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Controlling joint instability after anterior cruciate ligament
transection inhibits transforming growth factor-beta-mediated
osteophyte formation
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Objective: Abnormal joint instability contributes to cartilage damage and osteophyte formation. We
investigated whether controlling joint instability inhibited chronic synovial membrane inflammation
and delayed osteophyte formation and examined the role of transforming growth factor-beta (TGF-b)
signaling in the associated mechanism.
Design: Rats (n ¼ 94) underwent anterior cruciate ligament (ACL) transection. Anterior tibial instability
was either controlled (CAM group) or allowed to continue (SHAM group). At 2, 4, and 8 weeks after
surgery, radiologic, histopathologic, immunohistochemical, immunofluorescent, and enzyme-linked
immunosorbent assay examinations were performed to evaluate osteophyte formation and TGF-b
signaling.
Results: Joint instability increased cartilage degeneration score and osteophyte formation, and cell hy-
perplasia and proliferation and synovial thickening were observed in the synovial membrane. Major
findings were increased TGF-b expression and Smad2/3 following TGF-b phosphorylation in synovial
membarene, articular cartilage, and the posterior tibial growth plate (TGF-b expression using ELISA: 4
weeks; P ¼ 0.009, 95% CI [260.1e1340.0]) (p-Smad2/3 expression density: 4 weeks; P ¼ 0.024, 95% CI
[1.67e18.27], 8 weeks; P ¼ 0.034, 95% CI [1.25e25.34]). However, bone morphogenetic protein (BMP)-2
and Smad1/5/8 levels were not difference between the SHAM model and the CAM model.
Conclusions: This study showed that the difference between anterior tibial instability caused a change in
the expression level of TGF in the posterior tibia and synovial membrane, and the reaction might be
consequently involved in osteophyte formation.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Mechanical stress is one of the most important factors in the
progression of osteoarthritis (OA)1. However, the effect of
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mechanical stress on molecular responses remains unclear. Our
previous studies have shown that abnormal joint kinematics is an
important mechanical stress factor2 and that joint instability in-
duces degeneration in the articular cartilage3. Consistent with
this, clinical studies suggest that self-reported knee instability
during the stance phase of gait is associated with significant OA
progression4,5. Moreover, some patients with OA demonstrate a
lateral thrust during walking, and valgus thrust is a major
biomechanical risk factor for OA progression6e8. Therefore,
abnormal joint kinematics and load-induced joint instability
might be deeply connected with OA progression, including
osteophyte formation and synovitis, in both animal models and
humans.
td. All rights reserved.
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Although osteophytes may help improve instability, osteophyte
formation is a clinical characteristic of OA progression. The bone
formation changes in osteophyte formation are related to the mo-
lecular mechanism of endochondral ossification due to mechanical
stress9. In recent studies, osteophyte formation has been associated
with abnormal mechanical forces that progress in lateral thrust and
joint instability conditions andmalposition of themeniscus, such as
that observed in early OA10e12. Moreover, osteophytes exposed to
abnormal mechanical stress cause micro-fractures, and the cata-
bolic molecular response causes further progression of OA-related
changes13. In particular, the molecular response associated with
transforming growth factor-beta (TGF-b)/bone morphogenetic
protein (BMP) expression can induce osteophytes14e16. As a
representative example, the signaling pathway induced by TGF-b/
BMP includes both Smad-dependent pathway and p38 mitogen-
activated protein kinase pathway. Smad signaling in osteophyte
formation involves a complex cascade, that is, switching from TGF-
b-anaplastic lymphoma kinase (ALK) 5-Smad2/3 signaling to BMP-
ALK1-Smad1/5/8 signaling contributes to osteophyte formation
and OA pathogenesis17e19. The joint structure that plays an
important role in these processes is the synovial membrane, and
increased nutrients and angiogenesis from the synovial membrane
are biological reactions essential for osteophyte formation and
endochondral ossification20,21.

In both humans and animals, osteophytes may develop as a
molecular response to joint instability induced by age-related varus
or valgus deformities, or abnormal joint mobility after a knee
injury. Therefore, some joint instability factors and osteophyte
molecular responses might be closely related. We previously
developed a novel model for controlled abnormal joint movement,
in which the anterior tibia instability induced by an anterior cru-
ciate ligament (ACL) injury was limited using a tightly tied nylon
thread22. In the traditional ACL tear model, it is unclear whether
continued mechanical stress or molecular responses affect OA
progression. However, the use of our novel model renders it
possible to more clearly evaluate the relationship between joint
instability and osteophyte molecular responses in the knee. We
found that controlled joint instability inhibited cartilage degener-
ation and osteophyte formation and suppressed cytokinemediators
(e.g., tumor necrosis factor-a and IL-1b) compared to that for
continued joint instability. However, detailed changes associated
with the relationship between mechanical stress and molecular
responses in the synovial membrane, such as those for TGF-b or
BMP, are unknown.

In the present study, we evaluated osteophyte progression,
osteophyte formation, and cartilage degeneration in the synovial
membrane of rats using a widely studied induced instability model
of OA and our novel controlled anterior tibial instability (CAM)
model. A biochemical analysis was performed to examine the
molecular responses in the synovial membrane. We hypothesized
that abnormal joint instability, such as those induced by an ACL
injury, induce cartilage degeneration and osteophyte formation,
and that the osteophyte molecular responses induced by TGF-b-
Smad2/3 and BMP-2-Smad1/5 signaling would differ between the
evaluated models.

Methods

Animals

Ninety-four 11-week-old Wistar rats (Clea Japan, Tokyo, Japan;
weight, 239.3 ± 31.5 g) were randomly assigned to two groups
[Fig. 1(A)]. The controlled anterior tibial instability group (CAM)
underwent restoration of knee joint kinematics after ACL surgical
transection (the anterior tibial joint instability was limited). In the
continued anterior tibial instability group (SHAM), the anterior
tibial joint instability was induced via traditional ACL surgical
transection. After surgery, all rats were housed (2 per cage) and
maintained in a roomwith a 12-hour lightedark cycle and had free
access to food and tap water. All procedures were approved by the
Ethics Committee of Saitama Prefectural University (approval
number: 29-3). In addition, the novel protocol was devised in
accordance with the Animal Research: Reporting of in Vivo Exper-
iments guidelines.

Surgical procedures

The surgical procedures were as described in our previous study
[Fig. 1(B) and (C)]23. Under a combination anesthetic (medetomi-
dine, 0.375 mg/kg; midazolam, 2.0 mg/kg; and butorphanol,
2.5 mg/kg), the medial capsule of the right knee joint was exposed,
without disruption of the patellar tendon, and the ACL was
completely transected in both groups. After anterior tibial joint
instability was confirmed, both groups underwent the creation of a
bone tunnel along the anterior aspect of the proximal tibia, through
which a 4-0 nylon thread was passed and tied to the posterior
aspect of the distal femur. In the CAM group, the thread was tied
tightly, dampening with abnormal joint movement without intra-
articular suturing of the ligament (as performed in ACL recon-
struction). In contrast, the nylon thread was not tightly tied in the
SHAM group, and anterior tibial joint instability remained.

Radiographic evaluation of joint instability

To analyze cartilage degeneration, synovial membrane
inflammation, and osteophyte formation, sections of the knee
were taken at 4 (n ¼ 12) and 8 (n ¼ 13) weeks. In accordance with
our previous study2, joint instability was evaluated by anterior
traction, using a constant force spring (0.2 kgf), and soft X-ray
radiography (M-60; Softex Co., Tokyo, Japan). Soft X-ray radiog-
raphy was performed at 28 kV and 1 mA for 1 s and was imaged
using a NAOMI digital X-ray sensor (RF Co. Ltd., Nagano, Japan).
Knee joints were graded from 0 to 4 using our original joint
instability score for OA: grade 0, normal contact between the tibia
and femur; grade 1 (mild instability), malpositioned meniscus;
grade 2 (minimal instability), tibia and femur contact with one-
third dehiscence; grade 3 (moderate instability), tibia and femur
contact with two-thirds dehiscence; and grade 4 (severe insta-
bility), tibia and femur have complete dehiscence. Joint instability
was evaluated by two of the authors (Y.O. and T.K.) who were
blinded to all other sample information.

At 8 weeks after surgery, the limbs were dissected free of all soft
tissues and positioned with 90� flexion at the knee joint to assess
OA-related changes. In accordance with our previous study, the
frontal and sagittal radiographs were obtained and evaluated by
the two authors (T.K. and Y.O.) who were blinded to all other
sample information10,24.

Histological examination

To analyze cartilage degeneration, synovial membrane inflam-
mation, and osteophyte formation, sections of the knee were ob-
tained at 4 weeks (n¼ 12) and 8 weeks (n¼ 13). The kneewas fixed
in 4% paraformaldehyde for 2 days, and the samples were decal-
cified in a 10% EDTA-based solution (SigmaeAldrich, St. Louis, MO,
USA) for 40 days. The samples were then embedded in an optimal
cutting temperature compound (Sakura FineTek Japan, Tokyo,
Japan). The specimens were cut in the sagittal plane (16 mm
thickness) using a Leica CM 3050 S cryostat (Leica Microsystems
AG, Wetzlar, Germany) and stained with hematoxylin and eosin.



Fig. 1. (A) Study design and timing of the analyses. (B) Schematic representation of the surgical procedure. (C) Surgical protocols for the controlled abnormal joint instability model
(CAM group) and continued joint instability model (SHAM group). The models use the same protocol for procedures (a)e(d), but differ in the final procedure (e). Under anesthesia,
the right knee joint is exposed via the medial capsule, and the anterior cruciate ligament (ACL) is completely transected (a). After joint instability confirmation, a bone tunnel is
created in the anterior portion of the proximal tibia (b). Subsequently, a nylon thread is passed through the tunnel (c) and secured to the posterior aspect of the distal femur (d). To
mitigate anterior translation of the tibia on the femur in the CAM group, the nylon thread is placed in the same orientation as the native ACL, providing a posteriorly directed
traction force on the tibia that resists anterior motion over the condyles of the femur. In the SHAMmodel, the 3-0 nylon is loosely tied; therefore, the two models represent different
joint instability. F: femur. T: tibia.

K. Murata et al. / Osteoarthritis and Cartilage 27 (2019) 1185e1196 1187
Cartilage degeneration was scored using the Mankin system, sy-
novial membrane inflammationwas scored using the Osteoarthritis
Research Society International (OARSI) scoring system25, and
osteophyte formation was scored as in the study by Little et al.27.
Histological examination was evaluated by two of the authors (Y.O.
and T.K.) who were blinded to all other sample information (Sup-
plementary material and methods.).
Immunohistochemical examination

TGF-b, BMP-2, type II collagen, and type I collagen were visu-
alized using the streptavidin-biotin-peroxidase complex technique
and semi-quantified as in the study by Santangelo et al.26. For de-
tails, see Supplementary material and methods.
Immunofluorescence examination

In immunofluorescence examination, the sections were incu-
bated overnight at 4�C with rabbit monoclonal anti-p-Smad2/3
antibody (dilution 1:100; #8828, Cell Signaling Technology
Japan, Tokyo, Japan) and anti-p-Smad1/5 antibody (dilution
1:200; #9516, Cell Signaling Technology Japan, Tokyo, Japan).
Then, they were incubated with goat anti-rabbit-Dylight 488
(dilution 1:200) and counterstained with DAPI (Vector Labora-
tories, CA, USA). Samples were observed under a BZ-X700 mi-
croscope (Keyence, Tokyo, Japan). Immunofluorescent expression
density was evaluated for p-Smad2/3 and p-Smad1/5 and quan-
tified using Image J software.
Enzyme-linked immunosorbent assays

At 2, 4, and 8 weeks (n ¼ 30, n ¼ 5 in each group/time point),
total protein samples were prepared by homogenizing the synovial
membrane tissue, excluding the meniscus and bone tissue, in a
tissue protein extraction reagent (T-PER, Thermo Fisher Scientific,
Kanagawa, Japan) containing a protease inhibitor cocktail (Thermo
Fisher Scientific). Protein concentrations were determined by using
the bicinchoninic acid protein method (Thermo Fisher Scientific).
Thereafter, the protein levels of TGF-b (88-50680-22, Thermo
Fisher Scientific) and BMP-2 (ab213900, Abcam) were evaluated
using Enzyme-linked immunosorbent assay (ELISA) kits in accor-
dance with the manufacturer's instructions.

Statistical analyses

Data were analyzed using SPSS version 25.0 (IBM Japan, Tokyo,
Japan) or using R software version 3.5.2. Data were tested for
normality and homogeneity using the ShapiroeWilk test and Lev-
ene's test, respectively. For data including time series (2, 4, and 8
weeks), a two-way analysis of variance (ANOVA) or nonparametric
two-way ANOVA28 using the art function in the ARTool package for
R according to normality test was used to determine the significant
effects of time and surgery (CAM and SHAM) for each parameter.
Contrasts were constructed to test for the main effects of grouping
(CAM vs SHAM), time (2weeks, 4 weeks and 8 weeks) and their
interaction. In the parametric two-way ANOVA, post-hoc test used
was the Tukey test or GameseHowell test according to the homo-
geneity test. In the nonparametric two-way ANOVA,
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ManneWhitney U test with Bonferroni-Holm correction was used
as a posteriori test. In osteophytes soft X-ray score, the
ManneWhitney U test was used to determine differences in
osteophyte formation between the CAM and SHAM groups in 8
weeks. Osteophytes histological score was used Welch's test for
compare of two group. Parametric data are presented as mean (95%
confidence interval: CI), and nonparametric data are presented as
median with interquartile ranges [IQR]. Values of P < 0.05 were
considered statistically significant.

Results

Joint instability analysis

Joint instability data are shown in Fig. 2(A) and (B). The anterior
joint instability scorewas significantly lower in the CAM group than
in the SHAM group at 2 weeks (CAM, 1 [range, 0e1]; SHAM, 2.25
[range, 2e3]; P ¼ 0.005) and 4 weeks after surgery (CAM, 0 [range,
0e0.75]; SHAM, 1.25 [range, 1e1.5]; P ¼ 0.008) [Fig. 2(B)].

Cartilage degeneration and TGF-b and BMP-2 expression in tibial
cartilage

The results of the OA analysis are presented in Fig. 3. Cartilage
deteriorationwas observed in the SHAM group at 4 and 8 weeks; in
addition to surface fibrillation, cluster cells and cell-free cartilage
were observed, with confirmed subchondral bone infiltration. The
histological Mankin scores for the knee were significantly higher in
the SHAM group than in the CAM group at 4 weeks (33 [30e35] vs
14 [9.5e15.5]; P ¼ 0.015) and 8 weeks after surgery (48 [42e51] vs
26 [21e31]; P ¼ 0.001).

Representative TGF-b immunostaining of the tibial cartilage is
shown in Fig. 3(C) TGF-b expression was significantly higher in the
Fig. 2. Joint instability evaluation after surgery. (A) Soft radiographic images for joint instab
the tibia is increased in the SHAM group than in the CAM group. (B) There was a significant
way analysis of variance (ANOVA)). At 2 weeks and 4 weeks, the CAM group has significantly
weeks, P ¼ 0.008; post-hoc ManneWhitney U test with Bonferroni-Holm correction); how
weeks after surgery (P ¼ 0.534; post-hoc ManneWhitney U test with Bonferroni-Holm corre
T.K.) was 0.695. Boxplots show boxes extending from the 25th and 75th percentiles containi
<0.05, y <0.01.
SHAM group than in the CAM group at 4 weeks (14.3 [10.2e18.3] %
vs 6.4 [4.8e8.0]%; P ¼ 0.004, 95% CI [2.44e13.29]). At 8 weeks, the
area of positive staining in a predetermined rectangular area was
not significantly higher in the SHAM group than in the CAM group
(10.0 [5.8e14.2] % vs 6.5 [4.6e8.5]%; P ¼ 0.445, 95% CI
[�2.49e9.37]). In contrast, no significant difference in BMP-2
expression was noted between the two groups (4 weeks: CAM,
9.1 [6.5e11.7]%; SHAM, 9.6 [6.9e12.4]%; 8 weeks: CAM, 8.5
[7.1e9.9]%; SHAM, 10.7 [8.4e13.1]%) (Two-way ANOVA main effect;
time: P ¼ 0.858, group: P ¼ 0.300, interaction: P ¼ 0.505).
Synovial membrane inflammation score

Microscopic features of the synovial membrane in both groups
are shown in Fig. 4. The CAM group had a low number of cell layers
and inhibited synovial tissue proliferation compared to those in the
SHAM group from 4 to 8 weeks. However, the SHAM group showed
tissue thickening, more cell layers, and infiltration of inflammatory
cells at 4 weeks; however, the scores of inflammatory findings were
not significantly difference at 4 weeks and 8 weeks between the
SHAM group and the CAM group (4 weeks: CAM, 1.5 [1e2]; SHAM,
2 [1.5e2.5]; 8 weeks: CAM, 2 [2e3]; SHAM, 4 [3e4]) (4 weeks,
P ¼ 0.093; 8weeks, P ¼ 0.138; post-hoc ManneWhitney U test with
Bonferroni-Holm correction).

Chronic synovitis is a finding of OA, with characteristic TGF-b
expression. The characteristics of TGF-b immunohistochemical
staining were remarkable. At 4 weeks, the thickened synoviumwas
darkly stained and was especially characteristic at the margin
where cell infiltration occurred; however, no significant difference
was found in the scores between CAM and SHAM groups (4 weeks:
CAM,1.5 [1e2]; SHAM, 2.5 [2e3]; 8 weeks: CAM,1.5 [1e3]; SHAM, 2
[2e3]) (time; P ¼ 0.819, group; P ¼ 0.050, interaction; P ¼ 0.819:
non-parametric two-way ANOVA). The expression of TGF-b was
ility (sagittal view) evaluated at 2, 4, and 8 weeks after surgery. Anterior translation of
main effect for time and group (time: P ¼ 0.037, group: P < 0.001; non-parametric two-
inhibited anterior tibial instability compared to the SHAM group (2 weeks, P ¼ 0.005; 4
ever no significant difference was observed between the SHAM and CAM groups at 8
ction). The kappa coefficient reliability of the two evaluators of joint instability (Y.O. and
ng the median, with error bars down to the minimum and up to the maximum value. *



Fig. 3. Controlled abnormal joint movement delayed cartilage degeneration. (A) Histological sections of the cartilage stained with Mayer's hematoxylin and eosin. White ar-
rowheads indicate cartilage pannus and fabrication of the cartilage surface. Black arrowheads indicate cartilage cell proliferation and/or cluster cells. (B) Mankin scores for his-
tological osteoarthritic findings. The CAM group (controlled joint instability model) shows significantly lower score than the SHAM group (continued joint instability model) for the
tibia (4 weeks, P ¼ 0.015; 8 weeks, P ¼ 0.001; post-hoc ManneWhitney U test with Bonferroni-Holm correction). Boxplots show boxes extending from the 25th and 75th percentiles
containing the median, with error bars down to the minimum and up to the maximum value. (C) The CAM section shows decreased TGF-b, bone morphogenetic protein (BMP)-2,
and collagen type 2 and type 1 for positive control in the articular cartilage compared to that in the SHAM section at 8 weeks after surgery. In TGF-b, the semi-quantitative score for
the tibia is significantly higher in the SHAM group than in the CAM group at 4 weeks (4 weeks, P ¼ 0.004; post-hoc GameseHowell test); however no significant difference was
observed between the SHAM and CAM groups at 8 weeks after surgery (P ¼ 0.445; post-hoc GameseHowell test). Data are presented as means and 95% CIs. FA, femur anterior; FP,
femur posterior; TA, tibia anterior; TP, tibia posterior; * <0.05, y <0.01.
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higher in the cell-infiltrated area than in the non-infiltrated area, in
contrast to that observed on hematoxylin and eosin staining. BMP-2
expression was not significant between the two groups at 4 and 8
weeks (4 weeks: CAM,1.5 [1e2]; SHAM, 2.5 [2e3]; 8 weeks: CAM,1
[1-1]; SHAM, 1 [1e2]) (time; P ¼ 0.149, group; P ¼ 0.109, interac-
tion; P ¼ 0.343: non-parametric two-way ANOVA).
TGF-b and BMP protein expression using ELISA

Fig. 5 shows the TGF-b and BMP-2 protein expression values
obtained from the synovial membrane samples. The group differ-
ence at 8 weeks after surgery was not statistically significant (8
weeks: CAM, 811.9 [670.6e953.2] pg/mL; SHAM, 585.3
[396.2e774.4] pg/mL; P ¼ 0.131, 95% CI [�84.0e537.1]). At 2 weeks
after surgery, TGF-b expression in the synovium was significantly
increased in the CAM group than in the SHAM group (2 weeks:
CAM, 3177.0 [2589.3e3764.7] pg/mL; SHAM, 2131.4
[1623.0e2639.8] pg/mL; P ¼ 0.046, 95% CI [23.4e2067.7]).; how-
ever, 4 weeks after surgery, TGF-b expression in the synovium was
significantly decreased in the CAM group than in the SHAM group
(4 weeks: CAM, 868.9 [696.9e1040.9] pg/mL; SHAM, 1668.9
[1296.2e2041.7] pg/mL; P ¼ 0.009, 95% CI [260.1e1340.0]). The
BMP expression has no statistically significant difference between
the CAM and SHAM groups at 2, 4, and 8 weeks after surgery (2
weeks: CAM, 62.6 [44.3e80.9] pg/mL; SHAM,107.6 [57.8e157.4] pg/
mL) (4 weeks: CAM, 58.4 [41.8e74.9] pg/mL; SHAM, 51.0
[39.7e62.2] pg/mL) (8 weeks: CAM, 43.4 [32.3e54.4] pg/mL;
SHAM, 52.4 [47.8e57.1] pg/mL]) (Two-way ANOVA main effect:
time; P ¼ 0.190, group; P ¼ 0.231, interaction; P ¼ 0.149).
Osteophyte radiographic and histological examinations

On radiographic assessment, knee features were mostly cate-
gorized as grade 2 or 3 at 8 weeks after surgery [Fig. 6(A)]. Grading
scale scores were significantly higher in the SHAM group than in
the CAM group (1.5 [1e2] vs 0.5 [0e0.5]; P¼ 0.009). The osteophyte
score [Fig. 6(B)] was significantly lower in the CAM group than in
the SHAM group at 8 weeks after surgery (total: CAM, 6.0 [4.4e7.6];
SHAM, 12.3 [11.3e13.3]; P < 0.001, 95% CI [3.67e8.52]). Sub score
was also statistically significant difference in size and maturity



Fig. 4. Controlled abnormal joint movement shows inhibited synovial membrane inflammation and synovial thickening, TGF-b and BMP-2 IHC staining. (A) Histological sections of
the synovial membrane stained using Mayer's hematoxylin and eosin. (B) The histological synovial inflammation scores and IHC staining scores were indicated. There was a
significant main effect for group (P ¼ 0.012; non-parametric two-way ANOVA); however no significant difference was observed between the SHAM and CAM groups at 4 weeks and
8 weeks after surgery (4 weeks, P ¼ 0.093; 8weeks, P ¼ 0.138; post-hoc ManneWhitney U test with Bonferroni-Holm correction). TGF-b scores were not significantly higher in the
CAM model than in the SHAM model (time, P ¼ 0.819; group, P ¼ 0.050; interaction, P ¼ 0.819; non-parametric two-way ANOVA). BMP-2 expression was not significant difference
between the two groups at 4 weeks and 8 weeks (time, P ¼ 0.149; group, P ¼ 0.109; interaction, P ¼ 0.343; non-parametric two-way ANOVA). Boxplots show boxes extending from
the 25th and 75th percentiles containing the median, with error bars down to the minimum and up to the maximum value. HE, hematoxylin and eosin; MM, medial meniscus; TGF-
b, transforming growth factor-beta.
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between the two groups (maturity: CAM, 2.17 [1.62e2.72]; SHAM,
5.14 [4.4e5.9]; P < 0.001, 95% CI [1.67e4.13]) (size: CAM, 3.83
[2.8e4.9]; SHAM, 7.1 [6.3e8.0]; P ¼ 0.001, 95% CI [1.45e4.92]).

Smad2/3 expression on immunofluorescence analysis

P-Smad2/3 and P-Smad1/5 expression in the cartilage meta-
plasia area was increased to a greater extent in the SHAM group
than in the CAM group [Fig. 7(A)], consistent with the pattern of
results for TGF-b staining. P-Smad2/3 density was markedly upre-
gulated in the SHAM group than in the CAM group at 4 weeks
(CAM, 16.1 [12.1e20.0]%; SHAM, 26.9 [22.2e31.5]%; P ¼ 0.024, 95%
CI [1.67e18.27]) and 8 weeks after surgery (CAM,17.6 [10.8e24.4]%;
SHAM, 33.7 [27.8e39.6]%; P ¼ 0.034, 95% CI [1.25e25.34]). P-
Smad1/5 density was not significantly upregulated in the SHAM
group than in the CAM group at 4 weeks and 8 weeks (4weeks: 21.3
[13.7e29.0]% vs 17.3 [12.5e23.2]%; P ¼ 0.471, 8weeks: CAM, 15.1
[8.4e21.8]%; SHAM, 24.8 [17.7e31.9]%; P ¼ 0.136).



Fig. 5. ELISA results for TGF-b and BMP-2 expression levels in the synovial membrane. At 2 weeks after surgery, TGF-b levels are lower in the SHAM group than in the CAM group
(n ¼ 5 in each group; 2 weeks, P ¼ 0.046); however, at 4 weeks after surgery, TGF-b levels are lower in the CAM group than in the SHAM group (n ¼ 5 in each group; 4 weeks,
P ¼ 0.009). At 8 weeks after surgery no difference was found between the SHAM and CAM groups (n ¼ 5 in each group; 8 weeks, P ¼ 0.131). For BMP-2 levels, the groups show no
significant difference at any time point (time, P ¼ 0.190; group, P ¼ 0.231, interaction, P ¼ 0.149; two-way ANOVA). Data are presented as means and 95% CIs. BMP-2, BMP; CI,
confidence interval; TGF-b, transforming growth factor-beta.

Fig. 6. Controlled abnormal joint movement inhibits osteophyte formation. (A) Soft radiographic images of osteophyte formation (frontal view) in the CAM and SHAM groups at 8
weeks after surgery. The semi-quantitative scores show significant increase in the SHAM group than in the CAM group (8 weeks, P ¼ 0.009; ManneWhitney U test). Boxplots show
boxes extending from the 25th and 75th percentiles containing the median, with error bars down to the minimum and up to the maximum value. (B) Histological sections of the
tibia posterior stained using Safranin O/fast green stains. Black arrowheads indicate chondroid metaplasia and osteophyte formation in the posterior tibia. Histological osteophyte
formation scores. The CAM group shows significantly inhibited osteophyte size score and total score compared to those in the SHAM group (size score, P ¼ 0.002; mature score,
P < 0.001; total score, P < 0.001; Welch's t test). Data are presented as means and 95% CIs.
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Fig. 7. Controlled abnormal joint movement inhibits p-Smad2/3 expression in cartilage metaplasia. (A) Immunofluorescence sections for anti-p-Smad2/3 and TGF-b, anti-p-Smad1/
5/8 and BMP-2. The square area indicates the overexpression of p-Smad2/3 in cartilage metaplasia. TGF-b is also expressed in the same area. (B) Immunofluorescent density scores
for p-Smad2/3, p-Smad1/5, and the nucleus. The CAM group has a significantly inhibited cartilage metaplasia score compared to that in the SHAM group at 4 and 8 weeks after
surgery (4 weeks, P ¼ 0.024; 8 weeks, P ¼ 0.034; post-hoc Tukey test). p-Smad1/5 was markedly upregulated in the SHAM group than in the CAM group (4 weeks, P ¼ 0.471; 8
weeks, P ¼ 0.135; post-hoc Tukey test) and 8 weeks after surgery. Data are presented as means and 95% CIs. CI, confidence interval; TGF-b, transforming growth factor-beta.
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Fig. 8. Transforming growth factor-beta family and joint instability strategy for oste-
oarthritis cartilage and osteophyte formation.
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Discussion

We investigated TGF-b and BMP-2 signaling in two different
joint instability models reflecting different aspects of human OA.
Controlling joint instability after ACL injury decreased TGF-b1 and
Smad2/3 expression and inhibited synovial cell hyperplasia and
proliferation in the long term. As a result, osteophyte formation and
cartilage degeneration were inhibited in the knee joint.

Experimental knee OA model based on the generation of joint
instability (induced by ACL transection) shares some important
features with human OA, including the development of osteophytes
and cartilage erosions. In particular, cartilage degeneration and
osteophyte formation, induced by mechanical stress, are important
features common to human OA and experimental OA in animals.
Furthermore, the conversion of appropriate mechanical stress to
biochemical responses is an important factor for maintaining
cartilage structure, function, and cells. However, excessive me-
chanical stress results in the deterioration in the homeostasis of
various tissues and triggers cartilage degeneration, chondrophyte/
osteophyte formation, and sclerosis of the subchondral bone in the
knee joint. In previous studies, joint instability29, varus thrust
during ambulation30,31, and cartilage overload and trauma32,33 have
been reported as the main mechanical stress factors in OA. We
believe that controlling mechanical stress can contribute to OA
prevention. The knee joint, which is anatomically an unstable bone
structure, maintains stability via the ligament and meniscus.
Therefore, the destabilization of the medial meniscus34 model and
the ACL transection model35 are common OA models induced by
joint instability, and the models promote osteophyte formation, as
well as cartilage degeneration36. Therefore, we hypothesized that
this abnormal mechanical stress was involved in the instability of
the joints.

We focused on knee instability and developed a model to con-
trol the instability of the joint after injury to the ligament. Using the
model, our previous study was able to demonstrate suppression of
degeneration of the cartilage and promotion of ACL repair in
rats2,22. The joint kinematics maintains the appropriate mobility
and stability during movements, such as rolling and sliding37.
Repeated abnormal joint movements, leading to arthritis and pain,
are common clinical responses of joint instability due to damage or
structural abnormalities present in large joints, such as the knee,
shoulder, and hip joints. Although the patients with knee OA
symptoms report joint instability, joint mechanics in OA patients
resembled those in stable OA patients38. Therefore, this might
indicate that more detailed intra-articular joint movements and
contact mechanics might lead to altered joint contact stresses and
cause articular cartilage damage. Histological analysis of our data
revealed more pronounced changes, such as cartilage degeneration
and osteophyte formation, between the two groups due to joint
instability.

Osteophyte formation induced by endochondral ossification is
necessary for various molecular mechanisms caused bymechanical
stress. The synovial membrane, located at the margin of the joint, is
an important tissue in osteophyte formation in knee OA, because it
contributes to vascular supply necessary for bone formation. The
histological pattern of the synovium in patients with OA is char-
acterized by the proliferation of synovial tissue, infiltration of
fibrosis and macrophages, and hyperplasia of the lining. Macro-
phages in the synovial membrane increase the production of in-
flammatory mediators and immune cells after increasing
angiogenesis. A vicious cycle follows as tissues produce additional
cytokines and proteolytic enzymes that further induce synovial
inflammation and eventually increase cartilage degradation.
Therefore, chronic inflammatory findings in synovial membranes
have various roles, such as angiogenesis and expression of pain.
As a molecular response example, expression of TGF super-
family in the synovial membrane is greatly involved in osteophyte
formation and includes TGF-b1 and BMP-2. These factors play an
important role in cell proliferation, differentiation, and apoptosis
control39. TGF-b1 and BMP-2 in the cartilage and synovial mem-
brane were reported to promote the formation of osteochondral
bone, suggesting that factors are involved in osteophyte formation
in OA40. Several reports have promoted the formation of osteo-
phytes by injecting TGF in the joints41; therefore, TGF-b1 is a main
factor for osteophyte formation. In addition, TGF-b and BMP-2 bind
to the receptor, such ALK-1 or ALK-5, and phosphorylate the Smad
protein present in cells to transmit signals21. Specifically, in the
TGF-b/activin pathway, TGF-b binds to the receptor ALK-1, and
signaling is initiated by the phosphorylation of Smad2/3. In
contrast, BMP-2 binds to the receptor ALK-5, and signaling is
initiated by the phosphorylation of Smad1/5. In the present study,
the early control of joint instability suppressed the thickening of
the synovial tissue and delayed the invasion of the synovial cells.
Moreover, the change in mechanical stress clearly altered the
biochemical responses of TGF-b or Smad2/3 at 4 weeks' time point.
However, BMP-2 and Smad1/5/8 levels were not difference be-
tween the SHAM model and the CAM model. This indicated that
early control of joint instability inhibited the signaling pathway of
bone formation associated in TGF-b (Fig. 8).

The relation between mechanical stress and osteophyte is
induced by the accumulated mechanical stress, but information
about the underlying molecular mechanism is limited. Kawaguchi
et al. showed that the internal ossification process found in the
growth plate cartilage, such as hypertrophic differentiation/
apoptosis of chondrocytes, is induced by mechanical stress. At the
joint margin where the blood vessels can invade the synovium,
intra-cartilage ossification occurs, and osteophytes are formed.
Although there are many unclear points about the specific type of
mechanical stress, the relevance of joint instability and osteophytes
has been reported. A mechanical stimulus possibly caused by joint
instability has been converted to a biochemical signal causing
endochondral ossification. Since their bone spurs proliferate in
response to experimentally induced instability, their formation can
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be seen as mechanical adaptability (restoring stability) rather than
degeneration. In particular instances, osteophytes contribute to
joint stability, although they may restrict the range of motion.

The present study has some limitations that should be
acknowledged. The restoration of natural joint kinematics requires
the static articulation of joint instability. The use of an experimental
OA rat model implies a small size; thus, changes in the dynamic
joint kinematics (including tibial rotation) following ACL transec-
tion could not be accurately evaluated. It is not easy to accurately
and mechanically measure this dynamic instability, and it is diffi-
cult to define normalization/abnormality of joint movement. Ro-
dent models have become popular for assessing the consequences
of OA42. Our biomechanics group is working on the ability to
evaluate dynamic instability; however, additional time is necessary.
Gait analyses might be included in our next animal study. Second,
in this study, ACL transection and CAM surgery were done at the
same time. In humans, ACL injury and repair are separated by
several weeks, and the repair surgery is a “second insult” on the
joint. In this respect, there might be considerable differences be-
tween the animal model and the human condition. Third, in this
study, we have not verified ALK (activin-like kinase) 2, ALK 3, ALK 6
as type I receptor (ALK 5) activated by binding with TGF-b, and type
I receptor of BMP. ALK phosphorylates the Smad protein and has an
important function of transmitting a signal into the cell. Therefore,
in this study, the quantitative change in TGF and BMP and the
complicated process in the change in ALK are insufficient.

Importantly, this study showed that the difference between the
anterior tibial instability causes a change in the expression level of
TGF in the posterior growth plate and synovial membrane, and the
reaction might be consequently involved in osteophyte formation
(Fig. 8). Clinically, bone formation is a general characteristic of OA.
Although advanced OA changes accompany severe osteophyte
formation, it is only one of the responses in basic OA progression.
Considering that joint instability (as lateral thrust) promotes
cartilage degeneration and many patients with OA present with
joint anxiety, the formation of osteophytes may be favorable for the
instability. However, an increase in osteophytes is an indicator of
OA progression in knee joint inflammation, accompanied by fine
fractures in the KellgreneLawrence classification system, and it can
be considered an abnormal change. Future studies must determine
the need for suppression of osteophyte formation.
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