

Ambulatory activity interacts with common risk factors for osteoarthritis to modify increases in MRI-detected osteophytes

Z. Zhu †‡, D. Aitken ‡, F. Cicuttini §, G. Jones ‡, C. Ding †‡§||*

† Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China

‡ Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia

§ Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia

|| Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliate Hospital of Anhui Medical University, Hefei, China

ARTICLE INFO

Article history:

Received 29 July 2018

Accepted 24 December 2018

Keywords:

Osteoarthritis

Ambulatory activity

Magnetic Resonance Imaging

Osteophytes

Risk factors

SUMMARY

Objective: To investigate the longitudinal association between objectively measured ambulatory activity (AA) and knee MRI-detected osteophytes (OPs), and to test whether this relationship was modified by common risk factors for OA including sex, obesity, disease severity and knee injury history.

Methods: 408 community-dwelling adults aged 51–81 years were assessed at baseline and 2.7 years. T1-weighted fat-suppressed MRI was used to evaluate knee OPs at both time points. AA was assessed at baseline by pedometers and categorized as: less active (≤ 7499 steps per day), moderately active (7500–9999 steps per day) and highly active ($\geq 10,000$ steps per day).

Results: Statistically significant interactions were detected between knee OA risk factors and AA on increases in MRI-detected OPs (all $P < 0.05$). In stratified analyses, being moderately active, compared to being less active, was protective against an increase in MRI-detected OPs (score change of ≥ 1) in females (relative risk (RR) = 0.42, 95%CI, 0.25–0.70, $P < 0.01$), those who were obese (RR = 0.50, 95%CI, 0.30–0.83, $P < 0.01$), those with radiographic OA (ROA) (RR = 0.68, 95%CI, 0.47–0.97, $P = 0.02$) and those with a history of knee injury (RR = 0.27, 95%CI, 0.08–0.88, $P = 0.02$) in almost every knee compartment, after adjustment for confounders. No statistically significant associations were found in males, non-obese, non-ROA or non-injury groups.

Conclusions: Being moderately active is protective against an increase in MRI-detected OPs in females, those with ROA, those who are obese and those with a history of knee injury. These findings suggest that being moderately active is beneficial for individuals who are at higher risk of knee OA.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Physical activity (PA) is widely promoted by health care professionals in the prevention and management of chronic health conditions including cardiovascular diseases, mental illness and obesity^{1,2}; however, the effect of ambulatory activity (AA) on the development or progression of osteoarthritis (OA) is conflicting. Although some studies have demonstrated PA has no effect on OA occurrence³ or joint health^{4,5}, AA was shown to have protective effects on joint space loss⁶. In contrast, elderly adults who performed high levels of heavy PA had an increased risk of

radiographic knee OA⁷, and participants with a body mass index (BMI) greater than the median value further increased their risk of knee OA among those who exercised⁸. The factors that contribute to these inconsistencies may include: self-reported PA assessments which demonstrate only moderate reproducibility⁹, the use of radiographs to assess OA, which provides only a limited view of the disease process¹⁰, and failure to account for effect modification by co-existing risk factors such as obesity, female sex, joint injury.

Osteophytes (OP) are one of the hallmarks of OA and are a fundamental sign of disease incidence and progression¹¹. The relationship between PA and OP has previously been investigated^{3,6,12–14}, however, in these studies PA was assessed subjectively using questionnaires and OP were assessed using radiographs. We have shown that OP detected on MRI are clinically relevant and can predict knee structural changes¹⁵. Using MRI-

* Address correspondence and reprint requests to: C. Ding, Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.

E-mail address: Changhai.Ding@utas.edu.au (C. Ding).

detected OP and objectively measured AA may provide a better understanding of the effect of AA on OA structural progression. So far, there is no guideline on the amount of PA required to prevent OA progression, and it is still uncertain what level of AA should be promoted to individuals with certain knee OA risk factors. Therefore, the aims of this study were to investigate the longitudinal association between objectively measured AA (steps/day by pedometer) and knee MRI-detected OPs, and to test whether this relationship was modified by common risk factors for OA including sex, obesity, radiographic OA (ROA) and knee injury history.

Material and method

Participants

This study was conducted as part of the Tasmania Older Adult Cohort (TASOAC) Study, a population-based, prospective longitudinal cohort study. The original aim of TASOAC study was designed to identify the genetic, environmental, and biochemical factors associated with the development and progression of OA¹⁶. Participants (mean age 62) were randomly selected from the electoral roll in Southern Tasmania (population 229, 000) using sex-stratified sampling (Supplementary Figure 1). Participants who were institutionalised or had contraindications to MRI were excluded. Follow-up data such as pedometer and questionnaire data was available for 875 participants at approximately 2.7 years later¹⁷. There were 174 participants who lost at 2.7-year follow-up (875/1049) and supplementary analyses were performed to examine the characteristics of these participants. The MRI machine was decommissioned halfway through the follow-up period, thus, follow-up MRI scans were only available for about half of the participants ($n = 408/875$). This research was conducted in compliance with the Declaration of Helsinki and was approved by the Southern Tasmanian Health and Medical Human Research Ethics Committee. Informed written consents were obtained from all subjects.

Ambulatory activity

AA was assessed at baseline as steps per day determined by pedometer (Omron HJ-003 & HJ-102, Omron Healthcare, Kyoto, Japan). All participants were instructed to wear a pedometer for seven consecutive days and were re-assessed 6 months later to account for seasonal variation¹⁸. Verbal and written instructions were given regarding pedometer wear and how to keep a pedometer diary. In general we had good compliance of pedometer wear. Of the 408 participants in the current study, the average days worn was 13.6 (standard deviation (SD) 1.6). There were strong correlation between pedometer assessment at baseline and 6 month repeated (Supplementary Figure 2). Mean steps per day was calculated as the average of the days worn at both time points. 14 participants only wore the pedometer for one time thus steps/day value at this time point were used. We categorised AA into three groups based on the Tudor-Locke *et al.*¹⁹ recommendations which we modified slightly based on the average steps per day taken amongst older adults with self-reported functional limitation, reported to be 7681 steps per day²⁰. Participants in our study were considered to be less active (≤ 7499 steps per day); moderately active (7500/9999 steps per day), or highly active ($\geq 10,000$ steps per day).

Anthropometrics

Weight was measured to the nearest 0.1 kg (Seca Delta Model 707). Height was measured to the nearest 0.1 cm using a stadiometer²¹. BMI was calculated (kg/m^2).

History of knee injury

Knee injury was assessed at follow-up by asking 'Have you ever had a previous knee injury requiring non-weight-bearing treatment for more than 24 h or surgery?'

X-Ray assessment

A standing anteroposterior semi-flexed view of the right knee with 15° of fixed knee flexion was performed in all participants at baseline. Baseline joint space narrowing (JSN) and radiographic osteophytes (OPs) were assessed at the medial tibia, medial femur, lateral tibia and lateral femur sites on a scale of 0–3 (0 = normal, 3 = severe) according to the Osteoarthritis Research Society International (OARSI) atlas developed by Altman *et al.*²². As this study did not have skyline radiographs, patellar radiographic OPs were not able to be measured. The presence of ROA was defined as any JSN or OP score of ≥ 1 ²¹. Two readers assessed the radiographs simultaneously with immediate reference to the atlas. Intra-observer repeatability was tested in 40 subjects 1 month apart with ICCs of 0.65–0.85²³.

Magnetic Resonance Imaging

MRI scans on the right knees were imaged on baseline and follow-up in the sagittal plane on a 1.5-T whole body magnetic resonance unit (Picker, Cleveland, OH) using a commercial transmit-receive extremity coil were conducted²¹. Following are the image sequences: a T1-weighted fat saturation 3D gradient recall acquisition in the steady state; flip angle 30°; repetition time 31 ms; field of view 16 cm; echo time 6.71 ms; 512 × 512 matrix; 60 partitions; acquisition time 11 min 56 s; one acquisition. Sagittal images were obtained at a partition thickness of 1.5 mm and an in-plane resolution of 0.31 × 0.31 (512 × 512 pixels). An independent computer workstation using the software program Osirix (University of Geneva, Geneva, Switzerland) were used to transfer the image database as previously described^{9,24}.

MRI-detected osteophytes

ZZ measured MRI-detected OPs both baseline and follow-up using a combination of Whole-Organ Magnetic Resonance Imaging (MRI) Score (WORMS) and the Knee Osteoarthritis Scoring System (KOSS)^{25,26}. OPs were defined as focal bony excrescences, seen on sagittal, axial or coronal images, extending from a cortical surface¹⁶. Size was measured from the base to the tip of the OP. The base of OP was defined as distinguished from that of adjacent articular cartilage with a normal MRI appearance²⁷. Each of the following 14 sites were assessed separately: the anterior (a), central weight bearing (c) and posterior (p) margins of the tibial plateaus and femoral condyles, and the medial (M) and lateral (L) margins of the tibia, femora and patella²⁶. OPs were graded as follows: grade 0, absent; grade 1, minimal (<3 mm high); grade 2, moderate (3–5 mm); grade 3, severe (>5 mm)²⁵. The score of each individual site in the relevant compartment (or whole/total knee) was summed up to calculate the total OP score in that compartment (or whole/total knee). OP present was defined as MRI-detected OP score of ≥ 1 . An increase in the MRI-detected OP score at any site was defined as change of ≥ 1 from baseline to follow-up at that site. Intra-observer reliability (expressed as intra-class correlation coefficients, ICCs) was 0.94–0.97 and inter-observer reliability was 0.90–0.96²⁸. Our previous study reported that MRI is far more sensitive and reliable than X-ray to detect OPs¹⁶.

Statistical analysis

One-way analysis of variance or χ^2 tests were used to compare means or proportions between participants with different AA levels. Crude and adjusted log binomial regression was used to examine the longitudinal association between objectively measured AA categories and increases in MRI-detected OPs in the total study sample, with age, sex, BMI, presence of ROA and knee injury history as covariates. A least significant change criteria (LSC) was used to set the threshold of an increased MRI-detected OP from baseline to follow-up. This take into consideration of measurement error and correlation between the baseline and follow-up measurements. The formula was as follows:

$LSC = 1.96 \times \sigma \sqrt{2(1 - \rho)}$ (σ = the stand error of the mean; ρ = the serial correlation). The LSC of MRI-detected OP was calculated to be 0.33 (where $\sigma = 0.42$, $\rho = 0.918$). Thus, an increase in the MRI-detected OP score at any site was defined as change of ≥ 1 from baseline to follow-up.

Interactions between knee OA risk factors (sex, BMI, knee injury history, radiographic OA) and AA levels on MRI-detected OPs were tested in all multivariable models. When statistically significant interactions were identified, estimates were presented separately for each risk factor. The analyses were adjusted for, age, sex and BMI because these factors were considered to be the most obvious confounders. Directed acyclic graphs (DAGs) analyses were routinely performed to select potential confounders. Presence of ROA and history of knee injury was also adjusted to rule out potential confounding effects. A p value less than 0.05 (two tailed) was regarded as statistically significant. All statistical analyses were performed on Stata version 14.0 for Windows (StataCorp, College Station, TX, USA)²⁹.

Results

Characteristic of study population at baseline

Four hundred and eight participants with pedometer measures at baseline and MRI measures at baseline and follow-up were included. Steps/day at baseline were highly correlated to steps/day at the 2.7-year follow-up ($r = 0.8$). There were 174 participants who lost at 2.7-year follow-up, however, supplementary analyses showed that there were no significant differences between participants who lost to follow-up and the rest in terms of age, sex, BMI, presence of obesity, ROA and baseline MRI-detected OPs except for knee injury history (data not shown). Characteristics of

the participants at baseline are presented in Table I. At baseline, participants with different levels of AA were statistically significantly different in terms of age ($P < 0.01$), weight ($P < 0.01$), BMI ($P < 0.01$), obesity ($P < 0.01$), baseline total MRI-detected OP score ($P = 0.01$), baseline patellar MRI-detected OP score ($P = 0.03$) and proportion of increased MRI-detected OP score in any compartment ($P = 0.03$).

Association between AA and increases in MRI-detected OP, stratified by OA risk factors

Interactions between knee OA risk factors (sex, BMI, ROA, knee injury history) and AA levels on increased MRI-detected OPs were statistically significant (Fig. 1). Therefore, all analyses were stratified based on sex (Table II), obesity (Table III), baseline ROA (Table IV) and history of knee injury (Table V).

In analyses stratified by sex, moderately active female participants had a statistically significantly reduced risk of having an increase in MRI-detected OPs in the medial tibiofemoral (TF) compartment (RR = 0.24, 95%CI = 0.07–0.78), lateral TF compartment (RR = 0.39, 95%CI = 0.20–0.79), patellar compartment (RR = 0.28, 95%CI = 0.11–0.69) and total compartment (RR = 0.42, 95%CI = 0.25–0.70), after adjustment for age, BMI, knee injury history and baseline ROA. No statistically significant association was found for males (Table II).

In analyses stratified by obesity, moderately active and highly active obese participants had a statistically significantly reduced risk of having an increase in MRI-detected OPs in the lateral TF compartment (RR = 0.36, 95%CI = 0.17–0.78; RR = 0.25, 0.07–0.87, respectively), after adjustment for age, sex, knee injury history and baseline ROA. Being moderately active was also protective against MRI-detected OPs increases in the patellar compartment (RR = 0.33, 95%CI = 0.15–0.74) and total compartment (RR = 0.50, 0.30–0.83) in obese participants. Moderately active non-obese participants had a statistically significantly reduced risk of having an increase in MRI-detected OPs in the patellar compartment only (RR = 0.48, 95%CI = 0.24–0.95), after adjustment for covariates. No statistically significant association was found in the non-obese group in any other compartment (Table III).

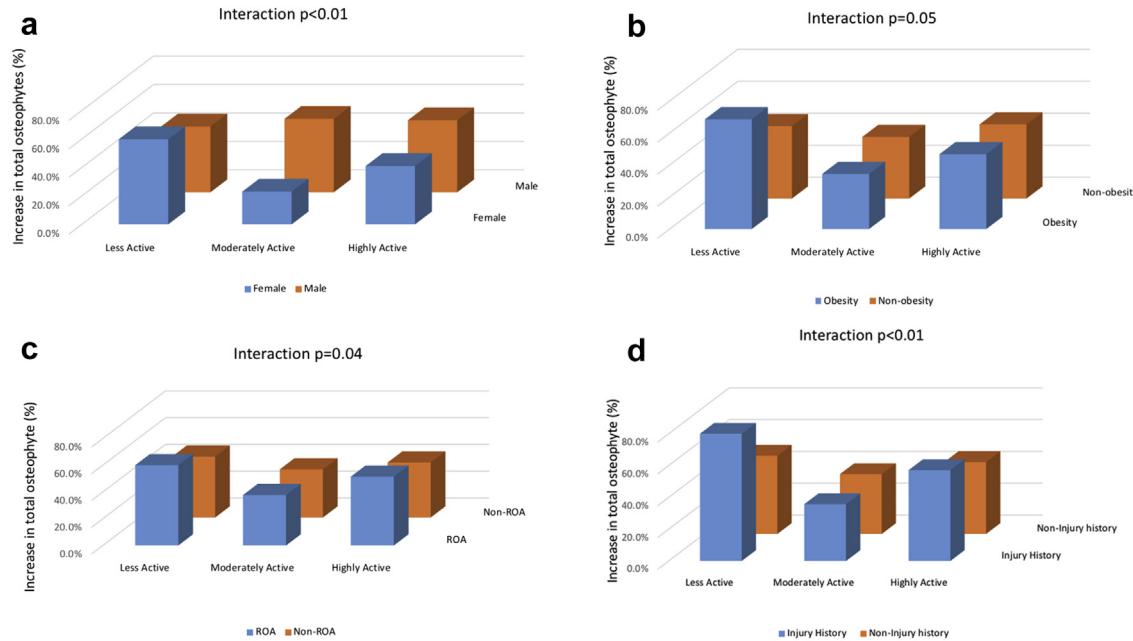

In analyses stratified by baseline ROA status, moderately active participants with baseline ROA had a statistically significantly reduced risk of having an increase in MRI-detected OPs at the lateral TF compartment (RR = 0.52, 95%CI = 0.31–0.86) and total compartment (RR = 0.68, 95%CI = 0.04–0.97), after adjustment for age, sex, BMI and knee injury history. The associations were of

Table I
Characteristics of participants at baseline

	Less active (≤ 7499) <i>N</i> = 147	Moderately active (7500/9999) <i>N</i> = 123	Highly active ($\geq 10,000$) <i>N</i> = 138	<i>p</i>
Age	65.3 \pm 7.7	61.7 \pm 6.4	60.1 \pm 6.0	
Females (%)	56	50	44	0.15
Weight	80.4 \pm 15.6	77.6 \pm 14.1	74.9 \pm 11.8	<0.01
BMI	29.1 \pm 5.3	27.6 \pm 4.2	26.2 \pm 3.2	<0.01
Obesity (%)	37	26	11	<0.01
ROA (%)	61	58	57	0.81
Knee injury (%)	10	11	10	0.94
Presence of baseline OPs (%)	89	87	82	0.20
Baseline total OP Score (range 0–36, median and IQR)	3(8)	2(5)	3(4)	0.01
Baseline Medial TF OP Score (median and IQR)	0(1)	0(1)	0(1)	0.06
Baseline Lateral TF OP Score (median and IQR)	1(3)	1(2)	1(2)	0.21
Baseline Patellar TF OP Score (median and IQR)	2(2)	2(1)	1(1.5)	0.03
Increased OP score in any compartment (%)	54	37	46	0.03

One-way analyses of variance (ANOVA) were used for differences between groups, and χ^2 tests were used for proportions (percentages). Statistically significant differences are shown in bold. Mean \pm SD except for percentages.

*IQR: Interquartile range; BMI: body mass index; ROA: radiographic osteoarthritis; OP: osteophyte; TF: Tibiofemoral.

Fig. 1. Interactions between ambulatory activity (AA) and risk factors for knee OA on increases in total MRI-detected osteophytes. There was a statistically significant interaction between (a) sex and physical activity; (b) obesity and physical activity; (c) radiographic OA (ROA) and physical activity; (d) knee injury history and AA, on increases in total OP.

Table II
Association between ambulatory activity (AA) and an increase in MRI-detected OPs, stratified by sex

	Males, n = 204				Females, n = 204			
	Multivariable*		Multivariable†		Multivariable*		Multivariable†	
	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)
Medial TF compartment								
Less active (≤ 7499)	n = 65	Ref		Ref	n = 82	Ref	Ref	Ref
Moderately Active (7500/9999)	n = 62	1.74 (0.83, 3.64)	1.44 (0.70, 2.95)	0.20 (0.05, 0.71)	n = 61	0.20 (0.18, 1.61)	0.24 (0.22, 1.66)	0.24 (0.07, 0.78)
Highly Active ($\geq 10,000$)	n = 77	1.90 (0.93, 3.88)	1.66 (0.84, 3.30)	0.54 (0.18, 1.61)	n = 61	0.60	0.60	0.60
Lateral TF compartment								
Less active (≤ 7499)	n = 65	Ref		Ref	n = 82	Ref	Ref	Ref
Moderately Active (7500/9999)	n = 62	1.18 (0.70, 1.98)	0.98 (0.57, 1.68)	0.27 (0.11, 0.63)	n = 61	0.27 (0.32, 1.63)	0.39 (0.20, 0.79)	0.39 (0.42, 1.37)
Highly Active ($\geq 10,000$)	n = 77	0.97 (0.57, 1.68)	0.92 (0.55, 1.54)	0.72 (0.32, 1.63)	n = 61	0.76	0.76	0.76
Patellar compartment								
Less active (≤ 7499)	n = 65	Ref		Ref	n = 82	Ref	Ref	Ref
Moderately Active (7500/9999)	n = 62	0.82 (0.39, 1.72)	0.83 (0.38, 1.81)	0.20 (0.07, 0.56)	n = 61	0.20 (0.21, 1.33)	0.28 (0.11, 0.69)	0.28 (0.28, 1.38)
Highly Active ($\geq 10,000$)	n = 77	1.25 (0.66, 2.36)	1.38 (0.72, 2.63)	0.53 (0.21, 1.33)	n = 61	0.63	0.63	0.63
Any compartment								
Less active (≤ 7499)	n = 65	Ref		Ref	n = 82	Ref	Ref	Ref
Moderately Active (7500/9999)	n = 62	1.25 (0.87, 1.79)	1.17 (0.81, 1.70)	0.23 (0.11, 0.48)	n = 61	0.23 (0.28, 1.31)	0.42 (0.25, 0.70)	0.42 (0.49, 1.16)
Highly Active ($\geq 10,000$)	n = 77	1.29 (0.90, 1.84)	1.27 (0.89, 1.81)	0.61 (0.28, 1.31)	n = 61	0.75	0.75	0.75

Significant differences are shown in bold.

* Adjusted for age and BMI.

† Further adjusted for radiographic OA and knee injury history; BMI, body mass index; TF, tibiofemoral; n, number of participants in the subgroup.

borderline significance at the medial TF compartment (RR = 0.57, 95%CI = 0.31–1.04, $P = 0.07$) and patellar compartment (RR = 0.43, $P = 0.06$) after adjustment for covariates. No statistically significant association was found in the non-ROA group (Table IV).

In analyses stratified by knee injury history, moderately active participants with a prior history of knee injury had a statistically significantly reduced risk of having an increase in MRI-detected OPs at the lateral TF compartment (RR = 0.17, 95%CI = 0.04–0.68) and the total compartment (RR = 0.27, 95%CI = 0.08–0.88), after adjustment for age, sex, BMI and baseline ROA. No statistically significant association was found in the non-injury group (Table V).

Apart from a protective effect in obese participants on lateral TF OP increases, being highly active was not associated with increases in MRI-detected OPs in all the specified analyses. The relationships

between AA and the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) knee pain change were also conducted, but no statistically significant association was found (data not shown).

Discussion

This longitudinal study has used objectively-assessed AA and sensitive MRI techniques to examine the optimal range of AA for knee OP development and progression, among those participants with OA risks factors. The findings suggest that being moderately active (7500/9999 steps per day) is protective against an increase in MRI-detected OPs in females and participants who are obese, have baseline ROA and have a prior history of knee injury. In contrast,

Table III

Association between AA and an increase in MRI-detected OPs, stratified by body mass index (BMI) = 30

	BMI < 30, n = 307				BMI ≥ 30, n = 101			
	Multivariable*		Multivariable†		Multivariable*		Multivariable†	
	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)
Medial TF compartment								
Less active (≤7499)	n = 93	Ref		Ref	n = 54	Ref		Ref
Moderately Active (7500/9999)	n = 91	1.02 (0.42, 2.49)	0.87 (0.41, 1.86)	n = 32	0.51 (0.21, 1.24)	0.50	(0.22, 1.15)	
Highly Active (≥10,000)	n = 123	1.49 (0.66, 3.39)	1.27 (0.62, 2.62)	n = 15	0.62 (0.18, 2.06)	0.69	(0.24, 1.94)	
Lateral TF compartment								
Less active (≤7499)	n = 93	Ref		Ref	n = 54	Ref		Ref
Moderately Active (7500/9999)	n = 91	0.85 (0.44, 1.67)	0.81 (0.49, 1.33)	n = 32	0.36 (0.17, 0.77)	0.36	(0.17, 0.78)	
Highly Active (≥10,000)	n = 123	0.98 (0.51, 1.85)	0.92 (0.58, 1.45)	n = 15	0.26 (0.07, 1.00)	0.25	(0.07, 0.87)	
Patellar compartment								
Less active (≤7499)	n = 93	Ref		Ref	n = 54	Ref		Ref
Moderately Active (7500/9999)	n = 91	0.40 (0.18, 0.88)	0.48 (0.24, 0.95)	n = 32	0.34 (0.15, 0.76)	0.33	(0.15, 0.74)	
Highly Active (≥10,000)	n = 123	0.79 (0.40, 1.54)	0.92 (0.54, 1.55)	n = 15	0.51 (0.23, 1.13)	0.57	(0.26, 1.24)	
Any compartment								
Less active (≤7499)	n = 93	Ref		Ref	n = 54	Ref		Ref
Moderately Active (7500/9999)	n = 91	0.91 (0.62, 1.34)	0.84 (0.59, 1.22)	n = 32	0.50 (0.30, 0.84)	0.50	(0.30, 0.83)	
Highly Active (≥10,000)	n = 123	1.10 (0.77, 1.59)	1.04 (0.75, 1.45)	n = 15	0.66 (0.36, 1.22)	0.67	(0.37, 1.21)	

Significant differences are shown in bold.

* Adjusted for age and sex.

† Further adjusted for radiographic OA and knee injury history; BMI, body mass index; TF, tibiofemoral; n, number of participants in the subgroup.

Table IV

Association between AA and an increase in MRI-detected OPs, stratified by radiographic OA (ROA)

	No-ROA, n = 161				ROA, n = 228			
	Multivariable*		Multivariable†		Multivariable*		Multivariable†	
	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)
Medial TF compartment								
Less active (≤7499)	n = 55	Ref		Ref	n = 85	Ref		Ref
Moderately Active (7500/9999)	n = 50	1.68 (0.43, 6.60)	1.75 (0.43, 7.07)	n = 69	0.56 (0.30, 1.04)	0.57	(0.31, 1.04)	
Highly Active (≥10,000)	n = 56	2.65 (0.78, 9.07)	2.51 (0.72, 8.76)	n = 74	0.78	(0.40, 1.53)	0.82	(0.42, 1.62)
Lateral TF compartment								
Less active (≤7499)	n = 55	Ref		Ref	n = 85	R	Ref	Ref
Moderately Active (7500/9999)	n = 50	0.86 (0.42, 1.77)	0.86 (0.42, 1.79)	n = 69	0.54 (0.33, 0.87)	0.52	(0.31, 0.86)	
Highly Active (≥10,000)	n = 56	0.66 (0.32, 1.36)	0.63 (0.31, 1.30)	n = 74	0.85	(0.54, 1.34)	0.92	(0.59, 1.43)
Patellar compartment								
Less active (≤7499)	n = 55	Ref		Ref	n = 85	Ref		Ref
Moderately Active (7500/9999)	n = 50	0.52 (0.22, 1.23)	0.52 (0.22, 1.23)	n = 69	0.51 (0.25, 1.05)	0.43	(0.18, 1.03)	
Highly Active (≥10,000)	n = 56	0.89 (0.44, 1.76)	0.88 (0.44, 1.77)	n = 74	1.09	(0.58, 2.05)	1.16	(0.51, 2.67)
Any compartment								
Less active (≤7499)	n = 55	Ref		Ref	n = 85	Ref		Ref
Moderately Active (7500/9999)	n = 50	0.83 (0.51, 1.35)	0.83 (0.51, 1.36)	n = 69	0.67 (0.41, 0.96)	0.68	(0.47, 0.97)	
Highly Active (≥10,000)	n = 56	0.96 (0.60, 1.53)	0.95 (0.59, 1.51)	n = 74	0.98	(0.71, 1.36)	1.01	(0.73, 1.40)

Significant differences are shown in bold.

* Adjusted for age, sex and BMI.

† Further adjusted for knee injury history; ROA, radiographic osteoarthritis; TF, tibiofemoral; n, number of participants in the subgroup.

being highly active (≥10,000 steps per day) was neither protective nor deleterious towards an increase in MRI-detected OPs in any subgroups. No statistically significant association was found between AA and knee pain change overtime (data not shown).

Walking is a fundamental activity performed on a daily basis and provides the most common means of AA for older adults³⁰. Pedometers have been successfully used as an appropriate objective tool for monitoring AA^{31–33}. The decline of walking ability among OA patients has been linked to adverse health outcomes including cardiovascular events, diabetes and deaths^{34–36}; however, high levels of walking may lead to detrimental mechanical stress on joint tissues³⁷. We previously showed that doing ≥10,000 steps/day was detrimental for MRI-assessed structural changes, mostly in those with pre-existing structural abnormalities¹⁸. Considering potential threshold effects such as this, we set out to examine what the optimal AA level was in relation to MRI-detected OP development and progression. Our

cut-points were defined based on the Tudor-Locke et al.¹⁹ recommendations which we modified slightly based on the average steps per day taken amongst older adults with self-reported functional limitations²⁰.

Our study uniquely found that AA's effect on OP development and progression was modified by common risk factors of OA. This is in line with the suggestion that there may be subgroups of individuals who differ in their response to AA. The adjustments we did in current study would not completely eliminate residual confounding or adjustment bias, and there are a number of other factors, such as personal habit, socio-economic status and even weather condition, that may also affect levels of AA and osteoarthritic changes^{38,39}. In the current study we used an increase in MRI-detected OP as a surrogate measure for OA development. Our previous work has shown that OPs detected on MRI are clinically relevant and predict increases in cartilage defects, BMLs, loss of cartilage volume and total knee pain change¹⁶. Additionally, the

Table V

Association between AA and an increase in MRI-detected OPs, stratified by knee injury history

	Non-knee injury, n = 365				Knee injury, n = 43			
	Multivariable*		Multivariable†		Multivariable*		Multivariable†	
	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)	RR	(95%CI)
Medial TF compartment								
Less active (<7499)	n = 132	Ref		Ref	n = 15	Ref		Ref
Moderately Active (7500/9999)	n = 109	0.87 (0.47, 1.60)	0.73 (0.40, 1.33)	n = 14	0.35 (0.08, 1.55)	0.39 (0.08, 1.55)	0.39 (0.12, 1.31)	
Highly Active (≥10,000)	n = 124	1.23 (0.67, 2.26)	1.07 (0.59, 1.93)	n = 14	0.43 (0.10, 1.94)	0.45 (0.10, 1.94)	0.45 (0.12, 1.67)	
Lateral TF compartment								
Less active (<7499)	n = 132	Ref		Ref	n = 15	Ref		Ref
Moderately Active (7500/9999)	n = 109	0.82 (0.55, 1.23)	0.75 (0.50, 1.14)	n = 14	0.10 (0.00, 6.78)	0.17 (0.04, 0.68)		
Highly Active (≥10,000)	n = 124	0.92 (0.61, 1.40)	0.85 (0.56, 1.30)	n = 14	0.16 (0.00, 14.6)	0.51 (0.24, 1.10)		
Patellar compartment								
Less active (<7499)	n = 132	Ref		Ref	n = 15	Ref		Ref
Moderately Active (7500/9999)	n = 109	0.66 (0.38, 1.16)	0.64 (0.36, 1.15)	n = 14	Empty	Empty		
Highly Active (≥10,000)	n = 124	1.02 (0.61, 1.69)	1.06 (0.63, 1.76)	n = 14	0.64 (0.20, 2.02)	0.68 (0.23, 2.06)		
Any compartment								
Less active (<7499)	n = 132	Ref		Ref	n = 15	Ref		Ref
Moderately Active (7500/9999)	n = 109	0.84 (0.62, 1.13)	0.80 (0.59, 1.08)	n = 14	0.32 (0.11, 0.91)	0.27 (0.08, 0.88)		
Highly Active (≥10,000)	n = 124	1.04 (0.78, 1.39)	1.00 (0.74, 1.34)	n = 14	0.62 (0.37, 1.03)	0.62 (0.32, 1.21)		

Significant differences are shown in bold.

* Adjusted for age, sex and BMI.

† Further adjusted for radiographic OA; TF, tibiofemoral; n, number of participants in the subgroup.

development of MRI-detected OPs was not due to pre-existing disease processes as the results remained unchanged after further adjustment for other disease (such as rheumatoid arthritis, cardiovascular diseases, and diabetes) status (data not shown).

We found moderately active AA prevented MRI-detected OP worsening in females but not in males. Females are known to be at a greater risks of developing OA compared to males⁴⁰. A nested case-control study reported that males exhibited a reduced risk for hip or knee OA if they performed moderate/high AA, while females had reduced risk for OA regardless of the level of AA that they performed⁴¹. The reason that moderately active AA among men was not found to be preventive on OP development is not clear. But our results are consistent with Keegan et al.⁴² who found moderate-strenuous exercise associated with higher medial femoral condyle T2 values in females, whereas this relationship was not found in males. A possible explanation for the discrepancy between sexes may be the differences in loading behaviours inherent to males and females⁴³.

White et al.⁴⁴ found that people with underlying structural worsening trended towards less walking and were more likely to fall below the 6000 step/day threshold, suggesting functional limitation. People who are predisposed to OA or have confirmed OA should not be discouraged from walking and can benefit from AA⁴⁵. Our current study demonstrated that participants with ROA taking 7,500 to 9,999 steps per day reduced their future risks of OP development. This is somewhat consistent with a previous study which reported that patients with all grades of OA severity on MRI could benefit from professional supervised exercise therapy, although the effects might be reduced in patients with advanced patellofemoral osteoarthritis (PF OA)⁴⁶. The Multicentre Osteoarthritis (MOST) study reported no association between daily walking and structural changes over 2 years in people at risk of mild knee OA⁴⁷, however, this study was limited by the assessment of a narrow range of step frequency.

Obesity is a major risk factor for the development of knee OA⁴⁸, and the increased risk of OA occurs on a dose-response gradient of increasing BMI⁴⁹. Moreover, obesity is related to worse PA scores, lower quality of life, and higher risk of 6-year disability⁵⁰. It is still uncertain what level of PA is appropriate for obese individuals⁵¹. On one hand, AA such as walking may exacerbate wearing out of articular cartilage in the presence of excess axial loads⁵²; on the

other hand, it may also reduce BMI and decrease risk of OA progression consequently. Our present study found that moderately active obese participants had a statistically significantly reduced risk of increased MRI-detected OPs. This result provides support for the use of moderate levels of AA in obese individuals.

It is well established that previous knee injury increases the risk of developing OA^{53,54}. Knee injury and subsequent knee pain are anecdotally thought to further contribute to a decline in walking in people with knee OA that is related to aging. It is possible that psychological affirmation restricts PA after knee injury which leads to the increased risk of OA progression. Additionally, better understanding the types and intensities of AA appropriate for individuals who have suffered knee injury previously is clinically instructive. Our current study suggested that 7,500 to 9,999 steps per day is appropriate and beneficial for participants with knee injury history in regards to OPs prevention.

The findings of current study would have implications in clinical practice and public health. We observed that comparing to those doing less than 7,500 steps per day, females doing 7,500 to 9,999 steps per day would have about 60% reduced risk of OP progression at any knee compartment, obese people doing 7,500 to 9,999 steps per day would have about 50% reduced risk of OP progression at any compartment, people with ROA doing 7,500 to 9,999 steps per day would have 30% reduced risk of OP progression at any compartment, and people with previous knee injury history doing 7,500 to 9,999 steps per day would have 70% reduced risk of OP progression at any compartment. These findings would be clinically relevant, and clinical practitioners could encourage moderate AA particularly among OA susceptible groups such as women, obese people and those who had knee injury history and ROA. On the other hand, although non-statistically significant associations were found between AA and MRI-detected OPs in males, people who were not obese, without baseline ROA or knee injury history, being moderately active may still be recommended among these people⁵⁵. A number of factors may have increased the estimation uncertainty in these models, such as limited sample size in stratified analyses. We have previously reported that doing ≥10,000 steps per day was deleteriously associated with increasing knee cartilage defect score, meniscal pathology score and BML score, mostly in those with pre-existing knee structural abnormalities (BMLs, cartilage loss and meniscal damage)¹⁸. However, in the current study having OP at

baseline did not affect the relationship between AA and OP increases in the total sample or subgroups (data not shown). The reasons underlying the differences are unknown but may reflect the fact that OP formation was more prevalent, would predate and have a different pathophysiology compared to other structural abnormalities⁵⁶.

Several limitations of the current study should be acknowledged. First, follow-up MRI scans were only available in 408 out of 1049 participants (worn pedometer) due to decommissioning of MRI scanner. However, there were no statistically significant differences between the participants in the current study and the rest of cohort in terms of demographic factors and other study factors (apart from a slightly higher baseline steps per day in studied individuals). Second, we had a relatively limited follow-up duration of 2.7 years. The effects of AA on OA structural changes may occur over a longer period of time. Nevertheless, MRI-detected OP has been proven to be a sensitive measurement in depicting changes of OP within this time frame. Third, as AA was measured by pedometer, temporal changes in AA were not considered. We also did not have information on the intensity or nature of the activity (e.g., kneeling, climbing, squatting, running, twisting, manual labour and workload). The biomechanical aspects of different types of PA including the effects of joint loading is likely to have different effects on OP development and progression. Therefore, our study results may not be generalizable to broader types of PA. Last, potential residual confounding or adjustment bias may exist⁵⁷. We hereby performed DAGs routinely to select potential confounders and to illustrate correlations between them in the model fitting procedures. Sensitive analyses were then conducted based on DAGs results using different models and covariates subsets. We found that effect sizes and 95%CIs only changed slightly between models, indicating the potential residual confounding or adjustment bias was unlikely to affect our findings.

In conclusion, being moderately active is protective against an increase in MRI-detected OPs in females, those with ROA, those who are obese and those with a prior history of knee injury. These findings indicate that a moderately active level of AA is beneficial for individuals who are at risk of knee OA.

Contributors

ZZ had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study design: CD, FC and GJ. Acquisition of data: ZZ, CD and DA. Analysis and interpretation of data: ZZ, DA, GJ and CD. Manuscript preparation and approval of submission: ZZ, DA, FC, GJ and CD.

Conflict of interests

The authors declare that they have no competing interests.

Funding

This study was funded by the National Health and Medical Research Council of Australia (302204), the Tasmania Community Fund (D0015018), the Arthritis Foundation of Australia (MRI06161) and University of Tasmania Grant-Institutional Research Scheme (D0015019).

Acknowledgements

The authors thank the participants who made this study possible, and acknowledge the role of the staff and volunteers in collecting the data, particularly research nurses Boon C and Boon P. Warren R assessed MRIs and Dr Strikanth V and Dr Cooley H assessed radiographs.

Patient consent

Obtained.

Ethics approval

This study was approved by the Southern Tasmania Health and Medical Human Research Ethics Committee, and written informed consent was obtained from all participants.

Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.joca.2018.12.023>.

References

1. Mathers CD, Vos ET, Stevenson CE, Begg SJ. The burden of disease and injury in Australia. *Bull World Health Organ* 2001;79:1076–84.
2. Surgeon general's report on physical activity and health. From the centers for disease control and prevention. *J Am Med Assoc* 1996;276:522.
3. Hart DJ, Doyle DV, Spector TD. Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford Study. *Arthritis Rheum* 1999;42:17–24.
4. Hannan MT, Felson DT, Anderson JJ, Naimark A. Habitual physical activity is not associated with knee osteoarthritis: the Framingham Study. *J Rheumatol* 1993;20:704–9.
5. Lane NE, Michel B, Bjorkengren A, Oehlert J, Shi H, Bloch DA, et al. The risk of osteoarthritis with running and aging: a 5-year longitudinal study. *J Rheumatol* 1993;20:461–8.
6. Lane NE, Oehlert JW, Bloch DA, Fries JF. The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9 year longitudinal study. *J Rheumatol* 1998;25:334–41.
7. Lane NE, Hochberg MC, Pressman A, Scott JC, Nevitt MC. Recreational physical activity and the risk of osteoarthritis of the hip in elderly women. *J Rheumatol* 1999;26:849–54.
8. Leyland KM, Judge A, Javaid MK, Diez-Perez A, Carr A, Cooper C, et al. Obesity and the relative risk of knee replacement surgery in patients with knee osteoarthritis: a prospective cohort study. *Arthritis Rheum* 2016;68:817–25.
9. Jones G, Ding CH, Scott F, Glisson M, Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. *Osteoarthritis Cartilage* 2004;12:169–74.
10. Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. *Osteoarthritis Cartilage* 2010;18:776–86.
11. Felson DT, McAlindon TE, Anderson JJ, Naimark A, Weissman BW, Aliabadi P, et al. Defining radiographic osteoarthritis for the whole knee. *Osteoarthritis Cartilage* 1997;5:241–50.
12. Konradsen L, Hansen EM, Sondergaard L. Long distance running and osteoarthritis. *Am J Sports Med* 1990;18:379–81.
13. Szoéke C, Dennerstein L, Guthrie J, Clark M, Cicuttini F. The relationship between prospectively assessed body weight and physical activity and prevalence of radiological knee osteoarthritis in postmenopausal women. *J Rheumatol* 2006;33:1835–40.
14. Szoéke CE, Cicuttini FM, Guthrie JR, Clark MS, Dennerstein L. Factors affecting the prevalence of osteoarthritis in healthy

middle-aged women: data from the longitudinal Melbourne Women's Midlife Health Project. *Bone* 2006;39:1149–55.

15. Zhu Z, Laslett LL, Jin X, Han W, Antony B, Wang X, et al. Association between MRI-Detected Osteophytes and Changes in Knee Structures and Pain in Older Adults: A Cohort Study. *Osteoarthritis Cartilage* 2017 Jul;25(7):1100–6.
16. Zhu Z, Laslett LL, Jin X, Han W, Antony B, Wang X, et al. Association between MRI-detected osteophytes and changes in knee structures and pain in older adults: a cohort study. *Osteoarthritis Cartilage* 2017;25:1084–92.
17. Zhu Z, Ding C, Jin X, Antony B, Han W, Laslett LL, et al. Patellofemoral bone marrow lesions: natural history and associations with pain and structure. *Arthritis Care Res (Hoboken)* 2016;68:1647–54.
18. Dore DA, Winzenberg TM, Ding C, Otahal P, Pelletier JP, Martel-Pelletier J, et al. The association between objectively measured physical activity and knee structural change using MRI. *Ann Rheum Dis* 2013;72:1170–5.
19. Tudor-Locke C, Bassett DR, Swartz AM, Strath SJ, Parr BB, Reis JP, et al. A preliminary study of one year of pedometer self-monitoring. *Ann Behav Med* 2004;28:158–62.
20. Cavanaugh JT, Coleman KL, Gaines JM, Laing I, Morey MC. Using step activity monitoring to characterize ambulatory activity in community-dwelling older adults. *J Am Geriatr Soc* 2007;55:120–4.
21. Zhu Z, Laslett LL, Han W, Antony B, Pan F, Ciccuttini F, et al. Associations between MRI-detected early osteophytes and knee structure in older adults: a population-based cohort study. *Osteoarthritis Cartilage* 2017;25:2055–62.
22. Altman RD, Hochberg M, Murphy Jr WA, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. *Osteoarthritis Cartilage* 1995;3(Suppl A):3–70.
23. Zhai G, Blizzard L, Srikanth V, Ding C, Cooley H, Ciccuttini F, et al. Correlates of knee pain in older adults: tasmanian older adult cohort study. *Arthritis Rheum* 2006;55:264–71.
24. Peterfy CG, Vandijke CF, Janzen DL, Gluer CC, Namba R, Majumdar S, et al. Quantification of articular-cartilage in the knee with pulsed saturation-transfer subtraction and fat-suppressed mr-imaging – optimization and validation. *Radiology* 1994;192:485–91.
25. Kornaat PR, Ceulemans RYT, Kroon HM, Riyazi N, Kloppenburg M, Carter WO, et al. MRI assessment of knee osteoarthritis: knee Osteoarthritis Scoring System (KOSS) – inter-observer and intra-observer reproducibility of a compartment-based scoring system. *Skeletal Radiol* 2005;34:95–102.
26. Peterfy CG, Guermazi A, Zaim S, Tirman PFJ, Miaux Y, White D, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. *Osteoarthritis Cartilage* 2004;12:177–90.
27. McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. *Am J Roentgenol* 2001;176:359–64.
28. Altman DG. Statistics in medical journals – developments in the 1980s. *Stat Med* 1991;10:1897–913.
29. Katsuragi J, Sasho T, Yamaguchi S, Sato Y, Watanabe A, Akagi R, et al. Hidden osteophyte formation on plain X-ray is the predictive factor for development of knee osteoarthritis after 48 months – data from the Osteoarthritis Initiative. *Osteoarthritis Cartilage* 2015;23:383–90.
30. Yusuf HR, Croft JB, Giles WH, Anda RF, Casper ML, Caspersen CJ, et al. Leisure-time physical activity among older adults. United States, 1990. *Arch Intern Med* 1996;156:1321–6.
31. Clemes SA, Biddle SJ. The use of pedometers for monitoring physical activity in children and adolescents: measurement considerations. *J Phys Activ Health* 2013;10:249–62.
32. McNamara E, Hudson Z, Taylor SJ. Measuring activity levels of young people: the validity of pedometers. *Br Med Bull* 2010;95:121–37.
33. Tudor-Locke C, McClain JJ, Hart TL, Sisson SB, Washington TL. Expected values for pedometer-determined physical activity in youth. *Res Q Exerc Sport* 2009;80:164–74.
34. Hawker GA, Croxford R, Bierman AS, Harvey PJ, Ravi B, Stanaitis I, et al. All-cause mortality and serious cardiovascular events in people with hip and knee osteoarthritis: a population based cohort study. *PLoS One* 2014;9. e91286.
35. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet* 2012;380:219–29.
36. Nuesch E, Dieppe P, Reichenbach S, Williams S, Iff S, Juni P. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. *BMJ* 2011;342:d1165.
37. Sun HB. Mechanical loading, cartilage degradation, and arthritis. *Ann N Y Acad Sci* 2010;1211:37–50.
38. Feinglass J, Lee J, Semanik P, Song J, Dunlop D, Chang R. The effects of daily weather on accelerometer-measured physical activity. *J Phys Activ Health* 2011;8:934–43.
39. Timmermans EJ, van der Pas S, Dennison EM, Maggi S, Peter R, Castell MV, et al. The influence of weather conditions on outdoor physical activity among older people with and without osteoarthritis in 6 European countries. *J Phys Activ Health* 2016;13:1385–95.
40. Hame SL, Alexander RA. Knee osteoarthritis in women. *Curr Rev Musculoskelet Med* 2013;6:182–7.
41. Rogers LQ, Macera CA, Hootman JM, Ainsworth BE, Blair SN. The association between joint stress from physical activity and self-reported osteoarthritis: an analysis of the Cooper Clinic data. *Osteoarthritis Cartilage* 2002;10:617–22.
42. Hovis KK, Stehling C, Souza RB, Haughom BD, Baum T, Nevitt M, et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. *Arthritis Rheum* 2011;63:2248–56.
43. Sigward SM, Powers CM. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. *Clin Biomech* 2006;21:41–8.
44. White DK, Tudor-Locke C, Zhang Y, Niu J, Felson DT, Gross KD, et al. Prospective change in daily walking over 2 years in older adults with or at risk of knee osteoarthritis: the MOST study. *Osteoarthritis Cartilage* 2016;24:246–53.
45. Mishra N, Mishra VN, Devanshi. Exercise beyond menopause: dos and don'ts. *J MidLife Health* 2011;2:51–6.
46. Knoop J, Dekker J, van der Leeden M, van der Esch M, Klein JP, Hunter DJ, et al. Is the severity of knee osteoarthritis on magnetic resonance imaging associated with outcome of exercise therapy? *Arthritis Care Res (Hoboken)* 2014;66:63–8.
47. Oiestad BE, Quinn E, White D, Roemer F, Guermazi A, Nevitt M, et al. No association between daily walking and knee structural changes in people at risk of or with mild knee osteoarthritis. Prospective data from the multicenter osteoarthritis study. *J Rheumatol* 2015;42:1685–93.
48. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Obesity and knee osteoarthritis. The Framingham study. *Ann Intern Med* 1988;109:18–24.

49. Reyes C, Leyland KM, Peat G, Cooper C, Arden NK, Prieto-Alhambra D. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. *Arthritis Rheum* 2016;68:1869–75.

50. Batsis JA, Zbehlik AJ, Barre LK, Bynum JP, Pidgeon D, Bartels SJ. Impact of obesity on disability, function, and physical activity: data from the Osteoarthritis Initiative. *Scand J Rheumatol* 2015;44:495–502.

51. McAlindon TE, Wilson PW, Aliabadi P, Weissman B, Felson DT. Level of physical activity and the risk of radiographic and symptomatic knee osteoarthritis in the elderly: the Framingham study. *Am J Med* 1999;106:151–7.

52. Mehrotra C, Chudy N, Thomas V. Obesity and physical inactivity among Wisconsin adults with arthritis. *Wis Med J* 2003;102:24–8.

53. Kujala UM, Kettunen J, Paananen H, Aalto T, Battie MC, Impivaara O, et al. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. *Arthritis Rheum* 1995;38:539–46.

54. Sutton AJ, Muir KR, Mockett S, Fentem P. A case-control study to investigate the relation between low and moderate levels of physical activity and osteoarthritis of the knee using data collected as part of the Allied Dunbar National Fitness Survey. *Ann Rheum Dis* 2001;60:756–64.

55. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. *Osteoarthritis Cartilage* 2014;22:363–88.

56. Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. *Ann Rheum Dis* 2011;70:60–7.

57. Gustafson P, Greenland S. The performance of random coefficient regression in accounting for residual confounding. *Biometrics* 2006;62:760–8.