2019 Critical Care Transport Medicine Conference Scientific Forum

The following abstracts are from the poster presentations made at the 27th Annual Critical Care Transport Medicine Conference held April 15–17, 2019, at the Hotel Albuquerque at Old Town in Albuquerque, New Mexico. The Scientific Forum is sponsored by the Air Medical Physician Association, Air & Surface Transport Nurses Association, and International Association of Flight & Critical Care Paramedics. For more information, contact Pat Petersen at ppeter1111@aol.com.

Abstract 1: Analysis of the Usage of a Portable X-Ray System Transported to the Scene by a Physician-Staffed Helicopter

Objective: We had the opportunity to use a portable X-ray system. The purpose of this study was to investigate the influence of the use of a portable X-ray system by the staff members of a physician-staffed helicopter (called a doctor helicopter [DH] in Japan) on the activities of the DH staff and the indications for its use in the prehospital setting.

Methods: From January 11, 2019 to January 18, 2019 we had temporary access to a portable X-ray system. This period is defined as the investigation time. During the investigation time, a medical chart review was retrospectively performed for all patients who were transported by a DH in Japan. These patients were included as subjects in the present study. We collected data on each subject’s sex, age, details of dispatch (to the scene or interhospital transportation), endogenous or exogenous disease status, clinical diagnosis, contents of treatment, whether or not an X-ray study was performed, region of X-ray, treatment at scene, time at the scene, and outcome (survival or death). In addition, we compared age, sex, details of dispatch, endogenous or exogenous disease status, cardiac status (cardiac arrest or no cardiac arrest), treatment, time at the scene (minutes) and outcomes between cases in which an X-ray study was performed (X-ray group) and those in which an X-ray study was not performed (Control group).

Results: During investigation period, 30 patients were transported by DH. Thirteen subjects were classified into the X-ray group and 17 were classified into the Control group. There were no significant differences in the sex, age, cardiac status, time at the scene, or outcomes of the two groups. The proportions of patients with endogenous disease and female patients in the X-ray group tended to be greater than those in the Control group; however, neither of these differences was statistically significant. The proportion of cases in which the DH was dispatched to the scene in the X-ray group was significantly greater than that in the Control group.

Conclusion: This is the first study to demonstrate that the performance of X-ray studies at the scene did not significantly influence the activities of DH staff and to demonstrate that X-ray studies were performed significantly more frequently when a DH was dispatched to the scene. Future prospective studies involving a greater number of patients and a comparison of the final outcomes are needed.

Keywords: portable X-ray; helicopter; treatment

Abstract 2: Cardiac Arrest During Aeromedical Transport: A 5-year Retrospective Case Review

Objectives: Air emergency medical services (AEMS) are regularly employed in many parts of the world to transport severely ill or injured patients rapidly to definitive care. Out-of-hospital cardiac arrest (OHCA) is a potentially catastrophic event that may occur among a subset of the most severely ill patients that are encountered. This study describes the pre-arrest characteristics, treatments applied, and short-term outcomes of patients with OHCA treated by AEMS.

Methods: All adult patients who experienced OHCA at a single, academic aeromedical transport service between 2013–2017 were included in this retrospective analysis. All cases during which an adult patient suffered cardiac arrest occurring from the time of AEMS arrival at the scene or sending facility to hand off at the receiving facility were included. Data including standard Utstein variables, treatments, and short-term outcome were extracted by the authors. Univariate descriptive statistics were computed using SPSS ver. 25.

Results: During the 5-year period, 92 cases of adult OHCA were identified among 16,779 transports. The median age of patients experiencing OHCA was 64.5 years [55.3, 63.3]. Among patients transported, the average transport time was 75.4 minutes [63.4, 87.3]. 60 OHCA cases (65.2%) were of medical etiology and 32 (34.8%) were traumatic. Scene calls were the origin for 51.1% of calls; the rest were interfacility transfers. 36/92 patients (39.1%) had multiple cardiac arrests under AEMS care, and OHCA occurred for the first time most often before take-off: 39.1% at the initial scene, 29.3% in transit or loading to aircraft, and in flight 31.5% of the time. 17.4% of the cohort...
had an initial shockable rhythm and 42.4% achieved return of spontaneous circulation (ROSC) by arrival at the destination facility; an additional 5.4% achieved ROSC and were not transported.

Conclusions: In this cohort, OHCA occurred in 92 adult patients over 5 years, with approximately two thirds medical and one third traumatic in nature. Initial rhythm was rarely shockable, but sustained ROSC was achieved in almost half the patients. Almost 4 in 10 patients had multiple cardiac arrests under AEMS care, and initial arrest was most likely to occur prior to air transport as opposed to in-flight. A high proportion of patients achieving ROSC is possible, even with relatively low rates of shockable initial rhythm. This study suggests that while cardiac arrest in flight is rare, medical teams must be prepared to handle both medical and traumatic arrests as well as multiple arrests during the course of air transport.

Outstanding Research Award

Abstract 3: Comparison of Flight Physician operated Hyper-Angulated and Standard Geometry Video Laryngoscopy Tracheal Intubation on a Helicopter in a Manikin

Kevin Emmerich; Michael Steuerwald; Nick Lepa; Louis Scattith; Ryan Wubben; Brian Jennett; Richard Galgon; Matthew Hollander — University of Wisconsin, Madison

Objective: To investigate the efficacy of hyper-angulated video laryngoscopy (HAVL) versus standard-geometry video laryngoscopy (SGVL) during a simulated mid-flight helicopter intubation.

Introduction: Prehospital intubation is often complicated by poor conditions including bad lighting, poor patient positioning, excessive noise, and restricted cervical spine mobility—some of which are known predictors of a difficult airway. These factors are magnified in the setting of a mid-flight helicopter intubation. The specific aim of our investigation was to evaluate if use of a specific video laryngoscope technique offers advantage in this situation. The SGVL technique requires the creation of nearly a direct line between the oropharynx and glottis in order for endotracheal tube placement. The line must be created by manipulation of the patient’s airway by the operator with a laryngoscope. Due to poor operator and patient positioning in a helicopter, this process was hypothesized to be more difficult than HAVL, which allows the operator to pass an endotracheal tube around the natural curvature of the patient’s upper airway. There are no studies to date comparing these two distinct techniques by board-certified emergency medicine physicians in a simulated mid-flight environment.

Methods: A single center, randomized crossover trial was performed using attending physician helicopter EMS providers in a simulated environment. After IRB approval and informed consent, physicians were randomized to perform five HAVL or SGVL intubations, followed by the subsequent technique. Intubations were performed in a grounded EC-135 helicopter with an AirSimTM airway management trainer restrained on the cot. Time to intubation (primary outcome) as well as first pass success (FPS) and Cormack-Lehane views were recorded for each attempt. Qualitative data was also obtained for physician preference and perceived difficulty.

Results: Fifteen physicians participated in the study. There was no statistically significant difference in time to intubation with HAVL versus SGVL (16.14 seconds vs. 16.12 seconds; p-value 0.97). FPS was 100% for both techniques. Ninety-seven percent of Cormack-Lehane views were grade one for HAVL versus 88% for SGVL. Despite no statistical significance in time to intubation, participants subjectively reported that SGVL required more physical force to perform intubation. The majority also qualitatively prefer HAVL over SGVL after performing the study for future flight intubations.

Conclusions/Limitations: Our results suggest that both SAVL and HAVL are efficacious techniques to perform intubations in an EC-135 helicopter, should this somewhat rare, but likely difficult procedure, be necessary. Providers did, however, prefer HAVL over SGVL in our group. The discordant quantitative and qualitative results in this study may be due to the static nature and highly favorable anatomy of a manikin, versus the varying anatomy of individual patients.

1st Runner-Up Award

Abstract 4: Predictors of Definitive Airway sans Hypoxia/ Hypotension on First Attempt (DASH 1A) Success in Traumatically Injured Patients Undergoing Prehospital Intubation

Elizabeth K. Powell, MD — Department of Anesthesiology
William R. Hinckley, MD — Department of Emergency Medicine
Uwe Stolz, PhD — Department of Emergency Medicine
Andrew J. Golden, MD — Department of Emergency Medicine
Amanda Ventura, MD — Department of Emergency Medicine
Jaston T. McMullan, MD — Department of Emergency Medicine; University of Cincinnati, Ohio

Objective: Prehospital intubation success is routinely treated as a dichotomous outcome based on an endotracheal tube passing through vocal cords regardless of number of attempts or occurrence of hypoxia, or hypotension, which are associated with worse outcomes. We explore patient, provider, and procedure-related variables associated with successful definitive airway sans hypoxia/hypotension on first attempt (DASH-1A) in traumatically injured subjects undergoing endotracheal intubation at the scene of injury by a helicopter EMS system.

Methods: This single-center retrospective chart review included patients with traumatic injuries and at least one attempted intubation by helicopter EMS at the scene of injury. Demographic and clinical variables were tested for association with DASH-1A and overall first-attempt success using univariate comparisons and multivariable logistic regression to produce adjusted odds ratios (aORs) and 95% confidence intervals (CIs). Purposeful backwards stepwise elimination was used to develop logistic regression models for outcomes. Initial inclusion of covariates in multivariable models was based on clinical judgement, known or suspected risk factors and confounders for intubation success, and univariate associations.

Results: Of 419 subjects screened, 263 met inclusion criteria. Median age was 34 years and the majority of subjects were Caucasian (95%), male (76%), and suffered blunt trauma (90%). A total of 142 (55.3%) subjects had a successful DASH-1A airway, 198 (75%) had a successful first attempt non-DASH-1A airway, and overall, 246 (94%) had an endotracheal tube passed successfully before hospital arrival. Factors significantly associated with successful DASH-1A were no ground EMS intubation attempt prior to arrival (aOR 2.2), lack of airway secretions (1.9), Cormack-Lehane Score of I and II (12.3 & 3.2, respectively), and bougie use (5.4). For endotracheal tube passing only, the following were significantly associated with first pass success: grade of view I and II (87.3 & 6.8, respectively); lack of secretions (4.9), bougie use (7.8), direct laryngoscopy (5.1), and not using apneic oxygenation through a nasal cannula (2.5).

Conclusions: In our helicopter EMS system, successful endotracheal intubation on the first attempt and without an episode of hypoxia was associated with no ground EMS intubation attempt prior to flight crew arrival, lack of airway secretions, Cormack-Lehane Score, and bougie use.