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Abstract Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology.
The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream
neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study,
optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission
tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional
changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation
PET imaging demonstrated that the glucose metabolism significantly increased (P < 0.001) in dPAG, the
cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual
cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased
(P < 0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory
cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken
together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional
changes involved in the panic attacks after optogenetic stimulation to the dPAG.
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Introduction

Anxiety disorder is a prevalent mental disorder affecting
20% of individuals over a lifetime [1]. Panic disorder (PD),
a type of the anxiety disorder defined by the presence of
recurrent and unexpected panic attacks (PAs), is rarely
investigated. Several functional magnetic resonance ima-
ging (fMRI) and positron emission tomography (PET)
studies on PD patients have reported increased activity in
the midbrain periaqueductal gray matter (PAG), the

amygdala, and the anterior cingulate cortex [2–5].
Emerging evidence has implicated that the dorsal peri-
aqueductal gray matter (dPAG) is involved in the genesis
of PAs. Electrical stimulation of the dPAG in healthy
humans evokes emotional and autonomic responses that
resemble spontaneously occurring PAs in PD patients [6].
Further studies using a rodent model revealed that
stimulation of the dPAG induces defensive behaviors
(freezing and escape) [7] and neurovegetative reactions
(hypertension, tachycardia and tachypnea) [8]. These
responses in animal model resemble the PAs occurring in
healthy humans with dPAG stimulation or in PD patients
[9,10]. So far, the dPAG stimulation approach has been
recognized as a common model for preclinical PD studies.
Until now, PD animal models are mainly established by

chemical and electrical stimulation of the dPAG [11–16].
However, these two methods could not stimulate the dPAG
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precisely because of poor time response and low
specificity. Optogenetic stimulation, an emerging neuro-
modulation technology that utilizes light pulses to trigger
neural activity in vivo, is a powerful and precise method to
induce panic-like behaviors [17].
Traditionally, the effects of dPAG stimulation are

evaluated by c-Fos (a neuroactivity marker) immunohis-
tochemistry [18,19], which is invasive and at the ex vivo
level. Therefore, we hypothesized that PET, an in vivo and
non-invasive imaging technique, is suitable in screening
whole-brain activation patterns during PAs. Here, we used
PET imaging to map the downstream neurofunctional
changes after precise optogenetic stimulation to the dPAG
and to establish an optogenetic-PET paradigm for under-
standing the contribution of specific brain regions to PD.

Materials and methods

Animals

Male Sprague Dawley rats (body weight, 250–300 g) were
kept under standard laboratory conditions with food and
water ad libitum. The animal experiment was approved by
the Institutional Animal Care and Use Committee at
Zhejiang University School of Medicine (Protocol No.
ZJU201407-1-02-067).

Virus injection and fiber optic cannula implantation

Adeno-associated virus (AAV) carrying photosensitive

gene channelrhodopsi-2 (ChR2) with mCherry fluorescent
marker and CaMKIIα promoter (AAV2/9-CaMKIIα-
ChR2-mCherry, ChR2+) or AAV2/9-CaMKIIα-mCherry
(ChR2–) were prepared as previously described [17]. Rats
were randomly divided into either the experimental group
(ChR2+, n = 9) or the control group (ChR2–, n = 9). ChR2+

or ChR2– virus (300 nL) was infused into the dPAG at a
flow rate of 100 nL/min (coordinates: AP: -7.25 mm, ML:
1.8 mm from bregma; DV: -5.3 mm from the skull surface
angled 16° to the midline) by using stereotaxic guidance.
Two weeks after the virus injection, the rats were
implanted with a fiber optic cannula (200 mm, NA =
0.37) at 0.3 mm dorsally to the site of virus injection and
then kept for another week for complete recovery
(Fig. 1A).

Optogenetic stimulation and PET imaging

Optogenetic stimulation was performed as previously
described [20]. In brief, the rats were connected to the
optical fiber via the implanted cannula and placed in a
Plexiglas box (dimensions 52 cm � 38 cm � 44 cm) to
allow free movement. Then, optogenetic stimulation (50
Hz blue, 473 nm laser) was performed via the optical fiber
for 30 min with 30 s intervals (30 s on/30 s off) to induce
panic-like behaviors (details are provided in the supple-
mentary materials).
Baseline and post-optogenetic stimulation 18F-fluro-

deoxyglucose (18F-FDG) PET scans were performed on

Fig. 1 Experimental design and the site of optogenetic stimulation. (A) PET scanning and optogenetic stimulation protocol.
(B) Schematic showing panic-like defensive behaviors induced by 473 nm blue laser stimulation. (C) Schematic showing the site of target
nucleus undergoing the laser stimulation.
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the microPET R4 scanner (Siemens Medical Solutions)
within an interval of 3 days [21].

Immunostaining

After 3 weeks of virus injection, a batch of rats (n = 3 in
ChR2–, n = 3 in ChR2+) was sacrificed (without
stimulation) for c-Fos immunostaining to evaluate the
baseline neuronal activity of the dPAG. One week after the
second PET scan (stimulation), another batch of rats (n = 4
in ChR2–, n = 5 in ChR2+) was sacrificed for c-Fos
immunostaining to evaluate the effects of optogenetic
stimulation on the neuronal activity of the dPAG and
CaMKIIα immunostaining to examine the expression of
ChR2-mCherry in excitatory neurons of the dPAG
(Fig. 1A, details are provided in the supplementary
materials). CaMKIIα and c-Fos positive cells were counted
by using ImageJ software (NIH).

PET image and statistical analysis

PET images were analyzed by Statistical Parametric
Mapping software. Paired t-tests were performed to
evaluate regional metabolic differences between baseline
and post-stimulation PET images. Statistical significance
was determined when P value < 0.001 and cluster
Ke > 100 [22].
To measure glucose metabolic changes in the dPAG

following optogenetic stimulation, the region of interest
(ROI) was drawn on PET images by using PMOD
(v.3.902, PMOD Technologies Ltd.) software. The 18F-
FDG uptake of the dPAG was normalized to the whole
brain (dPAG activity/whole-brain activity) [20]. Two-way
repeated-measures ANOVA was used to compare glucose
metabolic changes between the baseline and post-stimula-
tion PET imaging.
Independent t-test was conducted to compare the

number of c-Fos positive cells in the dPAG with or
without the optogenetic stimulation. Data were presented
as mean � SEM, and P < 0.05 was considered signifi-
cant. Pearson correlation analysis was performed to assess
the relation between c-Fos expression and glucose
metabolism (GluM) in the dPAG after optogenetic
stimulation.

Results

Panic-like behaviors induced by precise optogenetic
stimulation

We found obvious panic-like behaviors, such as galloping,
jumping, and rotation, in the ChR2+ rats after precise
optogenetic stimulation to the excitatory neurons of dPAG

but not in the ChR2– control (Fig. 1B and 1C, supplemental
Videos 1 and 2).

Brain glucose utilization in response to optogenetic
stimulation of the dPAG

In the ChR2+ group, post-optogenetic stimulation PET
images demonstrated that the 18F-FDG accumulation
significantly increased in the dPAG, the cuneiform
nucleus, the cerebellar lobule, the cingulate cortex, the
alveus of the hippocampus, the primary visual cortex, the
septohypothalamic nucleus, and the retrosplenial granular
cortex (P < 0.001 in each comparison) but decreased in
the basal ganglia, the frontal cortex, the forceps minor
corpus callosum, the primary somatosensory cortex, the
primary motor cortex, the secondary visual cortex, and the
dorsal lateral geniculate nucleus (P < 0.001 in each
comparison) compared with the baseline (Table 1,
Fig. 2A, and supplemental Fig. S1A). However, this
widespread pattern was not found in the ChR2– control
(supplemental Fig. S1B).

Furthermore, we performed ROI analysis of the dPAG to
confirm the effects of optogenetic stimulation on the
regional glucose accumulation. Compared with the base-
line, the glucose metabolism in the dPAG significantly
increased in the ChR2+ group after optogenetic stimulation
(P < 0.001), but a different phenomenon was observed in
the ChR2– control. Additionally, the ChR2+ group had
significantly increased glucose metabolism in the dPAG
after optogenetic stimulation compared with the ChR2–

control (P < 0.01) (Fig. 2B and 2C).

ChR2 expression and fiber optic cannula implantation

Immunofluorescent results confirmed the appropriate
expression of ChR2 and the precise implantation of the
fiber optic cannula (Fig. 3A). Furthermore, CaMKIIα
immunostaining tests verified the specificity and efficacy
of AAV virus (ChR2+ and ChR2–) expression in the
excitatory neurons of the dPAG (Fig. 3B and 3C).

C-Fos expression in the dPAG after optogenetic
stimulation

After optogenetic stimulation, c-Fos expression
(P < 0.001) significantly increased in the ChR2+ group
compared with the ChR2– control, whereas no significant
difference was found between the ChR2+ and ChR2–

groups without the stimulation (Fig. 4A and 4B). More-
over, glucose metabolic changes in both ChR2+ and ChR2–

groups significantly correlated with the c-Fos expression in
the dPAG after optogenetic stimulation (Fig. 4C).
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Discussion

In the present study, precise optogenetic stimulation to the
excitatory neurons of dPAG induced panic-like behaviors,
and the glucose metabolism significantly increased in the
dPAG, the cuneiform nucleus, the cerebellar lobule, the
cingulate cortex, the alveus of the hippocampus, the
primary visual cortex, the septohypothalamic nucleus, and
the retrosplenial granular cortex but decreased in the basal
ganglia, the frontal cortex, the forceps minor corpus
callosum, the primary somatosensory cortex, the primary
motor cortex, the secondary visual cortex, and the dorsal
lateral geniculate nucleus. Moreover, increased glucose
metabolism in the dPAG was associated with the over-
expression of c-Fos.
Glucose provides the fuel for physiologic brain function,

including the generation of action potentials and post-
synaptic potentials [23], which could reflect the changes in
brain activity, both in laboratory animals and humans
[20,24]. After optogenetic activation with ChR2, glucose
accumulation (activation) increased in the region of
stimulation and the downstream nuclei (via the direct or
indirect excitatory projection) but decreased in the down-
stream nuclei (via an increase in the activity of inhibitory
circuits) [20]. To the best of our knowledge, this PET study
is the first to evaluate glucose metabolic changes after
precise optogenetic stimulation to the excitatory neurons of
the dPAG.
Previously, chemical induction or electrical stimulation

of dPAG was performed to induce intense symptoms of
PAs in animal models [12,16]. However, compared with
electrical and chemical methods, optogenetic techniques
could avoid non-specific activation/inhibition with super-
ior spatiotemporal resolution [25–27]. In the present study,
we demonstrated that precise optogenetic stimulation to
the excitatory neurons of dPAG could induce panic-like
behaviors successfully. In addition, increased glucose
metabolism was associated with c-Fos expression at the
site of optogenetic stimulation of the dPAG. This result is
consistent with the previous results on PET study in which
optogenetic stimulation with ChR2 activated neurons in
the region where light was delivered [20].
Increased glucose metabolism in the cuneiform nucleus

after optogenetic stimulation of the dPAG was observed in
our study, supporting that the cuneiform nucleus is the
direct descending projection region of the dPAG [28,29].
The cuneiform nucleus is involved in organizing panic-like
defensive behaviors, and chemical stimulation of this
nucleus could induce freezing and escape behaviors in
rodents [29]. Furthermore, a recent diffusion weighted
imaging study on monkey and human demonstrated that
the cuneiform nucleus could project to the sensorimotor
territories of basal ganglia, which is decreased in glucose
metabolism in our PET imaging results [30]. The basal
ganglia’s primary function is likely to control and regulate
activities of the motor and premotor cortical areas so that
voluntary movements can be performed smoothly [31].
Previous studies have also shown that PAG can descend

into the cerebellum [32,33], which can mediate the

Table 1 Significant metabolic changes after optogenetic stimulation of the dPAG (baseline vs. stimulation)

Brain region
Coordinate (mm)

Ke T value Z score Puncorrected
x y z

Increased

Dorsal periaqueductal gray 1 5 -7 3051 15.66 4.27 <0.001

Cuneiform nucleus -2 6 -8 7.83 3.46 <0.001

Cerebellar lobule 1 2 -13 1312 10.47 3.81 <0.001

Cingulate cortex 1 2 2 221 7.05 3.32 <0.001

Alveus of the hippocampus -6 4 -7 1305 8.44 3.55 <0.001

Primary visual cortex -4 2 -9 7.87 3.46 <0.001

Septohypothalamic nucleus -1 6 0 962 18.40 4.45 <0.001

Retrosplenial granular cortex 0 2 -3 158 7.47 3.40 <0.001

Decreased

Basal ganglia 3 5 2 1694 8.00 3.49 <0.001

Frontal cortex 4 4 4 8.04 3.49 <0.001

Forceps minor corpus callosum -3 3 4 7173 19.35 4.50 <0.001

Primary somatosensory cortex -5 5 1 16.93 4.36 <0.001

Primary motor cortex -3 2 2 10.17 3.78 <0.001

Secondary visual cortex -3 1 -5 890 14.61 4.20 <0.001

Dorsal lateral geniculate nucleus 3 4 -4 1073 11.95 3.97 <0.001
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preferential encoding of movement speed [34]. This result
is in conjunction with the increased metabolic activity in
the cerebellum lobe in our PET results. Clinically, patients
with PD show increased regional cerebral blood flow
within the anterior cingulate cortex during anticipatory
anxiety [5,35]. Our results of increased glucose metabo-
lism in the anterior cingulate cortex are in line with the
above PET study. The anterior cingulate is involved in
automatic attentional control as well as in response to
selection and conflict monitoring, thus enabling rapid
access to the motor system [36].
In the current study, increased glucose metabolism was

observed in the alveus of the hippocampus that contains
input and output pathways for the hippocampus, which is
consistent with a study of PD patients using 18F-FDG PET
with lactate infusion stimulation [37]. Taking these pieces
of evidence together, we assume that the hippocampus is
involved in the complex panic behaviors. Conversely,
glucose metabolism in the right inferior parietal and
superior temporal areas presented no change in our animal
study but decreased in the same areas in the PD patient

study because of the difference of research subjects (rat vs.
human) and type of stimulation (precise optogenetic
stimulation vs. diffuse lactate provocation).
The panic animal model used in this study was

established mainly based on criteria of behavior evaluation
according to previous studies [14,15,17]. In future studies,
we will use more physiologic parameters (such as heart
rate, body temperature, micturition, and defecation) on the
panic animal model for further investigating the mechan-
ism of related neural circuits.
In summary, the approach of combining optogenetics

and PET used in this study may identify the specific brain
function patterns of panic-like behaviors in rats. Greater
insights into the neural connectivity of brain regions
involved in the PD may be gained by future PET studies
that combine patch-clamp and viral tracing technologies in
the same subjects. In addition, brain network analysis
methods, such as dynamic causal modeling for optogenetic
fMRI experiments [38], might also contribute to further
PET studies in parameterizing causal relationships among
regions of a distributed brain network.

Fig. 2 In vivo 18F-FDG PET images of the rat brain. (A) Representative sagittal (top), transverse (middle), and coronal (bottom) PET
images demonstrated alternation of glucose metabolism in the dPAG, the cuneiform nucleus (CnF), cerebellar lobule (Cb), cingulate
cortex (Cg), basal ganglia (BG) after dPAG stimulation (n = 6 in each group; P < 0.001). (B) ROI results showed glucose metabolism
(GluM) in the region of stimulation. (C) Individual metabolic values (normalized to whole brain) in the dPAG cluster during the baseline
and stimulation PET scans in the ChR2– (left) and ChR2+ (right) groups (n = 6 in each group; ***P < 0.001, **P < 0.01).
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Fig. 3 Expression of AAV2/9-CaMKIIα-(ChR2)-mCherry in the excitatory neurons of dPAG. (A) Left: Diagrams showing the virus
injection site in the dPAG. Right: Representative fluorescent images confirming the fiber position (the tract) and expression of ChR2 (the
red mCherry signal) in the dPAG. (B) Representative immunofluorescent images showing the co-expression of CaMKIIα and mCherry in
the ChR2– and ChR2+ groups. (C) Quantification showed that CaMKIIα– and mCherry+ cells were less than 8% of the total mCherry+

neurons in each group. Meanwhile, mCherry+ and CaMKIIα+ cells were more than 70% of the total CaMKIIα+ neurons in each group (n =
4 in ChR2–, n = 5 in ChR2+).

Fig. 4 Expression of c-Fos in the dPAG with or without stimulation. (A) Representative immunofluorescent images showed expression
of c-Fos with or without stimulation in the ChR2– and ChR2+ groups. (B) Quantification of c-Fos positive cells in the dPAG with (n = 4 in
ChR2–, n = 5 in ChR2+; ***P < 0.001) or without (n = 3 in each group; N.S., no significance) stimulation. (C) Correlation between c-Fos
expression and GluM in the dPAG after stimulation (n = 4 in ChR2–, n = 5 in ChR2+; r = 0.5955, P = 0.0149).
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Conclusions

18F-FDG PET could map neurofunctional changes after
optogenetic stimulation to the dPAG during PAs. This
optogenetic-PET paradigm could help us understand the
role of specific brain regions in the pathogenesis of PD.
Future studies are required to better delineate the
contribution of the dPAG in PD and its functional
connectivity with other brain regions.
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