

Complex regional pain syndrome: a focus on the autonomic nervous system

Lone F. Knudsen¹ · Astrid J. Terkelsen² · Peter D. Drummond³ · Frank Birklein⁴

Received: 25 January 2019 / Accepted: 7 May 2019 / Published online: 18 May 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Purpose Although autonomic features are part of the diagnostic criteria for complex regional pain syndrome (CRPS), the role of the autonomic nervous system in CRPS pathophysiology has been downplayed in recent years. The purpose of this review is to redress this imbalance.

Methods We focus in this review on the contribution of the autonomic nervous system to CRPS pathophysiology. In particular, we discuss regional sympathetic and systemic autonomic disturbances in CRPS and the mechanisms which may underlie them, and consider links between these mechanisms, immune disturbances and pain.

Results The focused literature research revealed that immune reactions, alterations in receptor populations (e.g., upregulation of adrenoceptors and reduced cutaneous nerve fiber density) and central changes in autonomic drive seem to contribute to regional and systemic disturbances in sympathetic activity and to sympathetically maintained pain in CRPS.

Conclusions We conclude that alterations in the sympathetic nervous system contribute to CRPS pathology. Understanding these alterations may be an important step towards providing appropriate treatments for CRPS.

Keywords Complex regional pain syndrome · Sympathetic nervous system · Central disturbances in autonomic activity · Immune system

Complex regional pain syndrome: an introduction

Complex regional pain syndrome (CRPS) is a painful distally generalized condition of an extremity that is a source of great psychological distress for the person affected. The syndrome may develop after peripheral nerve injury (CRPS type II) or after tissue injury to a limb such as a fracture,

contusion or sprain combined with immobilization (CRPS type I) [13]. It is characterized by changes in skin temperature in the affected limb [47], and by local sweating abnormalities, edema and changes in hair and nail growth [11, 58]. The skin may appear glossy, and muscle weakness develops [11]. In the later stages, the limb typically becomes cold [14], and tremor and dystonia may develop [11].

After many years of research, we have made significant progress in understanding CRPS pathophysiology. We still do not know why only a minority of trauma patients develop CRPS, but the first step in CRPS pathophysiology might be posttraumatic immune activation, which is most obvious in primarily “warm” CRPS cases during the acute phase [27]. Careful clinical observation reveals signs of inflammation such as redness, swelling, hyperthermia, pain and trophic changes such as hypertrophic scarring. Keratinocytes proliferate and produce proinflammatory cytokines as part of the innate immune response [9]. Cytokines themselves activate connective tissue cells, which leads to the contractures [6], high-turnover osteoporosis and bone loss associated with CRPS [129]. Cytokines further induce sensitization of peripheral nociceptors and second-order neurons in the

All authors contributed equally.

✉ Frank Birklein
Frank.Birklein@unimedizin-mainz.de

¹ The Danish National Rehabilitation Centre for Neuromuscular Diseases, Aarhus, Denmark

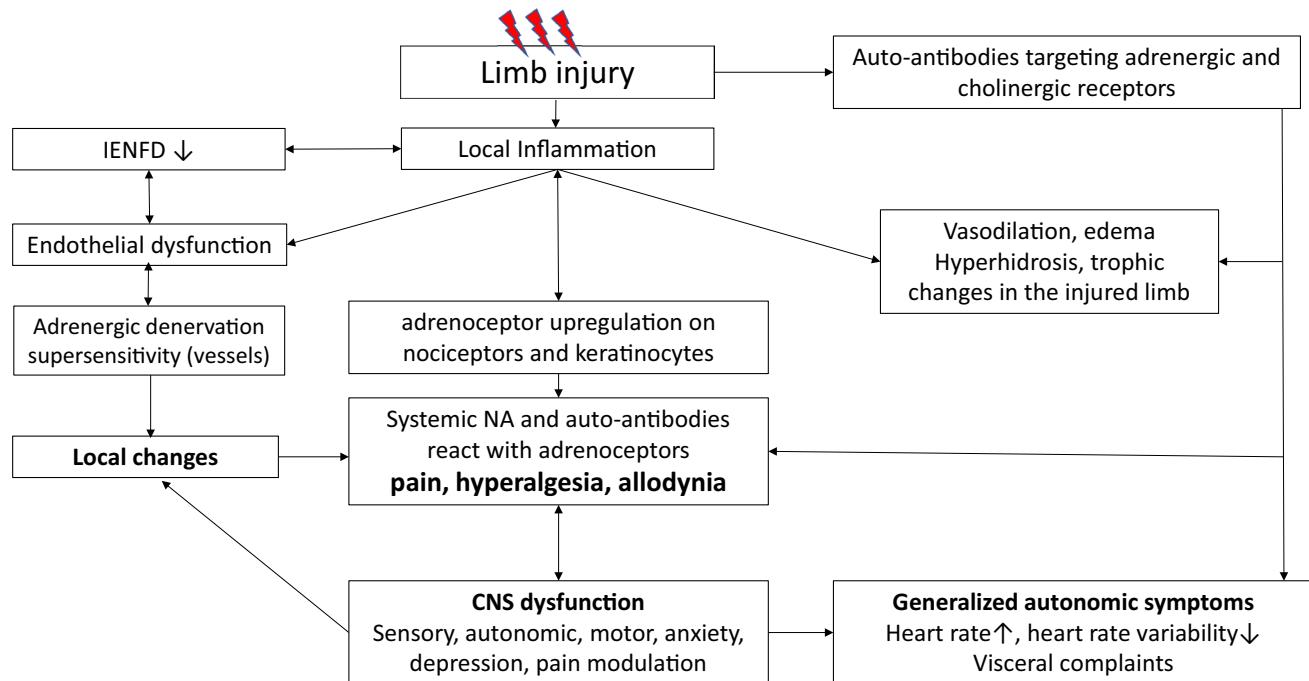
² Danish Pain Research Center, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark

³ College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia

⁴ Department of Neurology, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany

spinal cord with subsequent mechanical hyperalgesia, and they facilitate release of neuropeptides from primary nociceptive afferents [91]. Neuropeptides such as calcitonin gene-related peptide (CGRP) and substance P (SP) are released from the cytokine-sensitized nociceptors and induce a phenomenon known as neurogenic inflammation, which could be responsible for reddening, warmth and edema in acute CRPS [128]. Another peptide, endothelin 1, contributes to cold, bluish skin [57]. Throughout the course of CRPS, most of these signs normalize, which demonstrates a change in pathophysiology [75].

The second important mechanism of CRPS pathophysiology is detrimental plasticity in the central nervous system, which develops as a consequence of ongoing, probably inflammation-related posttraumatic pain and the associated peripheral and central sensitization. For instance, shrinkage of the representation area of the CRPS limb in the contralateral primary somatosensory cortex is seen [81]. Inflammatory pain after trauma increases during movement or weight bearing and can be avoided by limb nonuse. Although speculative, it seems plausible that longer-lasting nociceptive input to the spinal cord and brain in combination with inhibition of the motor output to the limb could lead to changes in sensorimotor integration in the brain. Sustained pain intensity and hyperalgesia in the CRPS limb are associated with the degree of cortical reorganization, and when pain is reduced, cortical reorganization normalizes [82], suggesting that pain and peripheral sensitization drive these changes. If pain disappears shortly after the trauma, this central reorganization would not develop, and we would not diagnose CRPS but normal trauma healing. Thus, central neuroplasticity, i.e. maladaptive “learned nonuse” [93], is especially—but not exclusively—important for CRPS beyond the acute phase. Pain avoidance results in a pathological movement pattern (e.g., while walking), which again increases the pain through nonphysiological muscle and joint load. Other consequences of chronic limb pain and cortical reorganization in CRPS might be the impairment of somatosensory perception [21, 98] or a body midline shift towards the healthy side, and perception of the CRPS extremity as being distorted [87]. Mechanical allodynia is another consequence of central changes in somatosensory processing in the spinal cord or the brain [50, 80]. Pain intensity, hyperalgesia and tactile impairment are all associated with the extent of cortical reorganization [82]. Conversely, graded sensorimotor retuning results not only in normalization of tactile discrimination and cortical maps but also in decreased pain [92]. Thus, cortical reorganization could reflect or perhaps even contribute to tactile impairment and pain in CRPS.


Autonomic features are encapsulated in the diagnostic criteria for CRPS. Nevertheless, despite a long history of human research, the role of the sympathetic nervous system in CRPS pathophysiology has been downplayed in recent

years. This is particularly perplexing, as the recent detection of agonistic serum autoantibodies against adrenergic and cholinergic receptors renders an autonomic-immune system interaction very likely [45, 72]. To attempt to redress this imbalance, we focus in this review on the contribution of the sympathetic nervous system to CRPS pathophysiology. The role of inflammation and central neuroplasticity in CRPS pathophysiology was recently reviewed by our group [7, 8]. While the focus has usually been on local changes in blood flow and sweating driven by postganglionic sympathetic nerve fibers in the CRPS limb, it is likely that systemic and/or central disturbances in autonomic function also play a role in CRPS. Below we consider mechanisms that might mediate local and systemic sympathetic disturbances in CRPS, and discuss links between these mechanisms, immune disturbances and pain. An overview of the links between the mechanisms can be seen in Fig. 1.

Local sympathetic disturbances

The affected limb may alternate between warmth and cold over the course of the day [105, 111]. This phenomenon cannot be fully explained by local inflammation as, in this case, the limb should invariably be warm. Sweating often is increased in the affected limb [29]. This appears to involve local neurogenic inflammation [106], particularly in the early stages, and a disturbance in central thermoregulation [10].

Using whole-body warming and cooling, which modulates activity in postganglionic sympathetic nerve fibers that supply dermal blood vessels and sweat glands, three distinct patterns of temperature abnormalities were identified [124, 126]. In acute CRPS type I patients with a mean pain duration of 4 months, the affected limb was persistently warmer and skin perfusion higher than in the contralateral limb; this could be due to inflammation but might also reflect a loss of vasoconstrictor reflexes to cold in the affected limb [125, 126]. In patients with intermediate CRPS type I (mean duration of 15 months), the affected limb either was warmer than the contralateral limb when the body was warmed and colder than the contralateral limb when the body was cooled, or vice versa. In patients with a longer disease duration (mean of 28 months), temperature and perfusion were persistently lower in the affected than the contralateral limb during body warming and cooling. Similarly, in a recent international multisite study of 152 patients with CRPS, median CRPS duration was shorter, and symptoms of inflammation were more prevalent in the warm than cold CRPS subtype [14]. In addition, clinical symptoms of inflammation declined during a 3-month follow-up period, suggesting that if inflammatory mechanisms contribute directly to increases in limb temperature, they do so for a limited period after injury.

Fig. 1 The contribution of the autonomic nervous system to CRPS. The trauma is the trigger. Local inflammation not only causes visible inflammatory symptoms but also upregulates α_1 -adrenoceptors on keratinocytes and nociceptors, resulting in pain and hyperalgesia because nociceptors become responsive to locally or systemically released noradrenaline (NA) during sympathetic nervous system (SNS) activity. Keratinocyte activation by NA reinforces inflammation. Simultaneously, autoantibodies which were either prevalent before or developed in response to the trauma activate these upregulated adrenoceptors and bind to neurons at the injury site and to distant autonomic organs. This further enhances the pain and causes unusual autonomic symptoms. Chronic pain triggers disturbances in CNS (brain) regions which control not only autonomic functions

but also sensory perception and motor activity, pain modulation and psychological factors. These CNS changes in particular reinforce pain (e.g., via increased NA in the bloodstream or defective pain modulation) and contribute to generalized autonomic, sensory and motor problems. At the site of the injury (left column), inflammation probably reduces intraepidermal nerve fiber density (IENFD) and causes endothelial dysfunction, which both in turn prolong inflammation. It is also possible that reduced IENFD is present prior to injury. Reduced IENFD is associated with aberrant sympathetic innervation and subsequent increased responsiveness of the adrenoceptors on the blood vessels. This contributes to local perfusion disturbances and probably also to nociceptor activation

One of the difficulties associated with establishing CRPS thermal subtypes is that skin temperature varies substantially with physical activity and depends largely on ambient conditions. Since skin temperature appears to be less responsive to ambient conditions in the affected than the contralateral limb, skin temperature asymmetry (i.e., the affected extremity is warmer or colder than the contralateral extremity) may depend principally on cutaneous vasoconstrictor activity in the contralateral limb [73]. A perfusion index, calculated as the ratio of the pulsatile to nonpulsatile component of a photoplethysmograph signal, appears to be more sensitive than skin temperature in detecting vasomotor abnormalities in CRPS [20]. However, this method also relies on comparisons with the contralateral limb, and the stability of this index across different ambient conditions is yet to be explored.

The shift in limb temperature and perfusion from acute to chronic CRPS suggests that vasomotor disturbances evolve over time. However, not all patients follow this sequence,

as the limb remains warm in some patients even after many years, whereas others report decreased skin temperature from the outset [14]. Moreover, clinical findings and risk factors for developing CRPS differ between warm and cold types of similar duration. This indicates that these two different phenotypes are not only a consequence of disease duration but may represent different underlying mechanisms [14, 47]. For example, patients with cold CRPS are more likely to have a history of serious life events and chronic pain disorders, and to develop CRPS-related dystonia. Furthermore, cold CRPS presents with cold-induced pain and sensory loss, whereas patients with warm CRPS are more likely to have mechanical hyperalgesia [47].

Older studies in patients with reflex sympathetic dystrophy (RSD—a diagnostic forerunner of CRPS [112]) indicated that venous levels of the neurotransmitters noradrenaline and neuropeptide Y (probably from tissue spillover) were lower in the affected than the contralateral healthy limb in both the acute-warm and chronic-cold stages [4,

41, 58]. These findings were interpreted to mean that loss of sympathetic vasoconstrictor activity in the affected limb resulted in a warm limb in the acute-warm stage of CRPS. However, in the chronic-cold stage of CRPS, reduced release of neurotransmitters could trigger a secondary increase in responsiveness of vascular α -adrenoceptors [17, 119], resulting in a cold and blue limb. In support of this view, superficial veins in the affected limb are more responsive to adrenergic stimulation than veins in the contralateral limb [2]. This increased responsiveness seems not to invariably involve changes in α_1 -adrenoceptor density on blood vessels, as their bilateral expression was similar to that of healthy controls in patients with CRPS type I or II [36, 44, 49]. Augmentation of the responsiveness rather than increased density of adrenoceptors on vascular smooth muscle might be the best explanation [122]. For example, the presence of adrenoceptor supersensitivity, in conjunction with normal (or reduced) levels of cutaneous noradrenaline in chronic CRPS [116], might explain the cold and bluish limb in chronic CRPS.

At first glance, it seems plausible that these sympathetic mechanisms (i.e., denervation supersensitivity of blood vessels) are responsible for a decreased tissue hypo-oxygenation and possible acidosis in the affected limb [71], perhaps in combination with endothelial dysfunction [46, 104]. Sympathetic denervation alone does not affect endothelial function [19], but possibly impacts in conjunction with inflammatory mechanisms as discussed above [30, 78]. That the sympathetic deficit alone cannot explain the sympathetic disturbances in CRPS is illustrated by CRPS mimicked by forced immobilization of a limb in healthy subjects. In particular, skin temperature increased in the immobilized limb; however, limb immobilization did not influence vasoconstrictor responses to mental stress or deep breaths [115].

In addition to investigations of adrenoceptor density in blood vessels, adrenoceptor density has been investigated in sweat glands, nerve bundles and epidermal cells of CRPS-affected skin [49]. Expression of α_1 -adrenoceptors on sweat glands was similar in patients with CRPS and healthy controls. However, α_1 -adrenoceptor expression was greater on dermal nerve fibers and epidermal cells in CRPS-affected skin compared to healthy controls [49]. Interestingly, in patients with CRPS-I, this was seen in both the CRPS limb and the contralateral limb, whereas it was present in only the CRPS limb in CRPS-II. This might reflect a more systemic response to injury in CRPS-I or a preexisting vulnerability in CRPS-I. Pain intensity was associated with the staining intensity of adrenoceptors in epidermal cells [49]. Epidermal cells such as keratinocytes influence nociception by releasing ligands including proinflammatory mediators that act on sensory nerve fibers [65, 76, 130]. Thus, the heightened expression of adrenoceptors on keratinocytes and nociceptors may augment inflammatory disturbances and pain after

limb injury as shown in Fig. 1. However, this will need to be investigated further.

Systemic and/or central autonomic disturbances

Although regional venous noradrenaline levels are lower in the affected than the contralateral limb [43, 59], elsewhere in the circulation catecholamine plasma levels (norepinephrine and epinephrine) appear to be higher in patients with CRPS than in healthy controls [60]. Accordingly, heart rate is increased and heart rate variability reduced in CRPS patients compared with healthy controls [5, 117]. This could be a specific autonomic manifestation of CRPS but might also be linked to pain, anxiety or stress. In any case, high systemic levels of catecholamines may contribute to sympathetic disturbances and pain in the CRPS-affected limb by acting on upregulated α_1 -adrenoceptors on nerve bundles and epidermal cells [36], as displayed in Fig. 1. Consistent with this, intradermal injection of the α_1 -adrenoceptor agonist phenylephrine evoked prolonged pain and pinprick hyperalgesia in patients with CRPS with greater expression of α_1 -adrenoceptors on nerve bundles [44].

Central autonomic dysfunction

Very intriguing are findings which support the view that cortical mechanisms contribute to autonomic disturbances in CRPS. For example, simply thinking about moving the painful limb increased pain and swelling in both CRPS patients and pain controls. In CRPS, this was more so in patients with chronic symptoms, catastrophic thoughts about pain and movement, and autonomic arousal in the initial stages of imagined movement [88]. In patients with cold-type CRPS of one hand, the position of the CRPS hand in relation to the body midline influenced its temperature. Temperature increased and pain decreased in the CRPS hand when it crossed the midline to the healthy body side [87]. Intriguingly, this was found to depend on the perceived rather than the actual position of the hands in relation to the body midline—specifically, when patients wore prism glasses to laterally shift the visual field by 20°, the affected hand warmed up when it was perceived to be on the healthy side of the body midline, whereas the healthy hand cooled down when it was perceived to be on the affected side of the body midline even when the hand had not physically crossed the midline [86]. That is, the cortical representation of the hands in relation to the body midline not only modulated pain but also influenced temperature [87, 113].

To investigate the central component of autonomic symptoms in CRPS, patients with CRPS type I were compared with stroke patients whose sympathetic symptoms

(temperature asymmetry, sweating abnormalities) in the paretic limb originated centrally. Similar patterns of autonomic dysfunction, with decreased temperature and increased thermoregulatory sweating in the affected limb, were found in patients with stroke and chronic CRPS, suggesting that these symptoms can be explained, at least in part, by central nervous system pathology [97]. Accordingly, findings of cortical changes (gray matter atrophy) in brain regions controlling autonomic functions such as the ventromedial frontal cortex and the right anterior portion of the insula in patients with CRPS [50] also suggest a central origin of autonomic dysfunction in CRPS. These cortical changes strengthen with pain duration and intensity. Reduced right anterior insula activity is seen in patients with autonomic failure [25, 26], suggesting that the insula regulates autonomic function. The ventromedial prefrontal cortex projects to the hypothalamus and the brain stem, which link emotional responses with autonomic bodily reactions and pain. Thus, the ventromedial prefrontal cortex may play a role in both pain and widespread autonomic abnormalities in CRPS [50].

Generalized pattern of sympathetic dysfunction

Symptoms such as sweating and changes in temperature and skin color, together with pain, may spread beyond the affected limb to the opposite limb or from an arm to a leg [83]. The prevalence of this is unknown, but may be related to a longer disease duration [121]. Consistent with generalized sympathetic dysfunction, rewarming after a cold challenge was impaired in the non-symptomatic limb of patients with reflex sympathetic dystrophy (a diagnostic forerunner of CRPS) [64]. Similarly, a diminished vasoconstrictor response to an inspiratory gasp and contralateral cooling was found in the affected and to a minor degree in the contralateral hand of posttraumatic CRPS patients [107, 108, 123]. In addition, cooling either the contralateral or affected hand failed to reduce nail-fold skin capillary blood cell velocity or skin blood flow in either hand, unlike in healthy controls [99, 100]. In contrast, vasodilatation to local heating appeared to be unimpaired [55]. Together, these findings suggest bilateral autonomic disturbances in CRPS rather than a disturbance limited to the CRPS-affected limb.

Link between autonomic and immune disturbances in CRPS

In response to the trauma, during the acute stage of CRPS, activation of the innate immune system appears to be associated with proliferation and activation of mast cells and keratinocytes, release of inflammatory mediators (e.g., cytokines, neuropeptides) and exaggerated nociceptive

signaling [9]. Antigen-presenting cells, such as dendritic cells, are a major source of proinflammatory cytokines, which are key drivers of the proinflammatory cascade. Under normal conditions, norepinephrine inhibits the production of proinflammatory cytokines, including TNF- α , from these cells by acting on β -adrenoceptors [56]. However, epidermal dendritic cells also express α_1 -adrenoceptors [110], and these receptors additionally become expressed in inflamed lymphoid tissue and on circulating lymphocytes in patients with chronic inflammatory disease [68]. In particular, the expression of the α_{1A} -adrenoceptor subtype is driven by inflammatory mediators such as TNF- α and IL-1 β [62]. In turn, exposure to norepinephrine increases the production of the proinflammatory cytokine interleukin-6 (IL-6) in cells that express these α_1 -adrenoceptors [62, 101].

Cutaneous nerve fiber density appears to be compromised in CRPS, not only in the affected limb [90] but also in the contralateral unaffected limb [85, 96], perhaps as a predisposing factor prior to injury or as a response to inflammation or endothelial dysfunction (see Fig. 1). Although not addressed in studies of CRPS, the relationship between reduced cutaneous nerve fiber density, skin inflammation and endothelial dysfunction has been convincingly demonstrated in several studies of other conditions [24, 79]. Reduced cutaneous nerve fiber density may compromise chemotactic signaling between nerve fibers and mast cells, as a bilateral reduction in dermal nerve fiber density in CRPS was accompanied by a bilateral reduction in proximity between surviving nerve fibers and dermal mast cells [85]. This could be important, as mast cells are involved not only in innate and acquired immunity but also in all phases of wound healing [31]. Thus, failure of mast cell–nerve fiber communication could prolong inflammation and delay healing. Activation of α -adrenoceptors hinders the production of nerve growth factor [95]. Hence, an upregulation of α -adrenoceptors could inhibit the production of nerve growth factor and neurite outgrowth in CRPS, thereby compromising communication with mast cells [85]. The reduced cutaneous nerve fiber density in CRPS may also be associated with the aberrant sympathetic responses mentioned earlier [2].

The prevalence of agonistic autonomic receptor autoantibodies is high in CRPS [52]. Specific immunoglobulin G serum autoantibodies, which activate $\beta 2$ adrenoceptors, or M2 muscarinic receptors, were first identified in early CRPS. The antibody effects on live cells were blocked by co-application of synthetic peptides located on these receptors' second extracellular loops [72]. Enzyme-linked immunosorbent assays (ELISAs) coated with these peptides detected CRPS sera with high specificity and sensitivity [7]. Surface binding was confirmed by flow cytometry in most preparations. These autoantibodies belonged to IgG1–3 subclasses, and there was no cross-reactivity between them [63]. More

recently, the effects of serum immunoglobulins derived from patients with long-standing CRPS were examined in adult rodent cardiomyocytes. Findings showed activation of either α_{1A} adrenoceptors or muscarinic receptors. These activating antibodies bound with high affinity [45]. Subsequent flow cytometric and spectrofluorometric analysis suggested the presence of distinct pathways of antibody-induced α_{1A} adrenoceptor activation. Additional approaches for identifying autoantibodies in CRPS include the *in vivo* passive transfer trauma model and *in vitro* studies on primary dorsal root ganglion neurons. In small studies, rodents that received injections of CRPS patient IgG, unlike animals that received control IgG injections, developed significantly enhanced mechanical hyperalgesia and swelling only in injured hindpaws [53, 114]. This finding suggests that pathogenic autoantibodies may develop their activity only in the context of injury, consistent with the posttraumatic development of CRPS.

Consistent with the autoantibody hypothesis, visceral autonomic complaints such as voiding dysfunctions or urinary incontinence, diarrhea and constipation have been reported in patients with CRPS type I [18, 23, 120]. Alternatively, this widespread autonomic impairment could involve a redistribution of target receptors (e.g., α_1 -adrenoceptors) [32, 44, 49].

Do sympathetic disturbances contribute to pain in CRPS?

Normally, activation of the sympathetic nervous system is not associated with pain [3, 48], and primary afferent A δ fibers and C fibers are not activated or sensitized by sympathetic activity [48, 67]. However, intradermal injection of the neurotransmitter noradrenaline is painful in a subgroup of patients with CRPS [1, 118]. In a recent international multisite study [44], immunohistochemistry was used to investigate the distribution of α_1 -adrenoceptors on nerve fibers and other targets in the affected skin of 90 patients, and in relation to pain and pinprick hyperalgesia evoked by intradermal injection of the α_1 -adrenoceptor agonist phenylephrine. Expression of α_1 -adrenoceptors in nerve bundles was greater on the affected side in patients with CRPS II than in those with CRPS I, particularly within the distribution of the injured nerve, and was greater during the first 12 months of CRPS than later on. In addition, neuronal expression of α_1 -adrenoceptors in the CRPS-affected limb was greater in patients who reported prolonged pain and pinprick hyperalgesia around the phenylephrine injection site than in patients with transient pain after the injection, suggesting that these receptors mediate pain and hyperalgesia in a subgroup of patients, as shown in Fig. 1. Conversely, the α_1 -adrenoceptor antagonist prazosin inhibited allodynia and

hyperalgesia when applied topically to the affected area in patients with an adrenergic component of pain [33].

Posttraumatic inflammation, as discussed in the introduction, might be a co-contributor to sympathetically maintained pain in CRPS, as the sprouting of sympathetic nerve fibers in dorsal root ganglia [84, 94] or in the upper dermis of the skin [102] may be triggered by inflammatory mediators or growth factors [127] which are released in response to the initial trauma (see Fig. 1). Alternatively, another mechanism might be via prostaglandin production, as noradrenaline stimulates de novo synthesis of prostaglandin E2 and prostaglandin I2 *in vitro* by sympathetic postganglionic neurons [54]. Further possibilities as to how posttraumatic inflammation impacts on sympathetic function include an influence of inflammatory mediators such as TNF α and IL-1 β on α -adrenoceptor populations [61] or on access of agonists to these receptors within nerve fascicles [34, 35]. In addition, noradrenaline could directly activate α_1 -adrenoceptors on lesioned or regenerating nociceptive afferents [28, 36, 49], in turn triggering the release of neuropeptides from peptidergic nociceptors [77] and contributing to neuropeptide release and neurogenic inflammation and nociceptor activation [51, 66]. Consistent with this possibility, intradermal injection of the α_1 -adrenoceptor agonist phenylephrine evoked prolonged pain and hyperalgesia in patients with elevated expression of neural α_1 -adrenoceptors in the CRPS-affected limb [44]. However, the contribution of sympathetic activity to pain in CRPS appears to decline with progression of the disease [103].

Stimuli that activate the sympathetic nervous system, such as mental stress, sensory conflict, acoustic startle or skin cooling, increase pain in the majority of CRPS patients [12, 15, 69, 70]. In contrast, these stimuli reduce heat hyperalgesia in the capsaicin-sensitized skin of healthy volunteers [42]. Cutaneous sympathetic vasoconstrictor outflow increases strongly during whole-body cooling. In a study of patients with CRPS type I [3], the intensity and area of spontaneous pain and mechanical hyperalgesia increased during whole-body cooling in patients in whom pain decreased after sympathetic blockade, but did not change in patients without this therapeutic response. Since the pain reduction after sympathetic blocks was greater than the pain increase after body cooling, the authors concluded that sympathetic–nociceptive coupling is not restricted to the skin but also takes place in the deep somatic tissue. Similarly, conflicting sensory (visual) stimuli, such as the Necker cube, increased pain in conjunction with abnormal autonomic activity (asymmetric vasomotor responses) in CRPS patients [22]. However, electrophysiological investigation of the interaction between 54 nociceptive afferent and sympathetic efferent fibers with microneurography failed to show a direct link in 11 patients with CRPS type II or 13 patients with CRPS type I [16]. Therefore, indirect mechanisms of arousal–pain

interaction (e.g., an increase in muscle tone that activates deep somatic sensitized afferents [103]) must be also considered. Randomized controlled studies on the efficacy of sympathetic blocks which include an appropriate number of CRPS patients are urgently needed to determine the clinical usefulness of sympathetic blocks [89].

Importantly, in some patients, stimuli that increase sympathetic activity result in pain even after effective regional sympathetic blockade [37], implying that a mechanism independent of peripheral sympathetic neuronal activity in the CRPS-affected limb contributes to pain in these patients. Catecholamines circulating in the bloodstream could conceivably activate upregulated α_1 -adrenoceptors on nociceptive afferents in the symptomatic limb. Alternatively, arousal responses might disrupt activity in central pain modulation pathways. For example, this might involve diminished activity in bulbospinal pain-inhibitory pathways or enhanced activity in pain-facilitatory pathways, as both of these pain modulation processes appear to be compromised, at least in chronic CRPS [109]. Decreased adaptation to repetitive noxious electrical stimulation was, for instance, reported for both the CRPS limb and the contralateral limb compared to healthy controls, indicating reduced inhibition of nociceptive input. In addition, an increased area of pinprick hyperalgesia appeared in the CRPS limb, consistent with increased facilitation of nociception [109]. Similarly, pressure sensitivity increased or remained stable in the forehead of patients with CRPS during noxious cold water immersion of a limb, whereas pressure sensitivity decreased in the forehead of healthy volunteers [69]. However, the ability to inhibit nociceptive input appeared to be intact in acute CRPS [74].

Hyperalgesia and allodynia in the CRPS-affected limb appear to be associated with hemisensory or upper quadrant deficits [98], indicative of functional disturbances in nociceptive processing in the thalamus. Intriguingly, nociceptive sensitivity to mechanical and thermal stimuli is greater on the symptomatic than the non-symptomatic side of the body in the majority of patients [38, 40, 69]. Furthermore, increases in pain evoked by acoustic startle and forehead cooling are greater when these stimuli are presented on the symptomatic than on the non-symptomatic side of the body [39, 69]. Hence, pain modulation processes may fail on the symptomatic side.

Conclusions

It now seems clear that immune reactions, alterations in receptor populations and/or central changes in autonomic drive contribute to local and systemic disturbances in autonomic activity and to sympathetically maintained pain in CRPS. This complex scenario, highlighted in our review and visualized in Fig. 1, raises several questions for future

research. For example, how does sympathetic activity interact with inflammation, and why does the inflammatory response and the sympathetic contribution eventually subside? Is the decrease in sympathetic vasoconstrictor activity in the symptomatic limb a direct response to injury or part of a broader systemic disturbance? What role does nonuse of the injured limb play in producing symptoms? Answering these questions is important, because a clearer understanding of autonomic disturbances in CRPS could lead to new and successful treatment approaches.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of interest.

References

- Ali Z, Raja SN, Wesselmann U, Fuchs PN, Meyer RA, Campbell JN (2000) Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. *Pain* 88:161–168
- Arnold JMO, Teasell RW, MacLeod AP, Brown JE, Carruthers SG (1993) Increased venous alpha-adrenoreceptor responsiveness in patients with reflex sympathetic dystrophy. *Ann Int Med* 118:619–621
- Baron R, Schattschneider J, Binder A, Siebrecht D, Wasner G (2002) Relation between sympathetic vasoconstrictor activity and pain and hyperalgesia in complex regional pain syndromes: a case-control study. *Lancet* 359:1655–1660
- Baron R, Schwarz K, Kleinert A, Schattschneider J, Wasner G (2001) Histamine-induced itch converts into pain in neuropathic hyperalgesia. *NeuroReport* 12:3475–3478
- Barut G, Vatine JJ, Raphaely-Beer N, Peleg S, Katz-Leurer M (2014) Heart rate autonomic regulation system at rest and during paced breathing among patients with CRPS as compared to age-matched healthy controls. *Pain Med* 15:1569–1574
- Bianchi E, Taurone S, Bardella L, Signore A, Pompili E, Sessa V, Chiappetta C, Fumagalli L, Di Gioia C, Pastore FS, Scarpa S, Artico M (2015) Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren's contracture: a novel target for a possible future therapeutic strategy? *Clin Sci (Lond)* 129:711–720
- Birklein F, Ajit SK, Goebel A, Perez R, Sommer C (2018) Complex regional pain syndrome—phenotypic characteristics and potential biomarkers. *Nat Rev Neurol* 14:272–284
- Birklein F, Dimova V (2017) Complex regional pain syndrome—up-to-date. *Pain Rep* 2:e624
- Birklein F, Drummond PD, Li W, Schlereth T, Albrecht N, Finch PM, Dawson LF, Clark JD, Kingery WS (2014) Activation of cutaneous immune responses in complex regional pain syndrome. *J Pain* 15:485–495
- Birklein F, Riedl B, Claus D, Neundörfer B (1998) Pattern of autonomic dysfunction in time course of complex regional pain syndrome. *Clin Aut Res* 8:79–85
- Birklein F, Riedl B, Sieweke N, Weber M, Neundorfer B (2000) Neurological findings in complex regional pain syndromes—analysis of 145 cases. *Acta Neurol Scand* 101:262–269
- Breimhorst M, Dellen C, Wittayer M, Rebhorn C, Drummond PD, Birklein F (2018) Mental load during cognitive performance in complex regional pain syndrome I. *Eur J Pain* 22:1343–1350

13. Bruehl S (2015) Complex regional pain syndrome. *Bmj* 351:h2730
14. Bruehl S, Maihofner C, Stanton-Hicks M, Perez RS, Vatine JJ, Brunner F, Birklein F, Schlereth T, Mackey S, Mailis-Gagnon A, Livshitz A, Harden RN (2016) Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample. *Pain* 157:1674–1681
15. Brun C, Mercier C, Grieve S, Palmer S, Bailey J, McCabe CS (2018) Sensory disturbances induced by sensorimotor conflicts are higher in complex regional pain syndrome and fibromyalgia compared to arthritis and healthy people, and positively relate to pain intensity. *Eur J Pain* 23:483–494
16. Campero M, Bostock H, Baumann TK, Ochoa JL (2010) A search for activation of C nociceptors by sympathetic fibers in complex regional pain syndrome. *Clin Neurophysiol* 121:1072–1079
17. Cannon WB, Rosenbleuth A (1949) The supersensitivity of denervated structures. A law of denervation. MacMillan, New York
18. Chancellor MB, Shenot PJ, Rivas DA, Mandel S, Schwartzman RJ (1996) Urological symptomatology in patients with reflex sympathetic dystrophy. *J Urol* 155:634–637
19. Charkoudian N, Eisenach JH, Atkinson JL, Fealey RD (1985) Joyner MJ (2002) Effects of chronic sympathectomy on locally mediated cutaneous vasodilation in humans. *J Appl Physiol* 92:685–690
20. Chung K, Kim KH, Kim ED (2018) Perfusion index as a reliable parameter of vasomotor disturbance in complex regional pain syndrome. *Br J Anaesth* 121:1133–1137
21. Cohen H, McCabe C, Harris N, Hall J, Lewis J, Blake DR (2013) Clinical evidence of parietal cortex dysfunction and correlation with extent of allodynia in CRPS type 1. *Eur J Pain* 17:527–538
22. Cohen HE, Hall J, Harris N, McCabe CS, Blake DR, Janig W (2012) Enhanced pain and autonomic responses to ambiguous visual stimuli in chronic complex regional pain syndrome (CRPS) type I. *Eur J Pain* 16:182–195
23. Collins S, van Hilten JJ, Marinus J, Zuurmond WW, de Lange JJ, Perez RS (2008) Development of a symptoms questionnaire for complex regional pain syndrome and potentially related illnesses: the Trauma Related Neuronal Dysfunction Symptoms Inventory. *Arch Phys Med Rehabil* 89:1114–1120
24. Cossu M, Andracco R, Santaniello A, Marchini M, Severino A, Caronni M, Radstake T, Beretta L (2016) Serum levels of vascular dysfunction markers reflect disease severity and stage in systemic sclerosis patients. *Rheumatology (Oxford)* 55:1112–1116
25. Critchley HD, Good CD, Ashburner J, Frackowiak RS, Mathias CJ, Dolan RJ (2003) Changes in cerebral morphology consequent to peripheral autonomic denervation. *Neuroimage* 18:908–916
26. Critchley HD, Mathias CJ, Dolan RJ (2001) Neuroanatomical basis for first- and second-order representations of bodily states. *Nat Neurosci* 4:207–212
27. David Clark J, Tawfik VL, Tajerian M, Kingery WS (2018) Auto-inflammatory and autoimmune contributions to complex regional pain syndrome. *Mol Pain* 14:1744806918799127
28. Dawson LF, Phillips JK, Finch PM, Inglis JJ, Drummond PD (2011) Expression of alpha1-adrenoceptors on peripheral nociceptive neurons. *Neuroscience* 175:300–314
29. de Boer RD, Marinus J, van Hilten JJ, Huygen FJ, van Eijs F, van Kleef M, Bauer MC, van Gestel M, Zuurmond WW, Perez RS (2011) Distribution of signs and symptoms of complex regional pain syndrome type I in patients meeting the diagnostic criteria of the international association for the study of pain. *Eur J Pain* 15:830.e1–830.e8
30. Derenthal N, Maecken T, Krumova E, Germing A, Maier C (2013) Morphological macrovascular alterations in complex regional pain syndrome type I demonstrated by increased intima-media thickness. *BMC Neurol* 13:14
31. Douaiher J, Succar J, Lancerotto L, Gurish MF, Orgill DP, Hamilton MJ, Krilis SA, Stevens RL (2014) Development of mast cells and importance of their tryptase and chymase serine proteases in inflammation and wound healing. *Adv Immunol* 122:211–252
32. Drummond ES, Dawson LF, Finch PM, Bennett GJ, Drummond PD (2014) Increased expression of cutaneous alpha1-adrenoceptors after chronic constriction injury in rats. *J Pain* 15:188–196
33. Drummond ES, Maker G, Birklein F, Finch PM, Drummond PD (2016) Topical prazosin attenuates sensitivity to tactile stimuli in patients with complex regional pain syndrome. *Eur J Pain* 20:926–935
34. Drummond PD (1998) Enhancement of thermal hyperalgesia by alpha-adrenoceptors in capsaicin-treated skin. *J Auton Nerv Syst* 69:96–102
35. Drummond PD (2009) alpha(1)-Adrenoceptors augment thermal hyperalgesia in mildly burnt skin. *Eur J Pain* 13:273–279
36. Drummond PD, Drummond ES, Dawson LF, Mitchell V, Finch PM, Vaughan CW, Phillips JK (2014) Upregulation of alpha1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II. *Pain* 155:606–616
37. Drummond PD, Finch PM (2004) Persistence of pain induced by startle and forehead cooling after sympathetic blockade in patients with complex regional pain syndrome. *J Neurol Neurosurg Psychiatry* 75:98–102
38. Drummond PD, Finch PM (2006) Sensory changes in the forehead of patients with complex regional pain syndrome. *Pain* 123:83–89
39. Drummond PD, Finch PM (2014) A disturbance in sensory processing on the affected side of the body increases limb pain in complex regional pain syndrome. *Clin J Pain* 30:301–306
40. Drummond PD, Finch PM, Birklein F, Stanton-Hicks M, Knudsen LF (2018) Hemisensory disturbances in patients with complex regional pain syndrome. *Pain* 159:1824–1832
41. Drummond PD, Finch PM, Edvinsson L, Goadsby PJ (1994) Plasma neuropeptide Y in the symptomatic limb of patients with causalgic pain. *Clin Aut Res* 4:113–116
42. Drummond PD, Finch PM, Skipworth S, Blockley P (2001) Pain increases during sympathetic arousal in patients with complex regional pain syndrome. *Neurology* 57:1296–1303
43. Drummond PD, Finch PM, Smythe GA (1991) Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentrations in affected and unaffected limbs. *Brain* 114:2025–2036
44. Drummond PD, Morellini N, Finch PM, Birklein F, Knudsen LF (2018) Complex regional pain syndrome: intradermal injection of phenylephrine evokes pain and hyperalgesia in a subgroup of patients with upregulated alpha1-adrenoceptors on dermal nerves. *Pain* 159:2296–2305
45. Dubuis E, Thompson V, Leite MI, Blaes F, Maihofner C, Green-smith D, Vincent A, Shenker N, Kuttikat A, Leuwer M, Goebel A (2014) Longstanding complex regional pain syndrome is associated with activating autoantibodies against alpha-1a adrenoceptors. *Pain* 155:2408–2417
46. Duman I, Sanal HT, Dincer K, Kalyon TA (2008) Assessment of endothelial function in complex regional pain syndrome type I. *Rheumatol Int* 28:329–333
47. Eberle T, Doganci B, Kramer HH, Geber C, Fechir M, Magerl W, Birklein F (2009) Warm and cold complex regional pain syndromes: differences beyond skin temperature? *Neurology* 72:505–512
48. Elam M, Macefield VG (2004) Does sympathetic nerve discharge affect the firing of myelinated cutaneous afferents in humans? *Auton Neurosci* 111:116–126

49. Finch PM, Drummond ES, Dawson LF, Phillips JK, Drummond PD (2014) Up-regulation of cutaneous alpha1-adrenoceptors in complex regional pain syndrome type I. *Pain Med* 15:1945–1956

50. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. *Neuron* 60:570–581

51. Gibbs GF, Drummond PD, Finch PM, Phillips JK (2008) Unravelling the pathophysiology of complex regional pain syndrome: focus on sympathetically maintained pain. *Clin Exp Pharmacol Physiol* 35:717–724

52. Goebel A, Blaes F (2013) Complex regional pain syndrome, prototype of a novel kind of autoimmune disease. *Autoimmun Rev* 12:682–686

53. Goebel A, Leite MI, Yang L, Deacon R, Cendan CM, Fox-Lewis A, Vincent A (2011) The passive transfer of immunoglobulin G serum antibodies from patients with longstanding complex regional pain syndrome. *Eur J Pain* 15(504):e501–e506

54. Gonzales R, Sherbourne CD, Goldyne ME, Levine JD (1991) Noradrenaline-induced prostaglandin production by sympathetic postganglionic neurons is mediated by alpha 2-adrenergic receptors. *J Neurochem* 57:1145–1150

55. Gorodkin R, Herrick AL, Murray AK (2016) Microvascular response in patients with complex regional pain syndrome as measured by laser Doppler imaging. *Microcirculation* 23:379–383

56. Goyarts E, Matsui M, Mammone T, Bender AM, Wagner JA, Maes D, Granstein RD (2008) Norepinephrine modulates human dendritic cell activation by altering cytokine release. *Exp Dermatol* 17:188–196

57. Groeneweg JG, Huygen FJ, Heijmans-Antoniissen C, Niehof S, Zijlstra FJ (2006) Increased endothelin-1 and diminished nitric oxide levels in blister fluids of patients with intermediate cold type complex regional pain syndrome type 1. *BMC Musculoskelet Disord* 7:91

58. Harden RN, Bruehl S, Stanton-Hicks M, Wilson PR (2007) Proposed new diagnostic criteria for complex regional pain syndrome. *Pain Med* 8:326–331

59. Harden RN, Duc TA, Williams TR, Coley D, Cate JC, Gracely RH (1994) Norepinephrine and epinephrine levels in affected versus unaffected limbs in sympathetically maintained pain. *Clin J Pain* 10:324–330

60. Harden RN, Rudin NJ, Bruehl S, Kee W, Parikh DK, Kooch J, Duc T, Gracely RH (2004) Increased systemic catecholamines in complex regional pain syndrome and relationship to psychological factors: a pilot study. *Anesth Analg* 99:1478–1485

61. Heijnen CJ, Rouppe van der Voort C, van de Pol M, Kavelaars A (2002) Cytokines regulate alpha(1)-adrenergic receptor mRNA expression in human monocytic cells and endothelial cells. *J Neuroimmunol* 125:66–72

62. Heijnen CJ, Rouppe van der Voort C, Wulffraat N, van der Net J, Kuis W, Kavelaars A (1996) Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. *J Neuroimmunol* 71:223–226

63. Hendrickson JE, Hendrickson ET, Gehrie EA, Sidhu D, Wallukat G, Schimke I, Tormey CA (2015) Complex regional pain syndrome and dysautonomia in a 14-year-old girl responsive to therapeutic plasma exchange. *J Clin Apher* 31:368–374

64. Herrick A, El-Hadidy K, Marsh D, Jayson M (1994) Abnormal thermoregulatory responses in patients with reflex sympathetic dystrophy syndrome. *J Rheumatol* 21:1319–1324

65. Hou Q, Barr T, Gee L, Vickers J, Wymer J, Borsani E, Rodella L, Getsios S, Burdo T, Eisenberg E, Guha U, Lavker R, Kessler J, Chittur S, Fiorino D, Rice F, Albrecht P (2011) Keratinocyte expression of calcitonin gene-related peptide beta: implications for neuropathic and inflammatory pain mechanisms. *Pain* 152:2036–2051

66. Jähnig W, Baron R (2003) Complex regional pain syndrome: mystery explained? *Lancet Neurol* 2:687–697

67. Jähnig W, Koltzenburg M (1991) What is the interaction between the sympathetic terminal and the primary afferent fiber? In: Basbaum AI, Besson JM (eds) Towards a new pharmacotherapy of pain. Dahlem workshop reports. Wiley, Chichester, pp 331–352

68. Kavelaars A (2002) Regulated expression of alpha-1 adrenergic receptors in the immune system. *Brain Behav Immun* 16:799–807

69. Knudsen L, Finch PM, Drummond PD (2011) The specificity and mechanisms of hemilateral sensory disturbances in complex regional pain syndrome. *J Pain* 12:985–990

70. Knudsen LF, Drummond PD (2015) Optokinetic stimulation increases limb pain and forehead hyperalgesia in complex regional pain syndrome. *Eur J Pain* 19:781–788

71. Koban M, Leis S, Schultze-Mosgau S, Birklein F (2003) Tissue hypoxia in complex regional pain syndrome. *Pain* 104:149–157

72. Kohr D, Singh P, Tschnernatsch M, Kaps M, Pouokam E, Diener M, Kummer W, Birklein F, Vincent A, Goebel A, Wallukat G, Blaes F (2011) Autoimmunity against the beta2 adrenergic receptor and muscarinic-2 receptor in complex regional pain syndrome. *Pain* 152:2690–2700

73. Krumova EK, Frettloh J, Klauenberg S, Richter H, Wasner G, Maier C (2008) Long-term skin temperature measurements—a practical diagnostic tool in complex regional pain syndrome. *Pain* 140:8–22

74. Kumowski N, Hegelmaier T, Kolbenschlag J, Maier C, Mainka T, Vollert J, Enax-Krumova E (2017) Unimpaired endogenous pain inhibition in the early phase of complex regional pain syndrome. *Eur J Pain* 21:855–865

75. Lenz M, Uceyler N, Frettloh J, Hoffken O, Krumova EK, Lissek S, Reinersmann A, Sommer C, Stude P, Waaga-Gasser AM, Tegenthoff M, Maier C (2013) Local cytokine changes in complex regional pain syndrome type I (CRPS I) resolve after 6 months. *Pain* 154:2142–2149

76. Li WW, Guo TZ, Li XQ, Kingery WS, Clark JD (2010) Fracture induces keratinocyte activation, proliferation, and expression of pro-nociceptive inflammatory mediators. *Pain* 151:843–852

77. Lin Q, Zou X, Fang L, Willis WD (2003) Sympathetic modulation of acute cutaneous flare induced by intradermal injection of capsaicin in anesthetized rats. *J Neurophysiol* 89:853–861

78. Lorenz M, Wilck N, Meiners S, Ludwig A, Baumann G, Stangl K, Stangl V (2009) Proteasome inhibition prevents experimentally-induced endothelial dysfunction. *Life Sci* 84:929–934

79. Maddison B, Parsons A, Sangueza O, Sheehan DJ, Yosipovitch G (2011) Retrospective study of intraepidermal nerve fiber distribution in biopsies of patients with nummular eczema. *Am J Dermatopathol* 33:621–623

80. Maihofner C, Handwerker HO, Birklein F (2006) Functional imaging of allodynia in complex regional pain syndrome. *Neurology* 66:711–717

81. Maihofner C, Handwerker HO, Neundorfer B, Birklein F (2003) Patterns of cortical reorganization in complex regional pain syndrome. *Neurology* 61:1707–1715

82. Maihofner C, Handwerker HO, Neundorfer B, Birklein F (2004) Cortical reorganization during recovery from complex regional pain syndrome. *Neurology* 63:693–701

83. Maleki J, LeBel AA, Bennett GJ, Schwartzman RJ (2000) Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). *Pain* 88:259–266

84. McLachlan EM, Janig W, Devor M, Michaelis M (1993) Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. *Nature* 363:543–546

85. Morellini N, Finch PM, Goebel A, Drummond PD (2018) Dermal nerve fibre and mast cell density, and proximity of mast cells to nerve fibres in the skin of patients with complex regional pain syndrome. *Pain* 159:2021–2029

86. Moseley GL, Gallace A, Di Pietro F, Spence C, Iannetti GD (2013) Limb-specific autonomic dysfunction in complex regional pain syndrome modulated by wearing prism glasses. *Pain* 154:2463–2468

87. Moseley GL, Gallace A, Iannetti GD (2012) Spatially defined modulation of skin temperature and hand ownership of both hands in patients with unilateral complex regional pain syndrome. *Brain* 135:3676–3686

88. Moseley GL, Zalucki N, Birklein F, Marinus J, van Hilten JJ, Luomajoki H (2008) Thinking about movement hurts: the effect of motor imagery on pain and swelling in people with chronic arm pain. *Arthritis Rheum* 59:623–631

89. O'Connell NE, Wand BM, Gibson W, Carr DB, Birklein F, Stanton TR (2016) Local anaesthetic sympathetic blockade for complex regional pain syndrome. *Cochrane Database Syst Rev* 7:CD004598

90. Oaklander AL, Rissmiller JG, Gelman LB, Zheng L, Chang Y, Gott R (2006) Evidence of focal small-fiber axonal degeneration in complex regional pain syndrome-I (reflex sympathetic dystrophy). *Pain* 120:235–243

91. Oprea A, Kress M (2000) Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. *J Neurosci* 20:6289–6293

92. Plegier B, Tegenthoff M, Ragert P, Forster AF, Dinse HR, Schwenkreis P, Nicolas V, Maier C (2005) Sensorimotor returning in complex regional pain syndrome parallels pain reduction. *Ann Neurol* 57:425–429

93. Punt TD, Cooper L, Hey M, Johnson MI (2013) Neglect-like symptoms in complex regional pain syndrome: learned nonuse by another name? *Pain* 154:200–203

94. Ramer MS, Thompson SW, McMahon SB (1999) Causes and consequences of sympathetic basket formation in dorsal root ganglia. *Pain Suppl* 6:S111–S120

95. Rana OR, Saygili E, Meyer C, Gemein C, Krutgen A, Andrzejewski MG, Ludwig A, Schotten U, Schwinger RH, Weber C, Weis J, Mischke K, Rassaf T, Kelm M, Schauerte P (2009) Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. *J Mol Cell Cardiol* 46:568–578

96. Rasmussen VF, Karlsson P, Drummond PD, Schaldebose EL, Terkelsen AJ, Jensen TS, Knudsen LF (2018) Bilaterally reduced intraepidermal nerve fiber density in unilateral CRPS-I. *Pain Med* 19:2021–2030

97. Riedl B, Beckmann T, Neundorfer B, Handwerker HO, Birklein F (2001) Autonomic failure after stroke—is it indicative for pathophysiology of complex regional pain syndrome? *Acta Neurol Scand.* 103:27–34

98. Rommel O, Malin JP, Zenz M, Janig W (2001) Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits. *Pain* 93:279–293

99. Rosen L, Ostergren J, Fagrell B, Strandén E (1988) Skin microvascular circulation in the sympathetic dystrophies evaluated by videophotometric capillaroscopy and laser Doppler fluxmetry. *Eur J Clin Invest* 18:305–308

100. Rosen L, Ostergren J, Roald OK, Strandén E, Fagrell B (1989) Bilateral involvement and the effect of sympathetic blockade on skin microcirculation in the sympathetic dystrophies. *Microvasc Res* 37:289–297

101. Roupe vd V, Heijnen CJ, Wulffraat N, Kuis W, Kavelaars A (2000) Stress induces increases in IL-6 production by leucocytes of patients with the chronic inflammatory disease juvenile rheumatoid arthritis: a putative role for alpha(1)-adrenergic receptors. *J Neuroimmunol* 110:223–229

102. Ruocco I, Cuello AC, Ribeiro-Da-Silva A (2000) Peripheral nerve injury leads to the establishment of a novel pattern of sympathetic fibre innervation in the rat skin. *J Comp Neurol* 422:287–296

103. Schattschneider J, Binder A, Siebrecht D, Wasner G, Baron R (2006) Complex regional pain syndromes: the influence of cutaneous and deep somatic sympathetic innervation on pain. *Clin J Pain* 22:240–244

104. Schattschneider J, Hartung K, Stengel M, Ludwig J, Binder A, Wasner G, Baron R (2006) Endothelial dysfunction in cold type complex regional pain syndrome. *Neurology* 67:673–675

105. Schilder JC, Niehof SP, Marinus J, van Hilten JJ (2015) Diurnal and nocturnal skin temperature regulation in chronic complex regional pain syndrome. *J Pain* 16:207–213

106. Schlereth T, Dittmar JO, Seewald B, Birklein F (2006) Peripheral amplification of sweating—a role for calcitonin gene-related peptide. *J Physiol* 576:823–832

107. Schurmann M, Grädl G, Andress HJ, Furst H, Schildberg FW (1999) Assessment of peripheral sympathetic nervous function for diagnosing early post-traumatic complex regional pain syndrome type I. *Pain* 80:149–159

108. Schurmann M, Grädl G, Zaspel J, Kayser M, Lohr P, Andress HJ (2000) Peripheral sympathetic function as a predictor of complex regional pain syndrome type I (CRPS I) in patients with radial fracture. *Auton Neurosci Basic Clin* 86:127–134

109. Seifert F, Kiefer G, DeCol R, Schmelz M, Maihofner C (2009) Differential endogenous pain modulation in complex-regional pain syndrome. *Brain* 132:788–800

110. Seiffert K, Hosoi J, Torii H, Ozawa H, Ding W, Campton K, Wagner JA, Granstein RD (2002) Catecholamines inhibit the antigen-presenting capability of epidermal langerhans cells. *J Immunol* 168:6128–6135

111. Sethna NF, Meier PM, Zurakowski D, Berde CB (2007) Cutaneous sensory abnormalities in children and adolescents with complex regional pain syndromes. *Pain* 131:153–161

112. Stanton-Hicks M, Jänig W, Hassenbusch S, Haddox JD, Boas RA, Wilson PR (1995) Reflex sympathetic dystrophy: changing concepts and taxonomy. *Pain* 63:127–133

113. Sumitani M, Rossetti Y, Shibata M, Matsuda Y, Sakaue G, Inoue T, Mashimo T, Miyauchi S (2007) Prism adaptation to optical deviation alleviates pathologic pain. *Neurology* 68:128–133

114. Tekus V, Hajna Z, Borbely E, Markovics A, Bagoly T, Szolcsanyi J, Thompson V, Kemeny A, Helyes Z, Goebel A (2014) A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome. *Pain* 155:299–308

115. Terkelsen AJ, Bach FW, Jensen TS (2008) Experimental forearm immobilization in humans induces cold and mechanical hyperalgesia. *Anesthesiology* 109:297–307

116. Terkelsen AJ, Gierthmuhlen J, Petersen LJ, Knudsen L, Christensen NJ, Kehr J, Yoshitake T, Madsen CS, Wasner G, Baron R, Jensen TS (2013) Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating. *Exp Neurol* 247:456–465

117. Terkelsen AJ, Molgaard H, Hansen J, Finnerup NB, Krøner K, Jensen TS (2012) Heart rate variability in complex regional pain syndrome during rest and mental and orthostatic stress. *Anesthesiology* 116:133–146

118. Torebjörk E, Wahren L, Wallin G, Hallin R, Koltzenburg M (1995) Noradrenaline-evoked pain in neuralgia. *Pain* 63:11–20

119. Tripovic D, Pianova S, McLachlan EM, Brock JA (2010) Transient supersensitivity to alpha-adrenoceptor agonists, and distinct

hyper-reactivity to vasopressin and angiotensin II after denervation of rat tail artery. *Br J Pharmacol* 159:142–153

120. van Hilten JJ, van de Beek WJ, Roep BO (2000) Multifocal or generalized tonic dystonia of complex regional pain syndrome: a distinct clinical entity associated with HLA-DR13. *Ann Neurol* 48:113–116

121. van Rijn MA, Marinus J, Putter H, Bosselaar SR, Moseley GL, van Hilten JJ (2011) Spreading of complex regional pain syndrome: not a random process. *J Neural Transm* 118:1301–1309

122. Vanhoutte PM, Flavahan NA (1986) Effects of temperature on alpha adrenoceptors in limb veins: role of receptor reserve. *Fed Proc* 45:2347–2354

123. Vogel T, Gradl G, Ockert B, Pellengahr CS, Schurmann M (2010) Sympathetic dysfunction in long-term complex regional pain syndrome. *Clin J Pain* 26:128–131

124. Wasner G, Drummond PD, Birklein F, Baron R (2001) The role of the sympathetic nervous system in autonomic disturbances and sympathetically maintained pain in CRPS. In: Harden N, Baron R, Jähnig W (eds) Complex regional pain syndrome: the proceedings of the isap research symposium in Cardiff, Wales. IASP Press, Seattle, pp 89–118

125. Wasner G, Heckmann K, Maier C, Baron R (1999) Vascular abnormalities in acute reflex sympathetic dystrophy (CRPS I). Complete inhibition of sympathetic nerve activity with recovery. *Arch Neurol* 56:613–620

126. Wasner G, Schattschneider J, Heckmann K, Maier C, Baron R (2001) Vascular abnormalities in reflex sympathetic dystrophy (CRPS I): mechanisms and diagnostic value. *Brain* 124:587–599

127. Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. *Physiol Rev* 82:981–1011

128. Weber M, Birklein F (2001) Complex regional pain syndrome: an actual survey. *Expert Rev Neurotherapeutics* 1:100–109

129. Wehmeyer C, Pap T, Buckley CD, Naylor AJ (2017) The role of stromal cells in inflammatory bone loss. *Clin Exp Immunol* 189:1–11

130. Zhao P, Barr TP, Hou Q, Dib-Hajj SD, Black JA, Albrecht PJ, Petersen K, Eisenberg E, Wymer JP, Rice FL, Waxman SG (2008) Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: evidence for a role in pain. *Pain* 139:90–105