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Characterization of synovial fluid metabolomic phenotypes of
cartilage morphological changes associated with osteoarthritis
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Objective: Osteoarthritis (OA) is a multifactorial disease with etiological heterogeneity. The objective of
this study was to classify OA subgroups by generating metabolomic phenotypes from human synovial
fluid.
Design: Post mortem synovial fluids (n ¼ 75) were analyzed by high performance-liquid chromatography
mass spectrometry (LC-MS) to measure changes in the global metabolome. Comparisons of healthy
(grade 0), early OA (grades I-II), and late OA (grades III-IV) donor populations were considered to reveal
phenotypes throughout disease progression.
Results: Global metabolomic profiles in synovial fluid were distinct between healthy, early OA, and late
OA donors. Pathways differentially activated among these groups included structural deterioration,
glycerophospholipid metabolism, inflammation, central energy metabolism, oxidative stress, and
vitamin metabolism. Within disease states (early and late OA), subgroups of donors revealed distinct
phenotypes. Synovial fluid metabolomic phenotypes exhibited increased inflammation (early and late
OA), oxidative stress (late OA), or structural deterioration (early and late OA) in the synovial fluid.
Conclusion: These results revealed distinct metabolic phenotypes in human synovial fluid, provide
insight into pathogenesis, represent novel biomarkers, and can move toward developing personalized
interventions for subgroups of OA patients.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Osteoarthritis (OA) affects over 250 million individuals world-
wide and is associated with an annual economic burden of at least
$89.1 billion1. OA is the most common joint disease characterized
by pain and loss of function resulting from the breakdown of the
articular cartilage2. Pathologically, OA joints exhibit cartilage
damage, osteophyte formation, subchondral bone sclerosis, and
varying degrees of synovitis3. Altered joint metabolism, inflam-
mation, increased joint loading, joint injury, and other factors
contribute to the development of OA4e8.
o: R.K. June, Montana State
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This multifactorial nature of OA contributes to a broad variation
in presentation of symptoms, progression of disease, and response
to treatments. In addition to the multiple contributing factors, the
trajectory of OA prognosis is highly variable. Some patients rapidly
progress into severe stages of disease, whereas others remain
relatively stable for decades9e12. Similarly, the perception of pain is
also variable, with some patients experiencing minimal pain
despite obvious joint space narrowing and others experiencing
extreme pain with minimal joint space narrowing. OA was recently
described as having multiple phenotypes in which subsets of dis-
ease characteristics drive differences between subgroups of pa-
tients with distinct OA outcomes8. However, more data are needed
to define these phenotypes. In this study, we find metabolomic
phenotypes of synovial fluid from patients with cartilage
morphological changes associated with OA.

OA heterogeneity poses many challenges for understanding
pathogenesis, facilitating diagnosis and therapeutic
td. All rights reserved.

mailto:rjune@montana.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joca.2019.04.007&domain=pdf
https://doi.org/10.1016/j.joca.2019.04.007
https://doi.org/10.1016/j.joca.2019.04.007
https://doi.org/10.1016/j.joca.2019.04.007


A.K. Carlson et al. / Osteoarthritis and Cartilage 27 (2019) 1174e1184 1175
interventions13e15. Defining phenotypes of OA is important for
many reasons. First, this would provide insight into factors that
contribute to the development of these distinct phenotypes8. Sec-
ondly, it would allow for development of targeted treatments for
specific subgroups of OA8. Finally, given the heterogeneity of OA,
defining phenotypes is crucial for identifying biomarkers for early
diagnosis across all phenotypes or within specific subgroups once
identified.

Metabolomics is a promising method for distinguishing phe-
notypes. Metabolomics analyzes large numbers of small-molecule
intermediates16. Changes in the metabolome occur rapidly and
reflect the overall biological response from changes in the genome,
transcriptome, and proteome17. Metabolomic profiling generates a
phenotype that characterizes functional cellular biochemistry16,17.
Global metabolomics is promising because it produces a global
view of the metabolome with minimal bias. By focusing on all
metabolite features in the sample, this analysis develops a network
of pathways that illustrate metabolic perturbations with disease.
Therefore, global metabolomic profiling is not only beneficial for
identifying specific metabolites as potential biomarkers as
demonstrated previously18, but also providing insight into the
underlying mechanism of disease.

The SF is an ultrafiltrate of the plasma containing additional
molecules produced by the cells in joint tissue. SF provides lubri-
cation between the articular cartilage surfaces and eliminates
metabolic waste. The SF is in direct contact with other OA-affected
tissues (i.e., articular cartilage, synovium, etc.) and will reflect local
changes with disease19. This makes the SF a promising biofluid for
phenotype identification given the heterogenous pathology of OA
in the joint.

The objective of this study is to apply our established LC-MS-
based global metabolomic profiling method to generate metabolic
phenotypes of SF from post mortem knee joints from patients across
all stages of OA (grades 0-IV) graded using the Outerbridge scale for
cartilage damage. By characterizing global metabolomic profiles of
early and late OA, this study seeks to (1) identify differences in
metabolic pathways throughout disease progression from healthy
to late stage disease, and (2) classify patients within early and late
OA into subgroups representative of potential synovial fluid phe-
notypes. To our knowledge, this is the first study to perform global
metabolomic profiling of SF from donors with early and late stage
OA to investigate metabolic perturbations throughout disease
progression.

Methods

Human synovial fluid

Post mortem SF samples (n ¼ 75) from knee joints were used for
this study under an IRB exemption with synovial fluids from the
Table I
Descriptive statistics for donor population. Descriptive statistics of donor population for ea
as mean ± standard deviation. BMI was unavailable for some donors (BMI ¼ body mass

Healthy (n ¼ 7) Early OA (n ¼ 55) Phenotype E1 (n ¼ 33) Phenotyp

Age 35 ± 12.7 55.5 ± 16.0 56.5 ± 16.0 54 ± 16.
minimum 13 26 26 27
Q1 24 46 44 41
Q3 43 64 64 58.5
maximum 49 94 90 94

Sex (% male) 57.14% 52.73% 54.55% 50%
BMI 24.2 ± 6.7 27.8 ± 7.0 28.0 ± 7.0 27.6 ± 7
minimum 15.8 11.3 11.3 14.8
Q1 16.8 23.0 24.4 22.6
Q3 28.7 33.3 33.1 32.7
maximum 32.0 40.8 40.8 40.1
right or left knee joint chosen at random from each subject. Joints
were graded based on severity of changes in the knee cartilage
surfaces using the Outerbridge scoring system which grades joints
from 0-IV based on macroscopic cartilage pathology20. The distri-
bution of OA knees was as follows: grade 0 (n ¼ 7), grade I (n ¼ 28),
grade II (n ¼ 27), grade III (n ¼ 13), and grade IV (n ¼ 4). SF samples
were grouped in three cohorts: healthy controls (grade 0; n ¼ 7),
early OA (grades IeII; n ¼ 55), and late OA (grades IIIeIV; n ¼ 17).
These samples include both sexes and a variety of ages (Table I). SF
was frozen at �80�C until analysis. All samples were de-identified
and blinded prior to mass spectrometry and data analysis.

Donor demographic information

Age, sex, and OA grade were included for all donors (Table I).
Additional clinical data available for some but not all donors
included donor height and weight, cause of death, pre-existing
medical conditions, and history of OA.

Global metabolomic profiling

Metabolites were extracted and analyzed by LC-MS analysis as
previously described with slight modifications18,21. SF samples
were thawed on ice and centrifuged at 4�C at 500�g for 5 min to
eliminate cells and debris. The supernatant was resuspended in
50:50 water:acetonitrile at �20�C for 30 min. The sample was
vortexed for 3 min and centrifuged at 16,100�g for 5 min at 4�C.
The supernatant was completely evaporated in a vacuum concen-
trator for ~2 h, and the dried pellet was resuspended in 500 mL of
acetone to precipitate proteins at 4�C for 30 min. The sample was
then centrifuged at 16,100�g for 5 min. The supernatant was
completely evaporated by speedvac, and the pellet was resus-
pended in mass spectrometry grade 50:50 water:acetonitrile.
Metabolite extracts were analyzed in positive mode using an Agi-
lent 1290 UPLC system connected to an Agilent 6538 Q-TOF mass
spectrometer (Agilent Santa Clara, CA). Metabolites were chro-
matographically separated on a Cogent Diamond Hydride HILIC
150 � 2.1 mm column (MicroSolv, Eatontown, NJ) using an opti-
mized normal phase gradient elution method, and spectra were
processed as previously described18.

Statistical methods and analysis

Global metabolomic profiling generates a large multivariate
dataset of thousands of mass-to-charge ratios (m/z) and their cor-
responding peak intensities17. The dataset was reduced by
removing metabolite features (m/z values) with median intensity
values of zero across all experimental groups. All data analysis steps
were completed using MetaboAnalyst unless otherwise noted22.
Data were log transformed using the base-2 logarithm (log2) to
ch cohort including age, sex (as male % population), and BMI. All means are reported
index)

e E2 (n ¼ 22) Late OA (n ¼ 14) Phenotype L1 (n ¼ 11) Phenotype L2 (n ¼ 6)

4 68.5 ± 15.9 66 ± 16.5 78.9 ± 12.3
42 42 61
55.5 52 62
83 66 84
90 90 90
41.18% 27.27% 66.67%

.0 29.3 ± 11.9 31.9 ± 12.3 25.6 ± 11.7
11.3 19.2 11.3
19.4 19.5 15.3
35.2 35.2 27.4
50.0 50.0 42.4
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correct for non-normal distributions and standardized (mean
centered divided by standard deviation). Standardized data were
used for all analyses unless indicated otherwise.

All statistical tests used an a priori significance level of 0.05, and
false discovery rate (FDR) corrections were applied when per-
forming multiple comparisons per metabolite between groups23.
The KolomogoroveSmirnov test (KS-test) was used in MATLAB
(MathWorks, Inc. Natick, MA) to compare cumulative median
metabolite distributions between cohorts. This nonparametric test
does not require assumptions about the underlying distributions
and therefore is useful for metabolomics datasets that typically
contain non-normal distributions. Specific differences between
multiple groups were determined using analysis of variance
(ANOVA) F-tests. Two-tailed Student's t-tests examined specific
pairwise differences.. Differentially regulated metabolites between
two groups were visualized by volcano plot to assess both
Fig. 1. Global metabolomes are distinct between cohorts. (AeC) The cumulative distribution
median metabolite intensity distributions between groups revealed significantly (pks<0.01
between groups. (DeF) PLS-DA displayed differences in metabolomic profiles of between gr
between early and late OA donors. The first two components are plotted against one anothe
separation. (GeI) Volcano plot analysis between groups reveal metabolite features upregulat
value threshold of 0.05 (horizontal) and fold change threshold of 2 (vertical). The upper r
features with a fold change greater than twofold. Metabolite features in the upper right and
significance and magnitude of change simultaneously. Metabolite
features with a P-value (FDR corrected) less than 0.05 and greater
than twofold change were considered both statistically significant
and biologically important in these analyses.

Multivariate methods assessed variations in the metabolomic
datasets. Unsupervised hierarchical clustering analysis (HCA) based
on Euclidean distance and average linkage separated samples into
groups of similar abundance patterns24. HCA assessed subgroups of
donors exhibiting distinct metabolomic phenotypes. HCA is visu-
alized using heatmaps, known as a clustergrams, to analyze the
overall metabolomic profiles. Clustergrams reveal both clusters of
co-regulated metabolite features and the relative similarity be-
tween experimental groups24. Principal component analysis (PCA)
is another unsupervised method used to analyze metabolomics
data. PCA orthogonally transforms a set of observations into prin-
cipal components that each represent a fraction of the overall
of metabolites between groups were distinct from one another. KS-tests comparing the
) different metabolomic profiles. Mirrored metabolite distributions display differences
oups, revealing clear separation between healthy and OA donors and some separation
r with their contribution to the overall variance. 95% confidence ellipses illustrate class
ed and downregulated by P-value and fold change analysis. Dashed lines indicate the P-
ight and left quadrants contain significant (P < 0.05) upregulated and downregulated
left quadrants were assessed for enriched pathways reported in Supplemental Table 2.



Fig. 2. Metabolic changes in SF during early and late stage OA. Clustergram of median
global metabolomic profiles of early and late OA SF normalized to healthy SF display
patterns of metabolite expression with disease. Arbitrarily selected clusters of co-
regulated metabolite features are boxed in black and enriched for relevant pathways
in Supplemental Table 3.
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variance within the dataset. Partial least squares-discriminant
analysis (PLS-DA) is a supervised classification method that re-
veals the underlying source of distinction between known groups.
PLS-DA scores each variable in each component indicating how
important that variable was in contributing to the separation.

Metabolite features (m/z values) were matched to known
metabolite identities and mapped to relevant pathways using the
metabolite library and pathway enrichment tool, mummichog25.
Mummichog predicts a network of functional activity based on the
projection of detected metabolite features onto local pathways.
Pathway libraries MFN and Biocyc were used for compound identi-
fication and pathway enrichment (mass tolerance: 0.1 ppm; positive
mode). Pathways reported were significant by pathway over-
representation analysis with an FDR-adjusted P-value less than 0.05.

To determine if cohorts or phenotypes were associated with any
confounding variables, Student's t-tests, logistic regression, and
post hoc Chi Squared tests were employed to assess differences
between groups based on the available clinical data including age,
sex, and BMI were assessed between both groups and phenotypes.

Results

Differences in global metabolomes between healthy donors, early
and late OA

A total of 9903 metabolite features were detected in SF from
donors with grade 0-IV OA. This dataset was refined to 1362
detected features by removing features with a median intensity of
zero. ANOVA identified 39 differentially expressed metabolite fea-
tures between healthy, early OA, and late OA SF (FDR-corrected
P < 0.05).

We first explored whether the global metabolomes were
distinct between healthy, early, and late OA cohorts. To examine
differences between cohorts, three pairwise comparisons were
made: healthy vs early OA; healthy vs late OA; and early vs late OA.
Between-group differences in global metabolomes were assessed
using KS-tests, and this revealed significant differences between all
pairwise comparisons (pks<0.01; Fig. 1). Taken together, these re-
sults indicate that the global metabolomes are significantly
different between healthy, early, and late OA.

To visualize differences in metabolomic profiles and identify
specific metabolite features with the greatest discriminative capa-
bilities for separating cohorts, supervised PLS-DAwas used. PLS-DA
shows clear separation of healthy donors from disease donors, and
minimal overlap between early and late OA donors (Fig. 1). By
examining VIP scores, we foundmetabolite features that contribute
the most to distinguishing between cohorts and are strong candi-
dates for potential metabolite biomarkers (Supplemental Table 1).

Volcano plot analysis examined pairwise differences using both
significance and fold changes (Fig. 1). 188 metabolite features were
significantly different between healthy and early OA SF with 162
lower and 26 higher in early OA. 64 metabolite features were
significantly different between healthy and late OA SF, with 39
decreased and 25 increased in OA. Within OA, 191 metabolite fea-
tures were significantly different between early and late stage
disease, with 9 lower and 182 higher in late stage disease. To infer
metabolic activity, significantly different metabolite features were
enriched using mummichog's pathway analysis (Supplemental
Table 2) presented below.

Co-regulated metabolites map to differentially regulated metabolic
pathways with disease

Early and late OA profiles were distinct from healthy SF (Fig. 2).
Unsupervised HCA of healthy and diseased SF showed that the early
and late OA profiles were more similar to one another than healthy
SF (Supplemental Fig. 1). From the clustering, six groups of co-
regulated metabolites were identified based on consistency of
clustered distance and assessed for enriched pathways associated
with stage of OA (Supplemental Table 3).

Cluster 1 contained 38 metabolite features that decreased
throughout disease progression. Thesemapped to 14 of the previously
identified enriched pathways (Supplemental Table 2) including amino
acid metabolism (glycine, serine, alanine, threonine, lysine, arginine,
and proline), the urea cycle, phosphatidylinositol phosphate meta-
bolism, the carnitine shuttle, vitamin metabolism (B5 and C), and
porphyrin metabolism (Supplemental Table 3).

Cluster 2 contained 135 metabolite features that decreased in
OA compared to healthy SF. These metabolite features mapped to
20 enriched pathways including vitamin metabolism (E, C, B3, and
B6), phosphatidylinositol phosphate metabolism, glutathione
metabolism, leukotriene metabolism, butanoate metabolism,
amino acid metabolism (similar to cluster 1 with the addition of
tryptophan and histidine metabolism), and the carnitine shuttle
(Supplemental Table 3).

Cluster 3 contained 188 metabolite features lowest in early OA
compared to healthy and late OA. These mapped to 14 enriched
pathways including porphyrin metabolism, galactose metabolism,
fructose and mannose metabolism, vitamin metabolism (B5, B3, E),
methionine and cysteine metabolism, N-glycan degradation, glyc-
erophospholipid metabolism, and leukotriene metabolism
(Supplemental Table 3).

Clusters 4e6 contained metabolism features higher in abun-
dance in OA cohorts. Cluster 4 contained 64 metabolite features
highest in late OA. These metabolite features mapped to 8 enriched
pathways including keratan sulfate degradation, N-glycan degra-
dation, fructose and mannose metabolism, leukotriene meta-
bolism, and butanoate metabolism (Supplemental Table 3).

Cluster 5 contained 177 metabolite features with the greatest
abundance in early and late OA SF. These mapped to 36 enriched
pathways including amino acid metabolism (histidine, glycine,
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serine, alanine, threonine, tyrosine, glutamate, aspartate, valine,
leucine, isoleucine, aspartate, asparagine, lysine, and tryptophan)
urea cycle, keratan sulfate degradation, fatty acid metabolism,
glycerophospholipid and glycosphingolipid metabolism, the TCA
cycle, N-glycan metabolism, glutathione metabolism, tryptophan
metabolism, and vitamin C metabolism (Supplemental Table 3).

Cluster 6 contained 60metabolite features highest in abundance
in early OA. These mapped to 33 enriched pathways included
glycolysis and gluconeogenesis, the pentose phosphate pathway,
sialic acid metabolism, N-glycan degradation, keratan sulfate
degradation, tryptophan metabolism, glutathione metabolism, and
vitamin B3 metabolism (Supplemental Table 3).

Unsupervised clustering suggests metabolomic phenotypes within
early and late OA

To examine synovial fluid phenotypes, early and late OA were
further analyzed by unsupervised HCA. In early OA, this revealed
two clusters of donors, E1 and E2, containing 33 and 22 donors,
respectively [Fig. 3(A)]. There were 379 metabolite features
Fig. 3. Phenotypes in early OA synovial fluid. (A) Unsupervised hierarchical clustering analy
phenotype E1 (red) and phenotype E2 (blue). E1 contained 33 donors and E2 contained 2
pervised Principal component analysis (PCA) of all early OA donors reveals separation of ear
between phenotypes. (E1 ¼ red; E2 ¼ blue). (C) Supervised PLS-DA further illustrated the s
24.3% of the variance. (D) Volcano plot visualization of differentially regulated metabolite
threshold is represented by the horizontal dashed line (FDR-corrected P < 0.05), and the vert
features in the upper right and left quadrants (P < 0.05 and greater than twofold change) w
pathways in Supplemental Table 2.
differentially expressed between phenotypes E1 and E2 (FDR-cor-
rected P < 0.05). HCA of late OA also showed two distinct clusters of
donors, L1 and L2, that may be representative of distinct synovial
fluid phenotypes [Fig. 4(A)]. 11 donors clustered in phenotype L1,
and 6 donors clustered in phenotype L2. There were 187 differen-
tially expressed metabolite features between phenotypes L1 and L2
(FDR-corrected P < 0.05) (see Fig. 4).

PCA, an unsupervised method, was used to examine the sep-
aration between potential phenotypes. Plotting the PCA scores of
early OA donors shows the separation between phenotypes, with
PC1 and PC2 accounting for 27.1% of the overall variance
[Fig. 3(B)]. Separation of late OA donors into two distinct phe-
notypes is also supported by PCA, with PC1 and PC2 associated
with 35.8% of the overall variance [Fig. 4(B)]. PLS-DA, a supervised
method, further supports distinct phenotypes within early and
late OA as indicated by separation between E1 and E2 donors and
L1 and L2 donors [Figs. 3(C) and 4(C)]. Taken together, HCA, PCA,
and PLS-DA support four distinct subgroups of donors in early and
late stage disease that may be representative of metabolomic
synovial phenotypes.
sis (HCA) of all early OA donors. Two clusters of donors were identified and labeled as
2. Line length represents Euclidean distances between donors and clusters. (B) Unsu-
ly OA phenotypes. The first two components are associated with 27.1% of the variation
eparation between phenotypes (E1 ¼ red; E2 ¼ blue) with PC1 and PC2 accounting for
features by Student's t-test significance and fold change analysis (E1:E2). The P-value
ical lines represent the fold change threshold (greater than twofold change). Metabolite
ere enriched for relevant pathways reported in Table III, with the full list of perturbed



Fig. 4. Phenotypes in late OA synovial fluid. (A) Unsupervised HCA of all late OA donors. Two clusters of donors were identified and labeled as phenotype L1 (red) and phenotype L2
(blue). L1 contained 11 donors, and L2 contained 6 donors. Line length represents Euclidean distances between donors and clusters. (B) Unsupervised PCA of all early OA donors
reveals separation of early OA phenotypes. The first two PCs are associated with 35.8% of the variation between phenotypes. (L1 ¼ red; L2 ¼ blue). (C) Supervised PLS-DA further
illustrated the separation between phenotypes (L1 ¼ red; L2 ¼ blue), with component 1 and component 2 accounting for 34% of the overall variance. (D) Volcano plot visualization
of differentially regulated metabolite features by Student's t-test significance and fold change analysis (L1:L2). The P-value threshold is represented by the horizontal dashed line
(FDR-corrected P < 0.05) and the vertical lines represent the fold change threshold (greater than twofold change). Metabolite features in the upper right and left quadrants were
assessed for enriched pathways reported in Supplemental Table 4.
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Distinct pathways were represented in the various phenotypes
as determined by analyzing differentially expressed metabolites for
enriched pathways. Volcano plot analysis found 254 metabolite
features differentially expressed between the early phenotypes and
158 metabolite features differentially expressed between late
phenotypes [Figs. 3(D) and 4(D)]. Enrichment analysis was then
employed to map differentially expressed metabolite features to
pathways (Tables II and III).

A subgroup of donors at each stage of OA (E2 and L2) exhibited
evidence of glycosaminoglycan degradation and structural deteri-
oration. E2 was associated with 25 significantly enriched pathways,
including glycosaminoglycan degradation, sialic acid and N-glycan
metabolism, tryptophan metabolism, and ascorbate metabolism
(Table II). L2 was associated with 4 significantly enriched pathways
including keratan sulfate and N-glycan degradation, sialic acid
metabolism, and galactose metabolism (Table III).

The remaining phenotypes, E1 and L1, were associated with
increased inflammation. Phenotype E1 was associated 14 signifi-
cantly enriched pathways including metabolism of butanoate and
leukotrienesdboth of which play a role in inflammation (Table II).
L1 was associated with 30 significantly enriched pathways
including arachidonic acid metabolism and leukotriene meta-
bolism (Table III). Phenotype L1 was also associated with gluta-
thione metabolism, which may be suggestive of altered levels of
oxidative stress (Table III). Please see the Supplemental Data
including Figs. S2eS5 for additional discussion of metabolomic
phenotypes and associated pathways.

Confounding variables

We evaluated if differences in metabolomic profiles between
healthy, early, and late OA were associated with age, sex, or BMI as
possible covariates (Table I). The ages and BMI of the healthy, early,
and late OA cohorts were calculated and analyzed by Student's t-
test. Male:female ratios were analyzed by logistic regression and
chi-squared tests. There were significant differences in ages be-
tween healthy, early, and late OA comparisons with early OA
younger than late OA (P < 0.05). However, there was little to no



Table II
Perturbed pathways in early OA phenotypes. Pathway enrichment of significant metabolite features upregulated and downregulated (P < 0.05; greater than twofold change)
with early OA phenotypes in Fig. 3D volcano plot analysis comparing phenotype E1 to phenotype E2 (E1:E2 fold change ratio). Significant metabolite features greater in
abundance in the upper right quadrant of the volcano plot (higher in E1 compared to E2) in Fig. 3(D) were enriched to reveal corresponding upregulated pathways. Significant
metabolite features reduced in abundance in the upper left quadrant of the volcano plot (lower in E1 compared to E2) in Fig. 3(D) were enriched to reveal corresponding
downregulated pathways. Pathways are reported with the total metabolites in the pathway, the total detectedmetabolites in the pathway, and total significant (by volcano plot
analysis) metabolites within that pathway. Only pathways with an false discovery rate (FDR)-corrected P-value less than 0.05 are reported. The full list of pathways identified in
Fig. 3(D) volcano plot is reported in Supplemental Table 2

Downregulated in Early OA Phenotype E1 (Upregulated in Phenotype E2) Upregulated in Early OA Phenotype E1 (Downregulated in Phenotype E2)

Total Detected Significant P-value Total Detected Significant P-value

Phosphatidylinositol phosphate
metabolism

59 21 10 0.00031787 Butanoate metabolism 34 19 3 0.0012595

Chondroitin sulfate degradation 37 6 4 0.00046556 Purine metabolism 80 38 4 0.0022534
Heparan sulfate degradation 34 6 4 0.00046556 Glutamate metabolism 15 10 2 0.0027626
Glycosphingolipid biosynthesis

- ganglioseries
62 7 4 0.00058063 Methionine and cysteine

metabolism
94 30 3 0.0051311

Galactose metabolism 41 29 9 0.00066311 Leukotriene metabolism 92 16 2 0.0078615
Hexose phosphorylation 20 16 6 0.0006945 Lysine metabolism 52 19 2 0.011907
Glycosphingolipid biosynthesis

- globoseries
16 4 3 0.00070358 Tryptophan metabolism 94 39 3 0.012978

N-Glycan Degradation 16 5 3 0.0010502 Valine, leucine and
isoleucine degradation

65 20 2 0.013498

N-Glycan biosynthesis 48 11 4 0.0018166 Amino sugars metabolism 69 21 2 0.015211
Hyaluronan Metabolism 8 2 2 0.001875 Bile acid biosynthesis 82 27 2 0.028037
Fructose and mannose

metabolism
33 21 6 0.001927 Arginine and Proline

Metabolism
45 28 2 0.03058

Urea cycle/amino group
metabolism

85 39 9 0.0031932 Galactose metabolism 41 29 2 0.033231

Keratan sulfate degradation 68 4 2 0.0068439 Pyrimidine metabolism 70 32 2 0.041794
Sialic acid metabolism 107 21 5 0.0068821 Drug metabolism -

cytochrome P450
53 34 2 0.04797

Glycosphingolipid metabolism 67 16 4 0.0082138
Vitamin B9 (folate) metabolism 33 11 3 0.010679
Starch and Sucrose Metabolism 33 11 3 0.010679
Alanine and Aspartate

Metabolism
30 17 4 0.010787

Tryptophan metabolism 94 39 7 0.024073
Selenoamino acid metabolism 35 14 3 0.025485
Amino sugars metabolism 69 21 4 0.027862
Xenobiotics metabolism 110 34 6 0.029208
Histidine metabolism 33 15 3 0.032525
Porphyrin metabolism 43 15 3 0.032525
Ascorbate (Vitamin C) and

Aldarate Metabolism
29 9 2 0.046412
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evidence of differences in BMI or male:female ratios (P > 0.05).
Therefore, any differences noted between cohorts besides being
due to the presence or absence of OAmay be associated with aging.
Discussion

To our knowledge, this is the first study to use LC-MS-based
global metabolomic profiling of human SF to study phenotypes.
While several studies used metabolomics to analyze OA in various
fluids26e30, only a single prior study used a targeted approach
based on 186 metabolites for this same goal and found that acyl-
carnitine and free carnitine levels were significantly different be-
tween subgroups9. In contrast, the global approach used here
removes bias by not excluding metabolites a priori. By focusing on
all detected metabolites, this study produced a network of path-
ways perturbed with OA. These data provide greater understanding
of disease pathogenesis, therapeutic targets, and insight for
biomarker discovery.

1362 metabolite features were detected in human SF by LC-MS
analysis, and global metabolomic profiles were generated for
healthy, early OA, and late OA SF. OA was associated with altered
extracellular matrix component metabolism (glucosamine and
galactosamine biosynthesis, ascorbate metabolism, keratin sulfate
metabolism, and N-glycan metabolism), amino acid metabolism,
fatty acid and lipid metabolism (glycosphingolipid and
glycerophospholipid metabolism, the carnitine shuttle), inflam-
mation (leukotriene metabolism), central energy metabolism
(glycolysis and gluconeogenesis, the TCA cycle), oxidative stress
(vitamin E, glutathione metabolism), and vitamin metabolism (C, E,
B1, B3, B6, and B9).
Structural deterioration

Diseased SF exhibited greater evidence of tissue damage
compared to healthy SF. Keratan sulfate degradation, N-glycan
degradation, sialic acid metabolism, and ascorbate metabolism
were altered with OA. Keratan sulfate, chondroitin sulfate, and
heparin sulfate are glycosaminoglycans (GAGs) that function as
building blocks of articular cartilage. Their presence in the SF
typically indicates increased cartilage turnover31. In OA, the
articular cartilage is degraded reducing GAG content32,33. These
data are consistent with both synthesis and degradation of GAGs
in the SF of both early and late stage donors. OA cartilage also
exhibits collagen damage34. We identified hydroxyproline as a
metabolite with the greatest ability in distinguishing early from
late OA. Sialic acids and N-glycans are also important compo-
nents of lubricin, a mucinous glycoprotein that lines the cartilage
surfaces and acts as a lubricant35. These pathways were per-
turbed in diseased SF suggesting that the SF function in lubri-
cation is compromised.



Table III
Perturbed pathways in late OA phenotypes. Pathway enrichment of significantmetabolite features upregulated and downregulated P < 0.05; greater than twofold change) with
late OA phenotypes in Fig. 4(D) volcano plot analysis comparing phenotype L1 to phenotype L2 (L1:L2 fold change ratio). Significantmetabolite features greater in abundance in
the upper right quadrant of the volcano plot (higher in L1 compared to L2) in Fig. 4(D) were enriched to reveal corresponding upregulated pathways. Significant metabolite
features reduced in abundance in the upper left quadrant of the volcano plot (lower in L1 compared to L2) in Fig. 4(D) were enriched to reveal corresponding downregulated
pathways. Pathways are reported with the total metabolites in the pathway, the total detected metabolites within the pathway, and total significant (by volcano plot analysis)
metabolites within that pathway. Only pathways with an FDR-corrected P-value less than 0.05 are reported. The full list of pathways identified in Fig. 4(D) volcano plot is
reported in Supplemental Table 2

Downregulated in Late OA Phenotype L1 (Upregulated in Phenotype L2) Upregulated in Late OA Phenotype L1 (Downregulated in Phenotype L2)

Total Detected Significant P-value Total Detected Significant P-value

Keratan sulfate degradation 68 4 2 0.019848 Porphyrin metabolism 43 15 9 0.00013083
N-Glycan Degradation 16 5 2 0.020384 Alanine and Aspartate

Metabolism
30 17 7 0.00014903

Sialic acid metabolism 107 21 2 0.02995 Vitamin B9 (folate) metabolism 33 11 5 0.00018086
Galactose metabolism 41 29 2 0.035387 Vitamin B3 (nicotinate and

nicotinamide) metabolism
28 12 5 0.00020224

Urea cycle/amino group
metabolism

85 39 10 0.00021275

Glutamate metabolism 15 10 4 0.0003258
Leukotriene metabolism 92 16 5 0.00037052
Arginine and Proline
Metabolism

45 28 7 0.00039868

Methionine and cysteine
metabolism

94 30 7 0.00053156

Histidine metabolism 33 15 4 0.001096
Glutathione Metabolism 19 10 3 0.0016661
Nitrogen metabolism 6 4 2 0.0020684
Beta-Alanine metabolism 20 11 3 0.0023048
Butanoate metabolism 34 19 4 0.003009
Lysine metabolism 52 19 4 0.003009
Aspartate and asparagine
metabolism

114 62 10 0.0030692

Valine, leucine and isoleucine
degradation

65 20 4 0.0038276

Phosphatidylinositol phosphate
metabolism

59 21 4 0.0048344

Amino sugars metabolism 69 21 4 0.0048344
Glycine, serine, alanine and
threonine metabolism

88 36 6 0.0049222

Hexose phosphorylation 20 16 3 0.0094927
Squalene and cholesterol
biosynthesis

55 10 2 0.020059

Purine metabolism 80 38 5 0.024465
Biopterin metabolism 22 11 2 0.025759
Arachidonic acid metabolism 95 22 3 0.032157
Vitamin E metabolism 54 12 2 0.032261
Pyrimidine metabolism 70 32 4 0.035863
Tyrosine metabolism 160 59 7 0.039574
Xenobiotics metabolism 110 34 4 0.046425
Selenoamino acid metabolism 35 14 2 0.047506
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Vitamin metabolism and oxidative stress

The physiological significance of vitamins E, B5, and Cmay relate
to their roles as antioxidants to counteract the increased oxidative
stress in the joint during OA36. Additional results from diseased SF
suggest oxidative stress included glutathione metabolism.
Furthermore, vitamin B3 is also a required cofactor for the pro-
duction of nitric oxide (NO) by NO synthase. NO has been shown to
have both catabolic and protective effects in OA by modulating a
variety of inflammatory and anti-inflammatory mediators37. Thus,
altered vitamin B3 metabolism may drive NO-related changes
during OA pathogenesis. The altered antioxidant metabolism
exhibited in OA SF in this study further supports a role for oxidative
stress in the development of OA38.

Metabolomic phenotypes in synovial fluid from early and late stage
disease

OA is a heterogeneous disease with varying presentation.
Because of this, we investigated if distinct metabolic phenotypes
existed within OA SF (i.e., early vs late or within each). We identi-
fied two distinct phenotypes in early OAdE1 and E2 and two in late
OAdL1 and L2 (Fig. 5). Between E1 and L1, 60.2% of the metabolites
were the same, and between E2 and L2, 55.3% of metabolites were
the same (Supplemental Figs. 6 and 7).

Both inflammation and structural degradation are involved in
OA. In early OA, a subset of donors (E1) was associated with greater
inflammation, while the remaining donors (E2) exhibited evidence
of greater structural deterioration. Similarly, in late OA, phenotype
L1 was associated with inflammation and oxidative stress while L2
was associated with structural deterioration products. These data
suggest that inflammation and degradation may not be as closely
correlated as expected. Furthermore, because of the close rela-
tionship between inflammation and pain39,40, the inflammatory
phenotypes E1 and L1 may be associated with increased pain.

As in late OA phenotype L1, oxidative stress and inflammation
have been extensively studied for their role in OA pathogenesis, yet
both contribute to OA by promoting cartilage degradation41.
Despite this, phenotype L1 exhibited reduced structural deterio-
ration products in the SF compared to L2. This suggests a structural



Fig. 5. Metabolomic phenotypes of OA. Cluster analysis of our data revealed distinct metabolic phenotypes (n ¼ 75). Within Outerbridge grades I and II (early OA), metabolite
features clustered into an E1 phenotype associated with inflammatory pathways and an E2 phenotype associated with structural degradation pathways. Within Outerbridge grades
III and IV, metabolites clustered into an L1 phenotype associated with oxidative stress and inflammation and an L2 phenotype associated with structural degradation. These data
emphasize the heterogeneity of OA. Sketch of cartilage defects adapted with permission from Lasanianos and Kanakaris Traumatic and Orthopaedic Classifications 2014.
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damage phenotype at both early and late stage disease, an in-
flammatory phenotype in early OA, and an inflammatory and
oxidative stress phenotype at late stage disease. Overall, these
findings further support the heterogeneous nature of OA and sug-
gest stage-dependent phenotypes that may drive differences in
symptoms (Supplementary Discussion and Figures).
Limitations

This study has limitations and also opens opportunities for
future research. First, the sample size for this study was relatively
small (n¼ 75). Some cohorts, such as healthy (grade¼ 0), consisted
of only 6 samples, whereas early OA contained 55. With a small
sample size, it is unlikely that all metabolic phenotypes were rep-
resented. Furthermore, this sample did not contain complete clin-
ical information. Age and sex were provided for all donors, BMI was
provided for most, but others lacked cause of death, prior medical
history, and/or ethnicity. Importantly, age was identified as a po-
tential confounder in this study. Age-matching within experi-
mental cohorts would avoid potential confounding by age. This was
a cross-sectional study, and future research may improve upon this
using a longitudinal study design. Lastly, this study analyzed post-
mortem SF. However, studies have shown that metabolites in SF
remain stable post-mortem42,43. Targeting specific inflammatory
metabolites or degradation products may yield further insight into
synovial fluid phenotypes, and expanded sample sizes may allow
detection of OA biomarkers.
Conclusions

This is the first study to generate global metabolomic profiles of
early and late OA SF and identify metabolomic phenotypes within
early and late OA cohorts. The identified pathways in early and late
OA provide insight into disease progression and provide several
molecular pathways to further investigate as biomarkers of OA and
as targets for drug discovery. Furthermore, the identification of
specific metabolomic phenotypes in OA supports the heterogeneity
of disease. Expansion of this study will identify candidate bio-
markers of early and late OA in human SF and may elucidate OA
phenotypes.
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