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Objective: Knee osteoarthritis (KOA) is a heterogeneous condition representing a variety of potentially
distinct phenotypes. The purpose of this study was to apply innovative machine learning approaches to
KOA phenotyping in order to define progression phenotypes that are potentially more responsive to
interventions.
Design: We used publicly available data from the Foundation for the National Institutes of Health (FNIH)
osteoarthritis (OA) Biomarkers Consortium, where radiographic (medial joint space narrowing of
�0.7 mm), and pain progression (increase of �9 Western Ontario and McMaster Universities Osteoar-
thritis Index [WOMAC] points) were defined at 48 months, as four mutually exclusive outcome groups
(none, both, pain only, radiographic only), along with an extensive set of covariates. We applied distance
weighted discrimination (DWD), direction-projection-permutation (DiProPerm) testing, and clustering
methods to focus on the contrast (z-scores) between those progressing by both criteria (“progressors”)
and those progressing by neither (“non-progressors”).
Results: Using all observations (597 individuals, 59% women, mean age 62 years and BMI 31 kg/m2) and
all 73 baseline variables available in the dataset, there was a clear separation among progressors and
non-progressors (z ¼ 10.1). Higher z-scores were seen for the magnetic resonance imaging (MRI)-based
variables than for demographic/clinical variables or biochemical markers. Baseline variables with the
greatest contribution to non-progression at 48 months included WOMAC pain, lateral meniscal extru-
sion, and serum N-terminal pro-peptide of collagen IIA (PIIANP), while those contributing to progression
included bone marrow lesions, osteophytes, medial meniscal extrusion, and urine C-terminal crosslinked
telopeptide type II collagen (CTX-II).
Conclusions: Using methods that provide a way to assess numerous variables of different types and
scalings simultaneously in relation to an outcome of interest enabled a data-driven approach that
identified key variables associated with a progression phenotype.

© 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Knee osteoarthritis (KOA) is a heterogeneous condition charac-
terized by changes in a variety of joint tissues and driven by a
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number of different potential mechanisms1. A variety of diverse risk
factors, such as aging, body weight, joint injury, genetics, and
biomechanical factors, contribute to disease, sometimes alone but
more often in combination. Such common osteoarthritis (OA) risk
factors may lead to a different mechanistic pathway to OA disease,
such that the key mediators promoting OA development or pro-
gression in older adults may be quite different than those that
contribute to development of post-traumatic OA. There are still no
effective disease modifying drugs for KOA, likely due in part to the
fact that clinical trials have treated all KOA, regardless of etiology or
risk factors, as the same disease.
td. All rights reserved.
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The variations in observable characteristics of individuals,
resulting from genetic and environmental factors, constitute a
phenotype1. Understanding underlying phenotypes of KOA that
represent different pathways to disease could lead to new treat-
ments for this common and debilitating condition. To date, most
phenotypes have been postulated based on our current under-
standing of KOA, such as those related to inflammation, metabolic
disturbances, and biomechanical stresses. Two recent systematic
reviews have approached the question of OA phenotypes in
somewhat different ways. Dell’Isola et al. identified six phenotypes
from 24 published studies, including pain sensitization, inflam-
mation, metabolic syndrome, bone/cartilage metabolism, mala-
lignment, and minimal joint disease2. They then applied these
phenotypes to the Foundation for the National Institutes of Health
(FNIH) Biomarkers Consortium dataset, classifying the majority
into at least one phenotype, however, nearly 1 in 5 did not meet
criteria for any of the postulated phenotypes3. Deveza et al. focused
instead on important phenotypic characteristics in their review of
34 studies, finding a number of features to be associated with
clinical vs structural phenotypes4.

Data-driven approaches are also of great interest as these do not
require an a priori hypothesis and are therefore able to identify
unanticipated patterns in the data that may reveal new subgroups.
Some of these methods, such as clustering and latent class analysis,
are widely used but only recently applied to KOA phenotyping.
Others, such as those employed here, are machine learning based
and not previously applied to these types of questions, and so offer
the potential to provide new insights into this complex problem.

The purpose of this study was to apply innovative machine
learning approaches, specialized for a high dimension low sample
size setting (e.g., many measurements on a relatively limited
sample size), to phenotyping in KOA in order to better define pro-
gression phenotypes that may be more homogeneous and
responsive to potential disease modifying interventions.

Methods

This analysis used publicly available data from the FNIH OA
Biomarkers Consortium (available at https://nda.nih.gov/oai). De-
tails of the study design have been published previously5. The
published dataset includes 600 individuals with 76 demographic,
imaging (quantitative and semi-quantitative magnetic resonance
imaging [MRI]), and biochemical variables. Details regarding the
acquisition of the imaging and other biomarkers are also publish-
ed6e9. This dataset includes four mutually exclusive outcome
groups (one knee per person) defined as: 1) neither X-ray nor pain
progression (n ¼ 200); 2) pain progression only (n ¼ 103); 3) X-ray
progression only (n ¼ 103); 4) both X-ray and pain progression
(n ¼ 194). X-ray progression, as defined by the FNIH OA Biomarkers
Consortium, was based on medial joint space loss (loss in joint
space width of at least 0.7 mm), while pain progression was based
on an increase in the Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) score (persistent increase of nine or
more points), at 48 months. For each eligible subject, the FNIH OA
Biomarkers Consortium randomly selected one knee as the index
knee, and these were frequency-matched for KellgreneLawrence
(KL) grade and BMI category10. As a first step in the current anal-
ysis, problematic variables (n ¼ 3: unique participant identifier
[non-informative], posterior cruciate ligament repair and tear [both
frequently missing]) and observations (n ¼ 3 due to missing or
incorrect data) were removed, leaving 597 observations and 73
variables for the remainder of our analysis.

A supervised approach (i.e., contrasting known or specified
classes) was employed to identify features associated with
existing phenotypes based on progression status. For this
purpose, we focused on contrasting “progressors,” (n ¼ 192)
defined as knees that progressed by both X-ray and pain, vs “non-
progressors,” (n ¼ 200) those that did not progress by either. Our
hypothesis was that a set of predictive measures would be able to
identify significant differences between those who did and did
not progress in this cohort. We considered all predictive mea-
sures together as well as in groups (e.g., demographic, imaging,
and biochemical markers). Additional hypotheses considering
other comparisons (e.g., X-ray only or pain only progressors)
were also considered in an exploratory way (see Supplemental
Table (A)). The data were transformed to reduce skewness and
standardized to address differences in scale, prior to application
of the machine learning methodology described below (code for
these methods is available at http://marronwebfiles.sites.oasis.
unc.edu/Matlab7Software/).

Distance weighted discrimination (DWD) is a linear discrimi-
nant analysis method allowing maximal separation of data points
by class11, and utilized in our prior publication on hip shape in OA12.
DWD is particularly suited to cases where the dimension of the data
vector exceeds the number of samples (i.e., a large number of
measurements relative to the sample size). Once defined, the dif-
ference between two distributions obtained using DWD can be
tested for statistical significance using the Direction-Projection-
Permutation (DiProPerm) test13. DiProPerm ensures statistical
specificity of the hypothesis test for two previously defined pop-
ulations (e.g., progressors vs non-progressors) by first finding a
separating direction (e.g. DWD), then projecting the data and using
a one dimensional summary of the separation (e.g. the difference of
the means as described in Ref. 13). Statistical significance is ob-
tained by a permutation approach (using 100 permutations), where
the class labels are randomly shuffled and the DWD direction,
projections, and the test statistic, are recomputed, giving a null
distribution whose quantiles are used to compute P-values. Since
this method treats the overall vector of features as a single data
object, there is less of a need for adjustment for multiple
comparisons.

As a next step, we examined loadings of the variables on the
DWD direction. These loadings demonstrate the relative contribu-
tion of each variable to the class difference (e.g. progressors
compared with non-progressors). Additionally, we explored k-
means clustering to partition the observations into subgroups,
with the number of subgroups based on published statistical
indices14e17. A z-score of at least 3 (corresponding to a P-value of
~0.001) was considered statistically significant.

An alternate visualization technique, t-distributed stochastic
neighbor embedding (t-SNE), was also applied18. This unsupervised
machine learning algorithm is designed to embed high-
dimensional data into a two to three-dimensional space to allow
improved visual clustering, through first constructing a probability
distribution in high dimensional space and then mapping this to a
parallel distribution in low-dimensional space (while minimizing
the relative entropy). We considered a range of perplexity tuning
parameters (which control the visual impression of clustering),
from 1 to 100, and 5,000 iterations (in the t-SNE optimization).
Because t-SNE visually distinguishes clusters but hides differing
relative distances between those clusters, DiProPerm (described
above) was used to quantify the difference between each pair of t-
SNE clusters. Principal components analysis (PCA) was applied,
using colors based on clusters obtained from t-SNE, in order to
visualize the contribution of the individual variables to these
different modes of variation. A bar plot of the PCA loadings (entries
of the eigenvector) was used to demonstrate which of the variables
were the most important factors in a given component, where the
height of the bar is representative of the loading, or importance, of
each variable.

https://nda.nih.gov/oai
http://marronwebfiles.sites.oasis.unc.edu/Matlab7Software/
http://marronwebfiles.sites.oasis.unc.edu/Matlab7Software/
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Results

The overall FNIH cohort study characteristics have been pub-
lished5,10. The final dataset for the present analysis included 597
participants, 59% women, with a mean age of 62 years and mean
BMI of 31 kg/m2.

When considering all observations and all variables simulta-
neously, the progressors and non-progressors clearly separated
with a z-score of 10.10 (Table I, Fig. 1). We explored k-means clus-
tering to partition the observations into two subgroups (the num-
ber most supported by the noted statistical indices). No statistical
improvement was seen with partitioning the observations into 2
clusters using k-means, so we did not further investigate the po-
tential drivers of these clusters. For example, using all variables,
there were significant z-scores for both clusters (6.19 and 4.77) but
neither was more significant than the overall z-score for all ob-
servations (10.10). We were also able to study the four sets of var-
iables separately, finding higher z-scores for the MRI variables
(11.62 for quantitative and 10.28 for semi-quantitative), with lower
scores for demographic and biochemical markers (1.47 and 2.43,
respectively). Again, lower z-scores were seen for the 2 clusters
compared with using all observations. Exploratory results of con-
trasts other than progressors vs non-progressors are shown in
Supplemental Table (A); the strongest results were seen for all
observations rather than the 2-cluster scenario for all hypotheses
with significant z-scores. The most significant results were seen for
the progressor vs non-progressor contrast discussed here and for
the contrast between those who did and did not progress by
radiographic criteria (regardless of pain, z-score ¼ 11.86 using all
observations).

We were specifically interested in the relative contributions of
each variable to the overall difference between progressors and
non-progressors, that is, which baseline variables were most
important in separating these two classes. Figure 2 shows the
DWD loadings, represented in a bar plot for the 40 variables with
the greatest contribution to the observed class difference. The
greatest contribution to non-progression (below the null) was
seen for greater WOMAC pain, lateral meniscal extrusion, and
serum N-terminal pro-peptide of collagen IIA (PIIANP). The largest
contributors to progression (above the null) were from the num-
ber of subregions with bone marrow lesions, the number of lo-
cations with any osteophyte, medial meniscal extrusion, and urine
C-terminal crosslinked telopeptide type II collagen (CTX-II, all
greater). Loadings of the 40 variables with the greatest contribu-
tionwhen the observations were divided into 2 clusters are shown
in the Supplement (Supplemental Figures (A) and (B)). For Cluster
1 (Supplemental Figure (A)), the variables with the greatest
contribution were similar to those observed using the overall data
(Fig. 2), while for Cluster 2 (Supplemental Figure (B)), there was a
greater contribution to progression (above the null) from osteo-
phyte number and pain medication use, but a smaller contribution
from urine biomarkers and bone marrow lesions. Cluster two also
demonstrated a greater contribution to non-progression (below
the null) from the serum biomarkers cartilage oligomeric matrix
protein (COMP) and crosslinked N-telopeptide of type I collagen
(NTX-1).
Table I
Z-scores derived from the DiProPerm test for the difference between those progressing

All variables Demographic variables Quantitativ

All observations 10.10 1.47 11.62
2 clusters 1 6.19 1.49 6.51

2 4.77 1.39 4.73

z-scores >3 are statistically significant at P < 0.001, in bold.
Using the t-SNE approach, four clusters were identified within
the dataset. Figure 3 shows the results using a perplexity parameter
of 20. On the left (A) is the t-SNE visualization with the points
colored based solely on the visual clusters. The right side of figure
(B), enables interpretation of the t-SNE clusters by associating the
colors with outcome and sex (chosen given its large contribution to
PC1), with the symbols identified in the legend. This demonstrates
that the clustering is primarily based on outcome and sex: the red
cluster is all men who did not progress, the green cluster is all
women who did not progress. The dark and light blue clusters
represent progressors but are not as clearly divided by sex. The dark
blue cluster primarily represents male progressors and the light
blue cluster female progressors, but there are some exceptions
[Fig. 3(B)].

Next, because t-SNE tends to hide relative distances between
clusters, the DiProPerm test was applied to quantify the difference
between the visual clusters obtained using t-SNE (Fig. 4). The re-
sults of DiProPerm testing between clusters demonstrates that the
difference between progressors and non-progressors within the
same sex (e.g., male on the left side of the figure in red and purple,
z-score ¼ 4.03, and female on the right side of the figure in green
and cyan, z-score ¼ 6.54) is much less than the difference between
men (red and purple clusters) and women (cyan and green clus-
ters), regardless of progression status (z-scores ¼ 38.22e47.18,
Fig. 4).

Additionally, we used PCA to visualize the driving factors of
differences among the four clusters identified by t-SNE
(Supplemental Figure (C)). Nearly 50% of the total variation is seen
in the first four principal components. To understand which vari-
ables are the dominant factors driving the variation in each prin-
cipal component, we can assess the loadings as done above (Fig. 2)
in the DWD direction. Thus, in Fig. 5, the loadings for principal
component one demonstrate the largest contribution from female
sex (as expected from the large sex difference noted above), but
also from several of the quantitative MRI variables related to
femoral and tibial cartilage volume, meniscal volume, and sub-
chondral bone area of the medial and lateral femur, patella, and
tibia. For principal component 2 (Supplemental Figure (D)), the
variables which contribute most to the differences between clus-
ters are those related to bone, including the number and maximal
bone marrow lesion score and the number and maximum osteo-
phyte score, as well as several of the cartilage morphology assess-
ments from semi-quantitative scoring, such as cartilage thickness
and surface scores. For principal component 3 (Supplemental
Figure (E)), the largest contributions are from use of pain medica-
tion and several biochemical markers: serum C-terminal cross-
linked telopeptide of type I collagen (CTX-I) and NTX-1, urine CTX-II
and NTX-I, and urine CTX-I alpha and beta. Principal component
four was essentially driven by side (right vs left, data not shown).

Discussion

Through application of novel machine learning methodologies
to the FNIH cohort study data, we were able to simultaneously
utilize all of the data, including MRI assessments, demographic and
clinical variables, and biochemical markers using a single statistical
by both radiographic and pain criteria vs non-progressors on either

e MRI variables Semi-Quantitative MRI variables Biochemical variables

10.28 2.43
5.72 2.01
5.78 0.97



Fig. 1. The difference between progressors and non-progressors in the Distance Weighted Discrimination (DWD) direction utilizing all data and all observations. A) Actual data
projected onto the DWD direction, with non-progressors in red and progressors in blue. B) The proportion of permuted values (black dots) greater than the test statistic (green
vertical line) is indicated by the P-value (~0) and the corresponding z-score (10.10), indicating a significant difference between the two classes.

Fig. 2. Loadings on the DWD direction showing the 40 measures with the greatest contribution to the difference between progressors and non-progressors (to progression above
the null and to non-progression below the null). BMI: Body mass index; CA: Creatinine adjusted; C12C: Col2-3/4 C-terminal cleavage product of types I and II collagen; C2C: Col2-3/
4 C-terminal cleavage product of human type II collagen; Coll21NO2: Nitrated epitope of the alpha-helical region of type II collagen; CPII: C-propeptide of type II collagen; CS846:
Chondroitin sulfate 846 epitope; CTXI, alpha, beta: C-terminal crosslinked telopeptide of type I collagen, alpha and beta; cartilage oligomeric matrix protein (COMP): Cartilage
oligomeric matrix protein; HA: Hyaluronan; MMP3: Matrix metalloproteinase 3; NTXI: Crosslinked N-telopeptide of type I collagen; PIIANP: N-terminal pro-peptide of collagen IIA;
CTXII: C-terminal crosslinked telopeptide type II collagen; Num: Number/count of regions/locations; Max: Maximum score; Cat: Categories; BML: Bone marrow lesion; OST:
Osteophyte; Men ExtMed: Meniscal extrusion medial; Men ExtLat: Meniscal extrusion lateral; Men Morph: Meniscal morphology; Cart MorphThick: Cartilage thickness score.
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hypothesis test, hence eliminating the need to adjust for multiple
comparisons to control for Type I error inflation. This type of data-
driven analysis can provide unanticipated insights into patterns in
data that are not easily observable through more traditional
methods and can therefore be hypothesis-generating. However, we
recognize that this analysis is a preliminary step, requiring further
internal validation using other methodology in this cohort as well
as external validation in other datasets to test the robustness of the
findings.

First, we were able to demonstrate clear separation of pro-
gressors from non-progressors using all of the available data
simultaneously with a highly significant z-score. In this part of the
analysis, each participant is represented by a point in high
dimensional space which includes information about all of their
other demographic, clinical, MRI, and biomarker characteristics,
such that all of this information is used when separating partici-
pants into outcome classes. This data-driven approach can there-
fore identify unsuspected patterns in the data more effectively and
efficiently than individual hypothesis-driven testing of the associ-
ation between each potential variable of interest and the outcome.
In doing this, we find that those variables with the greatest
contribution to identifying non-progressors included: WOMAC
pain, lateral meniscal extrusion, and serum PIIANP. While WOMAC
pain is counter-intuitive, this could indicate that those knees that
have greater pain at baseline are less likely to experience pro-
gression by the pain criterion (that is, their baseline pain was
already high and did not worsen).

Ipsilateral meniscal damage is known to be a risk factor for OA
incidence and progression19e22. Radiographic progression in the
FNIH cohort was defined as medial joint space loss of at least



Fig. 3. Groupings using t-distributed stochastic neighbor embedding (t-SNE), four machine learning-generated clusters (A, with arbitrary two-dimensional x and y axes and color
labels) and labeled based on progressor status (no change ¼ non-progressor; both worse ¼ progressor) and sex (B).

Fig. 4. Differences (z-scores from Direction-Projection-Permutation [DiProPerm]) between the 4 clusters identified using t-SNE. The colors again represent the clusters identified by
the algorithm (as in Fig. 3A). The lines indicate the difference being tested with DiProPerm and the resultant z-score.
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0.7 mm, so it is not unexpected that medial meniscal extrusionwas
a strong contributor to progression, while lateral meniscal extru-
sion contributed to non-progression in the medial compartment.
The contribution of serum PIIANP (a marker of collagen synthesis)
to the non-progressor classification is also supported in the litera-
ture, as elevated levels of this marker were associated with a lesser
burden of knee osteophytes and hip joint space narrowing (JSN)
(although interestingly not knee JSN) in the Genetics of Generalized
OA study23.

In contrast, the variables with the largest contribution to pro-
gression included: medial meniscal extrusion (discussed above),
the number of subregions with bonemarrow lesions, the number of
locations with any osteophyte, and urine CTX-II. Here again, the
findings of this data-driven approach are supported by the



Fig. 5. Principal Components Analysis (PCA) was used to demonstrate which variables were driving the differences among clusters. Here, the loadings (strength of loading rep-
resented by height of bar) onto the first principal component based on the t-SNE clusters are represented. Cart MorphSurf: Cartilage surface score; ACL: Anterior cruciate ligament;
TAB: Total Area of Subchondral Bone; LF/P/T: Lateral femur/patella/tibia; MF/P/T: Medial femur/patella/tibia; TRFLAT/Med: Total area of subchondral bone femoral trochlea lateral/
medial; Notch: Total area of subchondral bone femoral notch.
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literature. Bone marrow lesions are known to be associated with
knee OA progression24,25, and are often associated with ipsilateral
meniscal damage26. Baseline osteophytes are predictive of radio-
graphic progression27, although they may be indicative of me-
chanical derangements28. Urine CTX-II is arguably the most
consistent biomarker of knee OA progression29 and was previously
found to be predictive of case status in this cohort6. Interestingly,
synovitis by MRI was not identified by this analysis as a key pre-
dictor of progression, despite prior research suggesting its impor-
tance in this and other cohorts7,10,30.

When the observations were divided into clusters, cluster one
mirrored the overall results while some additional features were
noted in cluster 2, including a greater contribution to progression
from osteophyte number and pain medication use (potentially
indicating greater baseline disease and therefore risk of wors-
ening), but a smaller contribution from urine biomarkers and bone
marrow lesions. Cluster two also demonstrated a greater contri-
bution to non-progression (above the null) from the serum bio-
markers COMP (which is more often associated with incident
rather than progressive KOA31,32, and NTX-1 associated with
reduced cartilage loss33).

In this first application of t-SNE methodology in OA, we note
dramatic differences betweenmen andwomen, potentially arguing
for sex-stratified studies in KOA. Interestingly, groups of features
appeared in each principal component in reasonable fashion. The
first principal component from the t-SNE analysis was driven pri-
marily by the sex difference, but also by quantitative MRI features
such as cartilage and meniscal volume and subchondral bone area.
The mode of variation reflected in the principal component two
included bone marrow lesions, osteophytes, cartilage thickness and
surface scores from the semi-quantitative MRI assessments, while
principal component three included several of the baseline serum
and urine biomarkers, most notably serum CTX-I and NTX-1, urine
CTX-II and NTX-I, and urine CTX-I alpha and beta. These biomarkers
largely mirror those found to be significant in the prior publication
focused on baseline and 24-month time-integrated concentrations
of biomarkers in this cohort, representing six of the eight bio-
markers (all but serum Hyaluronan [HA] and urine Col2-3/4 C-
terminal cleavage product of human type II collagen [C2C]) asso-
ciated with worsening (defined there as pain, joint space
narrowing, or both)6. In that analysis, baseline urine CTX-II and
urine CTX-I alpha also significantly predicted progression6.

This analysis has many strengths, including the application of
novel machine learningmethodologywell-suited to the situation of
a large number of measures on a relatively small cohort (high
dimension low sample size; HDLSS). It allows a broad overview of
potential associations across many variables simultaneously. The
FNIH cohort is a well-characterized, publicly available cohort with
state-of-the-art imaging and biochemical biomarkers. However, as
it was designed to look for the best available imaging and
biochemical biomarkers, it did not include potentially novel
markers, limiting the capacity for new discoveries in analyses using
this dataset. The focus on proven markers and thus preselection of
likely key indicators in this cohort also limits our ability to consider
other predictive factors, and additional outcomes were not avail-
able. Other limitations of this analysis include a relative lack of
heterogeneity in the cohort overall, unknown generalizability to
other populations and time frames, and the focus on disease pro-
gression only (rather than prevalent or incident disease). Ideally,
external validation would be employed to confirm our findings;
however, there is a limited ability to generalize findings from this
cohort given the extensive set of assessments obtained that is not
readily replicable in other groups or in routine clinical practice. We
focused on a primary comparison between both progressors and
non-progressors, but future work could study additional compari-
sons in greater detail.

Conclusion

Utilizing novel machine learning methodology, we have effi-
ciently identified multiple variables that are most associated with
progressor status (e.g., bone marrow lesions, osteophytes, medial
meniscal extrusion, and urine CTX-II) in a large KOA dataset, and
noted a marked difference by sex. These innovative machine
learning methods provide a way to assess numerous variables of
different types and scalings simultaneously in relation to KOA
progression, and could be readily applied to other outcomes of
interest. While it is beyond the scope of the present analysis, such
methodology could identify both known and novel KOA pheno-
types, potentially improving patient selection for specific
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interventions, a goal of Precision Medicine, and providing insight
into pathophysiology in this heterogeneous condition.
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