
Osteoarthritis and Cartilage 27 (2019) 1636e1646
Defective WNT signaling may protect from articular cartilage
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Objective: WNT signaling is of key importance in chondrogenesis and defective WNT signaling may
contribute to the pathogenesis of osteoarthritis and other cartilage diseases. Biochemical composition of
articular cartilage in patients with aberrant WNT signaling has not been studied. Our objective was to
assess the knee articular cartilage in WNT1 mutation-positive individuals using a 3.0T MRI unit to
measure cartilage thickness, relaxation times, and texture features.
Design: Cohort comprised mutation-positive (N ¼ 13; age 17e76 years) and mutation-negative (N ¼ 13;
16e77 years) subjects from two Finnish families with autosomal dominant WNT1 osteoporosis due to a
heterozygous missense mutation c.652T>G (p.C218G) in WNT1. All subjects were imaged with a 3.0T MRI
unit and assessed for cartilage thickness, T2 and T1r relaxation times, and T2 texture features contrast,
dissimilarity and homogeneity of T2 relaxation time maps in six regions of interest (ROIs) in the tibio-
femoral cartilage.
Results: All three texture features showed opposing trends with age between the groups in the medial
tibiofemoral cartilage (P ¼ 0.020e0.085 for the difference of the regression coefficients), the mutation-
positive individuals showing signs of cartilage preservation. No significant differences were observed in
the lateral tibiofemoral cartilage. Cartilage thickness and means of T2 relaxation time did not differ
between groups. Means of T1r relaxation time were significantly different in one ROI but the regression
analysis displayed no differences.
Conclusions: Our results show less age-related cartilage deterioration in the WNT1 mutation-positive
than the mutation-negative subjects. This suggests, that the WNT1 mutation may alter cartilage turn-
over and even have a potential cartilage-preserving effect.
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Introduction

WNT signaling is important in chondrogenesis and its regula-
tory effect spans throughout the life from early embryonic devel-
opment to maintenance of articular cartilage in adulthood1.
Previous studies indicate that altered WNT signaling may
contribute to the pathogenesis of osteoarthritis (OA)deither due to
inadequately constructed articular surface that is more susceptible
td. All rights reserved.
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to deterioration or due to impaired healing of minor erosions.
Several human and experimental mouse studies report that acti-
vated WNT signaling or overexpression of WNTs are present in
early-onset of OA2e4. Furthermore, genome-wide association
studies (GWAS) have confirmed that genetic factors play an
important role in OA and that polymorphisms in genes encoding
WNT pathway components are associated with severe large-joint
OA5,6. However, despite the high worldwide prevalence of OA,
most of its molecular and genetic bases and the strategies for
effective treatment remain unknown7,8.

WNT/b-catenin signaling pathway is also recognized as a pivotal
pathway in bone formation and its defective activation leads to
various skeletal pathologies, such as osteoporosis-pseudoglioma
syndrome, van Buchem disease and sclerosteosis9e11. In 2013, we
identifiedWNT1 as a key ligand toWNT signaling in bone, asWNT1
mutations were shown to cause autosomal recessive and dominant
osteoporosis12. In a large Finnish family, 10 affected members with
a novel heterozygous loss-of-function WNT1 mutation c.652T>G
(p.C218G) presented with severe, early-onset osteoporosis charac-
terized by multiple peripheral and vertebral compression fractures
and subsequent adult height loss. Transiliac bone biopsies showed
low turnover osteoporosis12. Since then, similar findings have been
described in pediatric patients13 and other patients with other
WNT1 mutations14e17.

To further explore the significance of WNT signaling for OA, we
studied the effect of the heterozygous WNT1 mutation on knee
articular cartilage using several quantitative magnetic resonance
imaging (qMRI) parameters. Cartilage thickness has been proposed
as a morphological marker, but its correlation with the joint status
is not clear18e23. T2 relaxation time is an established qMRI
parameter in the evaluation of cartilage structure24e27 and me-
chanical properties28. Alterations in T2 relaxation reflect changes in
collagen content, fibril network orientation and integrity, as well as
hydration29e31. T2 relaxation time increases in degenerated carti-
lage32,33. T1r relaxation time, another qMRI parameter, strongly
associates with glycosaminoglycan loss in articular cartilage34e38.
Texture analysis methods are image processing tools that can be
used to detect OA-related changes in articular cartilage33,39e42. Our
texture tool is based on gray level co-occurrence matrices
(GLCM)43.

Materials and methods

Subjects

We have previously identified two large Finnish families with
autosomal dominant WNT1 osteoporosis due to heterozygous
missense mutation c.652T>G (p.C218G) in WNT112. These two
families, both of ethnic Finnish descent, comprise altogether 25
WNT1mutation-positive members. In addition, the families consist
of 41 individuals who have been determined mutation-negative
based on genetic screening or mode of inheritance of the WNT1
mutation.

For the current study, we offered all mutation-positive subjects
over the age of 16 years from both families (Family A n ¼ 18, Family
B n ¼ 4) the opportunity to participate in a study examining the
skeletal and extra-skeletal consequences of the WNT1 mutation,
includingMRI evaluation of knees. To form a suitable control group,
reflective of normative data in a similar age- and gender-
distributed population, we also offered participation to all over
16-year-old WNT1 mutation-negative family members in the two
families (Family A n ¼ 16, Family B n ¼ 2). Altogether 15 mutation-
positive (hereafter: MP) and 13 mutation-negative (hereafter: MN)
individuals consented to participate in the study. However, two MP
subjects (female aged 74, male aged 52) were left out due to excess
metal implants and an imaging error, resulting in the final study
group of 13 MP and 13 MN subjects. The research protocol was
approved by the Research Ethics Board of Helsinki University
Hospital.

Genetic evaluations

We performed WNT1 mutation analysis on DNA extracted from
peripheral blood, as previously described12. Briefly, DNA was
amplified with standard PCR, purified with ExoSAP (USB) and
sequence reactions performed with BigDye Terminator v3.1 Cycle
Sequencingelabeling (Applied Biosystems). Sequencing was done
with an ABI730 Sequencher (Applied Biosystems) and chromato-
grams visualized and analyzed using Sequencher v.5.0 (Gene Codes
Corporation). We screened all samples for the families’ known
heterozygous missense mutation c.652T>G (p.C218G) in exon 4 of
the WNT1 gene (NCBI Reference Sequence NM_005430.3). Primer
sequences and PCR conditions are available from the authors upon
request.

Clinical cohort characteristics

We clinically assessed themutation-positive subjects at Helsinki
University Hospital for skeletal characteristics, including possible
lower limb or joint deformities and joint inflammation. We
collected medical histories, previous radiographs and subject in-
terviews to review previous complaints or medical and surgical
treatments on knees or other joints.

Magnetic resonance imaging

All subjects underwent MRI examination on a 3.0 T MRI unit
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) used
in combination with a 15-channel transmit-receive knee coil (QED,
Mayfield Village, OH, USA). We systematically imaged the left knee
joint of each subject; however, if the left knee had an arthroplasty
or other metal implant, the right knee was chosen for imaging. The
MRI protocol included a fat-suppressed PD-weighted and a T1-
weighted turbo-spin-echo sequence, a Dual Echo Steady State
(DESS) sequence, a T2 relaxation time mapping sequence and a T1r
relaxation time mapping sequence (Table I)44,45. The validity and
reproducibility of these methods and the discriminatory and pre-
diction power of T2 and T1rho have been previously reported by us
and others. The used, in-house software also allows for correction
of motion artefacts45e47. The total acquisition time was approxi-
mately 20 min. The acquisition parameters are reported in Table I.

We obtained mean T2 and T1r relaxation time values from
sagittal T2 and T1rmaps, respectively, by manually segmenting the
weight-bearing area of the knee's articular cartilage. Segmentation
was conducted by one of the authors (S.L., 2 years of experience)
and verified by a more experienced reader (V.C., 5 years of expe-
rience). Segmentation resulted in total of six regions of interest
(ROIs): anterior (acF) and posterior central femur (pcF) on lateral
condyle (acFL, pcFL respectively), acF and pcF on medial condyle
(acFM, pcFM respectively), medial central tibia (cTM) and lateral
central tibia (cTL) (Fig. 1). More details on cartilage segmentation
are reported in the Online Supplemental File.

For analysis of T2 relaxation time, we chose the three middle-
most sagittal slices from each femoral condyle. For each ROI, we
calculated the average of the three slices, weighted by the number
of pixels. Due to the long acquisition time of T1r, only one slice per
condyle was imaged, in the same positions as the centermost slices
of the T2 mapping sequence. These slices were chosen in areas that
represent the highest weight-related stress on cartilage. Imple-
mented cartilage thickness calculation tool was applied to measure



Table I
MRI parameters used for Park-grading and quantitative MRI study protocol

Parameters PARK Quantitative MRI

FS PD-weighted DESS T1-weighted T2-mapping AdT1r-mapping

Pulse sequence 2D Turbo spin echo 3D DESS 2D Turbo spin echo 2D Multi Echo Spin-Echo trains of 0, 4, 8, 12 and 16 AFP,
TSL ¼ 0, 24, 48, 72, 96 ms; followed
by 2D spoiled gradient echo

TR (ms) 500 14.1 688 1300 4000
TE (ms) 8.6 5.0 18 13.8, 27.6, 41.4, 55.2, 69 3.36
Flip Angle (deg) 150 25 150 180 15
ETL 8 2 2 5 23 segments per acquisition
Bandwidth (Hz/pixel) 247 250 240 228 260
FOV (mm2) 140 � 140 150 � 150 130 � 130 129 � 129 180 � 180
Matrix (px2) 256 � 256 256 � 256 320 � 240 384 � 384 256 � 256
Plane Sagittal Sagittal Coronal Sagittal Sagittal
Slices (n) 2 160 25 30 2
Slice Thickness (mm) 3 0.6 3 2.0 3.0
Scan Time (m:ss) 0:40 3:18 1:59 8:57 4:44

FS ¼ Fat Suppressed; PD ¼ Proton Density; DESS ¼ Dual Echo Steady State.
AFP ¼ adiabatic full passage hyperbolic secant pulses of the HSn family (n ¼ 4, spin lock frequency ¼ 600 Hz).
TSL ¼ spin-lock time.

Fig. 1. Sagittal T2-weighted image of tibiofemoral joint from a representative subject
(mutation-negative, female, 37 years) presenting the regions of interest selected for
quantitative analysis: anterior central femur (blue), posterior central femur (red) and
central tibia (green).
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mean cartilage thickness of each ROI according to the segmentation
of T2 maps. The thickness was calculated by solving Laplace's
equation within the ROI48.

We conducted the texture analysis for segmented T2maps using
an in-house developed software described earlier49. For each ROI,
the application computed the gray level co-occurrence matrix
(GLCM) texture features in the direction parallel to bone-cartilage
interface (BCI), i.e., every pixel within the ROI was assumed with
an angle that presents offset direction that is parallel to BCI.
Extrapolative soft-contour analysis for the offset endpoint was
performed to correct for the tendency of the orientation vectors to
point to pixel interfaces due to limited T2map resolution. We chose
to analyze three texture features; contrast, dissimilarity and homo-
geneity. Due to limited image resolution T1r maps were not
analyzed with texture analysis.
Park classification

We used the Park-scoring system50 to review all MR images for
their visual cartilage injury, osteophytes, bone marrow edema
(BME), and subchondral cysts. This scoring system is reported to
correlate with the KellgreneLawrence (KL) grading for plain ra-
diographs50. All images were independently reviewed by an or-
thopedic surgeon (T.N.) and an experienced radiologist (J.N.), who
were blinded to subjects’ genotype and phenotype. A detailed
description of the Park-scoring system is reported in the Online
Supplemental File.

Statistics

TheMRI parameters (T2 and T1r relaxation times and T2 texture
features contrast, dissimilarity and homogeneity), and the thickness
of articular cartilage, are presented as means with standard de-
viations. Differences between the two cohorts (MP and MN) were
assessed using independent samples t-test. A p-value <0.050 was
considered statistically significant. Associations between age and
the MRI parameters are presented as scatter plots. Effect of the
mutation status was analyzed using linear regression analysis. First,
the regression coefficients of age, adjusted for sex, were calculated
stratified by mutation status. Next, the interaction term
age�mutation status was analyzed using analysis of variance with
mutation status, sex, age and age�mutation status included in the
models. The statistical analyses were conducted using IBM SPSS for
Windows, version 24.

Results

Cohort characteristics

Mutation-positive subjects
The MP cohort comprised 13 subjects (age range 17e76 years)

(Table II, Fig. 2, Online Supplemental Table I). Seven subjects had
had some pain, swelling or stiffness in their finger joints and knee
joints. Two subjects had undergone surgical treatment: a 72-year-
old female (AII-2) a prosthetic surgery on her right hip due to OA
and on her left knee due to secondary OA after severe patellar and
distal femur fracture, and a 76-year-old male (AII-4) a hip pros-
thetic surgery due to OA. Ten of them had received osteoporosis
medication prior to the study and for four subjects the medication
was ongoing throughout the study.

Mutation-negative subjects
The MN cohort comprised 13 subjects (age range 16e77 years)

(Table II, Fig. 2, Online Supplemental Table I). Five had had some



Table II
Demographic characteristics of 13 mutation-positive (MP) and 13 mutation-
negative (MN) subjects with a heterozygous WNT1 mutation p.C218G. Values are
presented as frequencies and medians with ranges

Demographic characteristic MP MN P-value

T2, Texture, Thickness
Total 13 13
Female, n (%) 10 (76.9%) 7 (53.8%) 0.216*
Male, n (%) 3 (23.1%) 6 (46.2%) 0.216*
Age, median (range) [years] 51.0 (17e76) 43.0 (16e77) 0.520y
Park grade, n (%) 0 8 (61.5%) 10 (76.9%)

1 2 (15.4%) 2 (15.4%)
2 2 (15.4%) 0 (0.0%)
3 1 (7.7%) 1 (7.7%)

T1r
Total 12 12
Female, n (%) 10 (83.3%) 7 (58.3%) 0.178*
Male, n (%) 2 (16.7%) 5 (41.7%) 0.178*
Age, median (range) [years] 51.5 (17e76) 42.5 (16e59) 0.125y
Park grade, n (%) 0 7 (58.3%) 10 (83.3%)

1 2 (16.7%) 2 (16.7%)
2 2 (16.7%) 0 (0.0%)
3 1 (8.3%) 0 (0.0%)

MP ¼ Mutation-positive, MN ¼ Mutation-negative.
* Chi-square test (exact sign.).
y ManneWhitney test (exact sign.).
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pain in their joints and two had undergone surgical treatment.
None had received any previous osteoporosis medications.

MRI findings

Two individuals (MP subject aged 19 and MN subject aged 77)
had incomplete T1r maps due to an error during the MR imaging,
and these subjects were left out of the T1r analysis (Table II). Based
on Park scores, visual inspection of the MR images displayed no
clinical difference between the two groups (Table II). Park grade
0 was observed in eight of the thirteen MP subjects (61.5%) and in
ten of the thirteenMN subjects (76.9%), indicating that the majority
Fig. 2. Pedigrees of the two families with a heterozygous WNT1 mutation p.C218G. Squares
negative family members included in the study, and slashes deceased family members. All ge
are numbered with roman numerals.
of subjects in each group had normal knee cartilage on visual
inspection.
Cartilage thickness and T2 and T1r relaxation times
No differences were observed between the MP and MN groups

in cartilage thickness or in T2 values (Online Supplemental Table II).
This suggests that the groups did not differ in signs of cartilage
deterioration, such as hydration, collagen content, or fibril network
orientation.

T1r values, reflective of cartilage quality and sensitive to
glycosaminoglycan content, were significantly higher in the MP
group compared with the MN group in pcFM and cTM region
(Online Supplemental Table II). No association of agewith the qMRI
parameters or with cartilage thickness was found (Online
Supplemental Figs 1 and 2 and Online Supplemental Table III).
Texture analysis
All three T2 texture features, contrast, dissimilarity and homo-

geneity, reflective of OA-related changes, displayed opposing trends
with age between the MP and MN groups in the medial tibiofe-
moral (MTF) cartilage (Figs. 3e5); statistical analysis for the sig-
nificance of the interaction term age�mutation status provided p-
values of 0.020e0.085 (Table III). The MN group seemed to be
affected by age in all texture features (p-values of 0.001e0.153)
(Table III) in the MTF cartilage, indicating a physiological age-
related cartilage degeneration. On the contrary, the MP group
showed no association with age (Table III) in the MTF cartilage,
suggesting that the articular cartilage is not as prone to age-related
cartilage deterioration as in the MN, healthy subjects. In the lateral
tibiofemoral (LTF) cartilage, the two groups behaved in a similar
manner (Figs. 3e5) and showed no statistically significant differ-
ences (Table III). Comparison of means of the texture features did
not reveal statistically significant differences in any of the three
texture features (Online Supplemental Table II).
represent males, circles females, black symbols affected family members, grey symbols
netically tested, unaffected family members are indicated with an asterisk. Generations



Fig. 3. Contrast dependency on subject age for 13 mutation-positive (MP) and 13 mutation-negative (MN) subjects with a heterozygous WNT1 mutation p.C218G. Regression curves
for both groups are displayed. Results are presented separately for different regions of interest: acF ¼ anterior central femur, pcF ¼ posterior central femur, cT ¼ central tibia, in
medial (M) and lateral (L) condyles.
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Discussion

This study describes previously unreported findings of changes
in knee articular cartilage quality in WNT1 mutation positive chil-
dren and adults. We assessed knee joints in 13 WNT1 mutation-
positive subjects from two large Finnish families using MR imag-
ing, systematically reviewed T2 and T1r relaxation times, and
cartilage thickness for possible cartilage damage and early OA-
related changes, and compared their results with a similar cohort
of 13 mutation-negative, healthy subjects from the same two
families. We have previously shown that the WNT1 missense mu-
tation p.C218G impairs WNT signaling and leads to progressive
spinal pathology in the vertebral bodies, cartilaginous vertebral
endplates and in intervertebral discs, among other tissues12,13,51.
The present study, our results show that the MP andMN groups did
not differ in cartilage thickness: neither means nor association of
age with thickness displayed statistically significant differences.
Similar results were observed in T2 relaxation time; means and
association of age with T2 relaxation time were not different be-
tween the groups. We observed a significant difference in the
means of T1r: cTM and pcFM regions showed considerably higher
T1r value in the MP group compared with the MN group. Higher
values may indicate compromised cartilage quality34e38. However,
having to leave two subjects (MP subject aged 19 Park score 0, MN
subject aged 77 Park score 3) out of the T1r analysis due to the
imaging error alters the age distribution and Park scores of the
groups. Although the age difference between the groups in T1r
analysis is not significant (Table II), we speculate that the changes in
the groups’ age distribution and Park scores might explain the
significance in the results of T1r analysis. Furthermore, we did not
observe difference in association of age with T1r relaxation time
between the groups.



Fig. 4. Dissimilarity dependency on subject age for 13 mutation-positive (MP) and 13 mutation-negative (MN) subjects with a heterozygous WNT1 mutation p.C218G. Regression
curves for both groups are displayed. Results are presented separately for different regions of interest: acF ¼ anterior central femur, pcF ¼ posterior central femur, cT ¼ central tibia,
in medial (M) and lateral (L) condyles.
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Texture analysis of T2 maps revealed opposing trends with age
inMTF cartilage in all three texture features. The results for all three
features differed significantly between the groups in five out of nine
ROIs; statistical significance was not detected in all the ROIs
possibly due to limited group sizes. On the contrary, the two groups
had very similar trends on the LTF cartilage. It seems that the MP
group has a different tendency in MTF and LTF compartments
whereas the MN group sets similarly in both MTF and LTF com-
partments. The changes in contrast and homogeneity features in MN
subjects most likely result from cartilage degeneration with age.
This is in line with findings reported in previous studies, which
have shown an increase in contrast feature40,41 and a decrease in
homogeneity feature40 in OA patients as compared with healthy
controls. Moreover, a previous longitudinal study by Baum et al.39

showed an increase over time in contrast feature for healthy sub-
jects with and without OA risk factors in medial femoral cartilage.
However, our MP subjects show significantly opposing behavior in
the MTF cartilage and we therefore speculate that the cartilage
quality in the MP subjects may be superior to that of the MN sub-
jects. Dissimilarity feature supports these findings by revealing
opposing setting of the MP and MN group in the MTF cartilage. We
believe that these differences were only observed in texture fea-
tures because this analysis is more sensitive to local alterations in
cartilage structure, whereas ROI-based T2 relaxation time mea-
surements consider the ROI as a whole and underlying local alter-
ations in relaxation times may be averaged out.

We speculate that our findings can be explained with altered
cartilage turnover and altered WNT signaling in the MP subjects.
Various studies have shown WNT signaling to be crucial in devel-
opment and homeostasis of articular cartilage. In developmental
stages WNT signaling stimulates chondrogenesis, chondrocyte
differentiation and hypertrophy52. However, the effects of WNT



Fig. 5. Homogeneity dependency on subject age for 13 mutation-positive (MP) and 13 mutation-negative (MN) subjects with a heterozygous WNT1 mutation p.C218G. Regression
curves for both groups are displayed. Results are presented separately for different regions of interest: acF ¼ anterior central femur, pcF ¼ posterior central femur, cT ¼ central tibia,
in medial (M) and lateral (L) condyles.
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signaling on adult cartilage are less pronounced and even opposite,
and several prior studies have demonstrated how overactivation of
WNT signaling may induce cartilage damage and contribute to OA
pathology, and that WNT inhibitors may have therapeutic impli-
cations in OA53,54. Experimental overexpression of Wnt8 and
Wnt16 lead to increased protease activity and early OA-like carti-
lage deterioration2, while loss of the WNT inhibitor Sclerostin
promotes OA in mice3. Further, WNT co-receptor LRP5 is up-
regulated in human and experimental OA tissue samples4.

These findings are resonated in our current findings in that
reduced WNT stimulus in mature adult articular cartilage in MP
subjects seems to slow down the cartilage's natural deterioration.
Cartilage deterioration in OA patients is more prevalent in the
medial femoral cartilage, suggesting that the MTF compartment
may be under a higher stress compared with the LTF compartment
in the knee joint55e58. Chondrocytes are responsible for cartilage
homeostasis and they can react to modify cartilage extracellular
matrix to alteredmechanical demands59. The partial suppression of
the WNT signaling in the MP subjects could lead to increased dif-
ferentiation of chondrocytes and enable the cartilage to better
maintain its integrity against mechanical stress. Whether these
findings are similar in other smaller and non-weight-bearing joints
requires further investigation in future studies.

Another explanation for the differences in articular cartilage
between the two groups could be the quality of underlying bone.
MP individuals are known to have reduced bone turnover leading
to a reduced bone mineral density (BMD)12,13. We speculate that
this could lead to a reduced cartilage stress, therefore enabling the
cartilage to maintain its integrity even at older age. We have pre-
viously reported an inverse relation between cartilage and bone
quality, as measured by quantitative MRI parameters60 and similar
findings of inverse relation between OA and osteoporosis have been



Table III
Regression coefficients of age, adjusted for sex, on T2 texture features (contrast, dissimilarity and homogeneity) for 13 mutation-positive (MP) and 13 mutation-negative (MN)
subjects with a heterozygous WNT1 mutation p.C218G

Medial compartment Lateral compartment

Regression coefficient (95% CI) P* Py Regression coefficient (95% CI) P* Py
Contrast
acF
MP �0.0051 (�0.0157, 0.0054) 0.305 0.0107 (�0.0023, 0.0238) 0.096
MN 0.0103 (0.0007, 0.0198) 0.038 0.0161 (0.0049, 0.0272) 0.009
Difference �0.0155 (�0.0283, �0.0027) 0.020 �0.0036 (�0.0194, 0.0122) 0.640

pcF
MP �0.0013 (�0.0119, 0.0094) 0.796 0.0046 (�0.0088, 0.0180) 0.467
MN 0.0108 (0.0048, 0.0168) 0.002 0.0139 (0.0019, 0.0260) 0.028
Difference �0.0141 (�0.0260, �0.0022) 0.022 �0.0096 (�0.0257, 0.0066) 0.230

cT
MP �0.0018 (�0.0112, 0.0077) 0.688 0.0041 (�0.0043, 0.0125) 0.306
MN 0.0082 (�0.0036, 0.0199) 0.153 0.0058 (�0.0044, 0.0160) 0.237
Difference �0.0135 (�0.0288, 0.0018) 0.080 �0.0021 (�0.0139, 0.0096) 0.711

Dissimilarity
acF
MP �0.0014 (�0.0054, 0.0026) 0.462 0.0039 (�0.0001, 0.0078) 0.054
MN 0.0040 (0.0007, 0.0072) 0.022 0.0061 (0.0022, 0.0099) 0.005
Difference �0.0054 (�0.0100, �0.0007) 0.027 �0.0016 (�0.0066, 0.0035) 0.530

pcF
MP �0.0004 (�0.0052, 0.0043) 0.839 0.0020 (�0.0034, 0.0075) 0.424
MN 0.0038 (0.0020, 0.0056) 0.001 0.0047 (�0.0001, 0.0096) 0.055
Difference �0.0050 (�0.0099, 0.0000) 0.048 �0.0027 (�0.0092, 0.0039) 0.407

cT
MP �0.0004 (�0.0035, 0.0026) 0.769 0.0012 (�0.0010, 0.0033) 0.248
MN 0.0031 (�0.0006, 0.0069) 0.095 0.0017 (�0.0015, 0.0048) 0.276
Difference �0.0045 (�0.0092, 0.0002) 0.061 �0.0007 (�0.0041, 0.0027) 0.672

Homogeneity
acF
MP 0.0004 (�0.0011, 0.0018) 0.589 �0.0013 (�0.0025, �0.0001) 0.037
MN �0.0014 (�0.0025, �0.0003) 0.017 �0.0021 (�0.0034, �0.0008) 0.005
Difference 0.0017 (0.0001, 0.0034) 0.036 0.0006 (�0.0010, 0.0022) 0.463

pcF
MP 0.0001 (�0.0017, 0.0020) 0.859 �0.0008 (�0.0027, 0.0012) 0.395
MN �0.0012 (�0.0018, �0.0006) 0.002 �0.0015 (�0.0032, 0.0003) 0.095
Difference 0.0016 (�0.0002, 0.0035) 0.085 0.0007 (�0.0017, 0.0030) 0.572

cT
MP 0.0001 (�0.0009, 0.0011) 0.818 �0.0003 (�0.0010, 0.0003) 0.280
MN �0.0011 (�0.0023, 0.0001) 0.072 �0.0004 (�0.0016, 0.0008) 0.433
Difference 0.0014 (0.0000, 0.0029) 0.056 0.0002 (�0.0010, 0.0014) 0.740

95% CI ¼ 95% confidence interval, MP ¼ mutation-positive, MN ¼ mutation-negative, acF ¼ anterior central femur, pcF ¼ posterior central femur, cT ¼ central tibia.
Number of MP/MN 13/13.

* Significance of the regression coefficient B of age, adjusted for sex, from the models stratified by mutation status.
y Significance of the interaction term age � mutation status.
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observed by other groups as well61. However, not all the MP sub-
jects had low BMD. Furthermore, if the differences were solely
secondary to impaired bone quality in the MP individuals, differ-
ences between the groups would be anticipated also in the LTF
cartilage, indicating that the entire joint rather than only the
medial compartment would benefit from the reduced joint stress.
Our findings therefore suggest that the observed changes are
directly related to the local effects of altered WNT signaling.

Bisphosphonate treatment in some of the MP subjects could
have altered the natural course of cartilage deterioration. The
cartilage preservation potential of bisphosphonates has been sur-
veyed by other groups62e64, but the issue is still underexplored in
humans. An earlier study by Lehmann et al. reported bisphospho-
nates to correlate with urinary concentrations of collagen degra-
dation product CTX-II, reflecting possible chondroprotective
effects65. However, it was concluded that doses required for carti-
lage protection are higher than those in clinical use for osteopo-
rosis. Based on these data it is unlikely that our findings are solely
due to bisphosphonate exposure in the MP group.

Our study has several strengths. The study setting is unique, and
we have controlled for several potential confounders, such as ethnic
and genetic background, age and sex, by recruiting both MP and MN
individuals from the same two Finnish families aiming at matched
age range and sex distribution. Our study presents two main
limitationsdthe relatively small cohort size and the cross-sectional
nature of the study. Due to the limited sample size, we were not
able to test for differences among different age groups in relaxation
times, which are affected by ageing in the articular cartilage66. In
addition, further functional or in vitro experiments using cell lines to
study themolecular effects ofmutatedWNT1on chondrogenesis and
articular cartilage would be highly beneficial but were unfortunately
outside the scope of this study. However, despite these limitations,
and given the rarity of WNT1 mutation-positive individuals, we
consider our results to bring novel information about WNT1-related
OA pathology in humans and detected several significant differences
between the groups in the unique study setting. Furthermore, this is
the first systematic human study in a cohort with a genetic defect in
WNTsignaling pathway indicating that impairedWNTsignalingmay
have important protective effects on articular cartilagedin line with
previous findings from experimental studies.

We conclude that contrary to our hypothesis, this qMRI study on
MP and MN subjects showed that the articular cartilage of the knee
joint in WNT1 mutation-positive subjects was better protected
from age-related deterioration compared with the mutation-
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negative subjects. The mutation-positive individuals with impaired
WNT signaling activity may have altered cartilage turnover sug-
gesting even a potential cartilage-preserving role of the gene
defect. Further studies in larger cohorts, in patients with other
WNT1 mutations and in longitudinal study settings are required to
confirm these findings and to evaluate whether medical therapies
targeting WNT signaling could be used in OA treatment. Additional
functional experiments and in vitro analyses on the effects of
mutatedWNT1 on chondrogenesis and articular cartilage would be
highly enlightening.
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