in published studies.
BlandeAltman plots were used to compare manual and automated
T2 averages in the four cartilage compartments.

Voxel-based relaxometry

Statistical Parametric Mapping (SPM) was conducted to assess
the voxel-based variability differences between the two groups,
participants with radiographic OA vs control. Voxel-based sum-
mary statistics, including the group mean and standard deviation
maps, were calculated. Group comparisons were performed using a
one-way Analysis of Variance (ANOVA) model using the two-sided
overall alpha level of 0.05. Percentage of voxels that showed the
significant difference in T2 measurements between the OA cohort
and control and the average percentage differences in T2 values for
each of four compartments were summarized by SPMs. Age,
gender, and, body mass index (BMI) were considered as adjusting
factors in statistical analyses. Random Field Theory (RFT)20 was
used to find the significant threshold which gives 0.05 family-wise
error rate. RFT solves the multiple comparison problem by using
results that give the expected Euler Characteristic (EC)21 for a
smooth statistical map that has been thresholded. RFT, unlike than
Bonferroni correction, accounts for the fact that observations in a
smooth map are not independent of each other.

OA prediction with learned features: deep learning

We trained a convolutional neural network (CNN) to perform
the task of predicting OA classes, the presence of radiographic OA
or absence of radiographic OA, by learning features from the T2
maps. A flattening technique, previously used for texture anal-
ysis22, was adopted here to stitch the four compartments together.
To flatten the cartilage, the geodesic length of the cartilageebone
interface was computed, and points along this curve were uni-
formly sampled. For each sampled point a normal and tangent
vector was computed. Warping was applied with backward
mapping to bring the original cartilage points to their corre-
sponding target positions with the inherent constraints of pre-
serving the geodesic length and cartilage thickness. All the
flattened slices were stitched together in the raw image direction
after resizing each flattened slice to the same number of columns,
256. The 2D image obtained through this process was then also
resized in the row direction to 256, and all the intensities were
clipped at 100 ms, then scaled to between 0 and 1 using the max-
min method. Through this process, we obtained a 2D matrix,
which served as input to the convolutional neural network, Fig. 2
shows an example.

We employed a densely connected neural network (DenseNet)
as our model architecture23,24. The architecture contains a feature
layer capturing low-level features, dense blocks, and transition
layers between adjacent dense blocks (Fig. 3). The whole dataset
was divided into a 65-20-15% split of training, validation, and hold-
out testing set.

We trained the DenseNet from scratch (random weight initial-
ization) with a learning rate of 1e-4, 0e1 input image normaliza-
tion, cross-entropy loss function, growth rate of 12, block depth of
6, for 20 epochs on an NVIDIA Titan X GPU, implemented in native
TensorFlow (Google, Mountain View CA). Termination at 20 epochs
was chosen by observing the learning curve of training and vali-
dation losses in an attempt to reduce overtraining that would
translate to overfitting of the model.

Instead of adopting the traditional fully connected layer for
classification, we used a technique which directly outputs the
spatial average of the feature maps as the confidence about the
predicted class via a global average pooling layer, and the resulting
vector is then fed into the softmax layer25. Global average pooling
compared with traditional fully connected layer has an advantage
as it enforces correspondence between feature maps and



Fig. 2. Example of the 2D flatten T2 map used as input to the convolutional neural
network.
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categories. Global average pooling provides structural regulariza-
tion and prevents overfitting without entirely relying on drop out
regularization25.

We also applied a modification on the original architecture for
the inclusion of demographic and clinical predictors. Age, gender,
BMI and KOOS reported pain scores were standardized by sub-
tracting the sample mean and dividing by the standard deviation.
The standardized features are fed in as a 4-dimensional vector and
then multiplied element-wise by a 32-dimensional weight vector
(simply a trainable fully connected layer). This 32-dimensional
layer was then concatenated onto the features output of the Den-
seNet trained on the flattened T2 map.

OA prediction with hand-crafted features: random forests

In an attempt to benchmark the predictive performance of the
deep learning model, classical feature extraction in conjunction
with shallow machine learning classification models, Random
Forests (RF), were investigated. The same split datasets used for
DenseNet, training, validation, and hold-out test set, were used for
model building, fine-tuning, and final model evaluation.
Fig. 3. Design of the Densely connected neural network used
A total of five candidates sets of hand-crafted features were
explored: First, the conventional method of taking average of T2
values in four compartments, MF, LF, MT, and LT, were considered
(feature set 1). Second, demographic features and self-reported
KOOS pain scores were used (feature set 2). Third, four average T2
values combined with demographic features were considered
together (feature set 3). Next, Principal Components Analysis (PCA)
on VBR maps was used to extract the 10 most important modes of
variation in the overall T2 maps (feature set 4). Each Principal
Component (PC) describes a specific relaxometry pattern, and each
T2 map was decomposed into a linear combination of those pat-
terns. The estimated coefficients of PCs represent the level of de-
parture from the mean relaxometry patterns over all samples.
Lastly, the scores from PCA combined with demographic features
were inspected together (feature set 5).

For each set of hand-crafted features from the training set, RF
was fit with the number of estimators from 50 to 100, Gini impurity
score and entropy as the criteria for the quality of a split,
sqrt(number of features) and log2(number of features) as the
maximum number of features considered at each split, in
conjunction with several values of minimum number of samples
required to split the node: 2, 4, 6, 8, and 10. A total of 600 combi-
nations of tuning parameters were grid-searched for each of five
feature sets and evaluated on the validation set. Area under the
curve of the receiver operator characteristic (ROC) curve was used
to compare the best RF classifier for each of five feature set.

Comparing the predictive performance of shallow and deep
classification model

The identified best-performing feature set combined with the
fine-tuned RF classifier was evaluated on the hold-out test set.
The DenseNet trained and fine-tuned on flattened raw T2 map
and demographic features were also evaluated on the same
hold-out test set. Due to the relatively large sample size, we
could safely assume that the variation generated from the
random data split is small enough. Additionally, we assumed
that internal randomness in two models, for example, random
weight initialization in CNN and bootstrap in RF, are small
enough. To formally compare the results of the two models we
for the OA classification from T2 relaxation times maps.
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performed McNemar's chi-squared test on the proportions that
two models disagree on the OA prediction26.
Results

Comparison with manual segmentation

Manual and automated T2 quantification showed a good
agreement for the femoral compartment: average absolute dif-
ference of 2.16 ms (6.19%) for the lateral femur (Pearson correla-
tion R ¼ 0.82) and 1.73 ms (4.46%) for the medial femur (Pearson
correlation R ¼ 0.75). The agreement in the tibia compartments
was not as good: average absolute difference of 2.37 ms (8.32%)
for the lateral femur (Pearson correlation R ¼ 0.75); and 2.31 ms
(7.69%) for the medial tibia (Pearson correlation R ¼ 0.60). Fig. 4
shows the correlation scatter plot and BlandeAltman plot for
the four compartments.
Voxel Based Relaxometry

Local analysis of the T2 measurements differences between OA
and control knees performedwith SPM technique showed a general
prolongation of the relaxation time in all four cartilage compart-
ments. After adjusting for multiple comparisons, 92.35% of the MT
voxels showed a significant T2 prolongation on the average of
2.33 ms (7.78%, 95-CI [2.27 mse2.39 ms]); based on the results of
the voxel-based one-way ANOVA; 80.94% of the LT voxels showed a
T2 prolongation of 2.12ms (8.42%, 95-CI [2.09ms�2.14ms]); 73.82%
of the medial femoral voxels showed T2 prolongation of 2.63 ms
(6.66%, 95-CI [2.58 ms�2.67 ms]) and 80.61% of the medial femoral
voxels showed a T2 prolongation of 1.91 ms (5.52%, 95-CI
[1.89 mse1.93 ms]). Fig. 5 shows the average and standard devia-
tion of T2 measurements in the atlas space for OA and control
groups. The mean difference in prolongation of T2 values observed
in the OA cohort compared to the control in the significant voxels
and P-valuemap indicating level of significance is also shown. From
this map, where no a-priori sub compartmental or laminar sub-
divisions are imposed, it can be seen that the significant prolon-
gation in T2 in the femoral compartments is driven by differences in
the deep layer of the cartilage and, specifically in the weight-
bearing areas, whereas the superficial layer did not show signifi-
cant differences. In the tibial compartments, the strongest differ-
ences were observed in the central portion of the cartilage plate.
Fig. 4. BlandeAltman and correlation plots showing a comparison between manual and
OA Prediction with Learned Features: Deep Learning

DenseNet directly trained to learn the features from T2 maps,
without handcrafted feature extraction, achieved sensitivity equal
to 74.53% and specificity equal to 76.13%. When age, gender, BMI,
and KOOS pain scores were included, we observed an increase in
performance with Sensitivity equal to 76.99% and Specificity equal
to 77.94% (AUC ¼ 82.44%).

OA prediction with hand-crafted features: Random Forests

Figure 6(A) shows a visualization of the area under the ROC
curve for the final models with the five datasets. RF models built
and fine-tuned only on the average T2 measurements, feature set
1, did not perform well (Sensitivity ¼ 48.96%, Specificity ¼
62.82%). The performance improved when demographic features
and knee pain scores were included (Sensitivity ¼ 62.85%,
Specificity ¼ 60.26%). RF model with PCs from VBR T2 maps
performed better than RF with mean T2 measurements com-
bined with demographic features (Sensitivity ¼ 65.97%, Speci-
ficity ¼ 66.67%). The predictive performance improved when
demographic features were added to the PCs and we chose this
RF trained on feature set 5 as our final model (Sensitivity ¼
67.01%, Specificity ¼ 71.79%). This model was chosen as best
shallow classifier to be compared to the DenseNet (Sensitivity ¼
76.99%, Specificity ¼ 77.94%), Fig. 6(B).

Though RFs generally suffer from the limitation related to
bias, the ensemble nature allows us to gain an understanding of
the relationship between features and the response variable.
The relative importance scores of the features in the feature set
5, T2 PCs and demographic information, were estimated using
the aggregated purity improvement across the final RF model,
and presented in Table II. For this model, PC Six got into the
topmost important radiographic OA class predictor. The lower
scores the PC Six, the smaller difference of T2 measurements
were observed between deep and superficial layers [Fig. 7(A)],
potentially indicating that it can characterize and identify sub-
jects with radiographic OA better than conventional metrics as
compartmental average of T2 measurement. BMI was the most
important predictors among demographic features considered
for this model, whereas age and gender had the least relative
importance scores. PC one which describe the most widely used
global average T2 prolongation it is only the firth predictor
[Fig. 7(B)].
automated average T2 relaxation time computed for 1799 cases in the OAI dataset.



Fig. 5. Voxel-based statistical parametric map analysis of the baseline OAI dataset in distinguish subjects with and without sign of OA average and standard deviation maps are
shown for OA and controls. T2 average prolongation observed in OA subjects and P-value map are also shown (N ¼ 1937). The maps show just voxel that reaches significance after
adjustment for multiple comparison. (A) VBR analysis showed in a representative lateral slice. (B) VBR analysis showed in a representative medial slice.

Fig. 6. (A) ROC curves comparing the Random Forest results between different feature combination. (B) Comparison of the best performant shallow classifier with the deep learning
model.
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Table II
Features importance racking computed for the best per-
forming shallow classifier (10 PCs þ Demographics)

Features Relative importance

PC6 0.1138
BMI 0.0975
PC2 0.0968
PC1 0.0865
PC9 0.0787
PC8 0.0780
KOOS 0.0768
PC3 0.0719
PC7 0.0643
PC10 0.0632
PC4 0.0553
PC5 0.0544
Age 0.0539
Gender 0.0090
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Comparing the predictive performance of shallow and deep
classification model

When we compared the best RFs with DenseNet the deep
learning model showed less miscalculation rate compared with the
best shallow model (22.83% vs 30.5%). A McNemar test on two
proportions, the ratio of test set that DenseNet correctly classified
but RF didn't, and vice versa, showed that two proportions are
significantly different (McNemar's chi-squared ¼ 10.33, DF ¼ 1, P-
value ¼ 0.0013 (two-sided)).
Discussion

In this study, we explored the ability of voxel-based relaxometry
and deep learning to extract relaxometry patterns that are able to
classify radiographic OA. The results of this study have the potential
to enrich our knowledge with the role of quantitative
Fig. 7. (A) Modeling of the most significant T2 relaxometry patterns associated with radiogr
deep layer of the cartilage. (B) Modeling of the first Principal component which describe the
first contributor for the OA vs Control distinction.
compositional MRI analysis in studying OA beyond the usage of
descriptive statistics of relaxation time parametric maps. Sensi-
tivity and specificity of relaxation time techniques, and the absence
of a defined threshold to classify OA, has been criticized in previous
studies27. However, our results show there may be more informa-
tion, beyond simple averages over compartments that can be
extracted from T2 maps by capitalizing on the recent advances in
computer vision and deep learning.

A prior study used machine learning, specifically weighted
neighbor distance using compound hierarchy of algorithms repre-
senting morphology (WND-CHRM), to predict symptomatic pro-
gression of knee OA using T2 values demonstrated some concepts of
using data-driven feature extraction on T2 maps, obtained
encouraging results (accuracy 75%)28. However, the analysis was
limited to themedial femur compartment alone and a small sample
size of 68 did not allow the authors to perform a formal cross-
validation and the evaluation was performed with the leave-one-
out technique which is known to overestimate the actual general-
izability of the model.

In contrast, in this study, we applied automated feature learning
of CNN in addition to the classical feature extraction techniques,
which allowed us to gain the understanding of the relaxation time
features. The PCA-based pattern analysis approach applied in this
study provided insights on the role of the different layers of carti-
lage T2 in characterizing OA; similar results were previously
observed in a much smaller pilot study on a separate dataset
(N ¼ 40)29. Our results suggest that, in addition to the expected
global average T2 prolongation, OA subjects show a localized pro-
longation just in the deep layer of the cartilage which ultimately
results in the T2 differences between the two layers being different
in subjects with radiographic OA compared to controls. While
several previous studies adopted laminar analysis strategies to
separately characterize the biochemical composition of the two
layers to improve sensitivity9,30, the difference between the layers
has not been explored as an OA relaxometry pattern. In OA subjects,
the integrity of the collagen matrix and permeability of the fluid in
aphic OA. Subjects with KL > 1 exhibit a decreased difference between superficial and
most variation in the dataset and it is related with global T2 averages but was not the
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the layer, which is critical to maintaining the cartilage mechanical
properties, is compromised31. It may result in a decreased distinc-
tion between superficial and deep layers, making the difference
between cartilage layer relaxation times a plausible imaging
biomarker associated with OA. Souza et al.32 observed a similar
effect of decreased differences between the two layers while
studying static loading in knee articular cartilage relaxation times.
T1r and T2 values were observed to increase with loading in the
deep layer and decrease in the superficial layer. In that study,
changes in relaxation times due to loading were observed to be
generally larger in the OA group, suggesting a reduced ability to
dissipate loads and a decreased ability to retainwater in OA subject
cartilage.

One of the limitations of this study is that OAwas defined using
radiographic criteria. It is well known that signs of cartilage
degeneration can be observed well before radiographic manifes-
tation of the disease. Clearly, studies considering MR lesions and
symptomatic OA are warranted. This study needs to be considered
as a proof of concept of the use of deep learning to learn features
from T2 maps, since in this study no attempts were made to opti-
mize the convolutional neural network. Usage of other architec-
tures, different choices of hyper parameters or different learning
strategies may improve these initial results significantly.

When used in this large heterogeneous sample, in a fully auto-
mated fashion and without the ability of any case-by-case quality
control, the single atlas-based method used for VBR segmentation
showed some failure cases, in which we observed unacceptable
differences between manual and automated segmentation of T2
maps. Future directions may include deep learning based-seg-
mentation33,34 to drive the registration procedure and potentially
improve the current results.

In this study, we considered only the relaxation times in the
tibia-femoral cartilage for the characterization of OA and included
only the age, gender, BMI, and KOOS reported pain scores in the
model. OA is whole organ disease that includes other tissues in the
joint, specifically their morphological, biochemical, and biome-
chanical aspect, along with the subjects physical activity levels; the
separate analysis of each contributing factor is unable to fully
capture the complex nature of this multifactorial disease35,36. Thus,
further evaluation including the features in the meniscus and bone
marrow, along with activity levels, may provide greater insights.
OA, being a polygenic, and complex disease, characterized by
several phenotypes, is the perfect candidate for multidimensional
and multimodal approaches37 and big data feature extraction and
multifactorial data-integration from diverse assessments spanning
morphological, biochemical, genetic features are required to
accomplish this task. However, automating the post-processing
pipelines is definitely one of the integral and mandatory steps to
accomplish this task and despite the narrow focus in this paper, we
have taken the first stride in this direction.

In conclusion, this study, utilizing quantitative imaging, voxel-
based relaxometry and deep learning convolutional neural net-
works is an effort to set up an MRI-based data-driven platform for
improving OA outcome prediction and patient sub-stratification.
The innovation lies in the fact that T2 relaxometry features are
automatically extracted without a-priori assumptions and have
been used to analyze the entire baseline OAI T2 dataset extracting
significant features to describe characteristics of radiographic OA.
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